

141

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Predictable CPU Architecture Designed for Small

Real-Time Applications – Implementation Results
Ionel Zagan, Vasile Gheorghita Gaitan

Abstract—The purpose of this paper is to describe and

present the implementation results of nMPRA-MT processor

concept designed for small real-time applications. Our target is

to validate a fine-grained multithreading CPU architecture

that uses replication and remapping techniques for the

program counter, general purpose registers and pipeline

registers. The new predictable CPU implementation is based on

a hardware scheduler engine, being able to schedule

dynamically a set of tasks on the five-stage pipeline assembly

line. Using a FPGA device from Xilinx, we validate the

innovative nMPRA-MT processor, interleaving different types

of threads into the pipeline assembly line, providing

predictability and hardware-based isolation for hard real-time

threads. Mechanisms for synchronization and inter-task

communication are also taken into consideration.

Keywords— predictable; real-time systems; fine-grained

multithreading; hardware scheduler; pipeline; hard real-time

I. Introduction
One of the present-day tendencies in the automotive and

industrial field is to migrate towards more and more
complex multithreading and multi-processor microcontroller
architectures. The complexity of the applications in the field
already mentioned require the design and implementation of
some greater computing power hardware systems. This trend
is first of all the result of the need to carry out more
complex, reliable and safer applications. Because increasing
the operating frequency is not always an effective solution
due to the energy consumption of mobile applications, one
of the options is to incorporate in the same silicon chip a
number of similar computational kernels so as to allow a
more efficient management of time, tasks and implicitly of
energy consumption.

A parameter with a negative influence on the
performance on a real-time system is the over-control due to
the operating system [1]. The scheduling algorithm and task
context switching operations may significantly influence the
scheduling limit for those systems with a high frequency of
task switching. This is the reason for which, in parallel with
the improvement of software scheduling algorithms we also
aimed at implementing them in the hardware, specifically to
relieve the processor of the scheduling activity and to
diminish the over-control specific to the operating system.

Ionel Zagan

Computers, Electronics and Automation Department, Ștefan Cel Mare
University of Suceava

Romania

Vasile Gheorghiță Găitan
Computers, Electronics and Automation Department, Ștefan Cel Mare

University of Suceava

Romania

The present paper validates hardware-implemented real-
time processor architecture on a FPGA-based development
platform [2], which may be an important solution to mixed-
critically systems.

Based on a hardware-implemented real-time scheduler,
this paper comes with a realistic and feasible alternative to
the already existing solutions, making the use of time more
efficient and also ensuring the predictability of hard thread
execution. The solution presented in this paper is a new
processor which can execute dynamic scheduling algorithms
without the need to have a software-implemented operating
system [3], representing an innovative solution for real-time
systems where time is a decisive factor of correctness. The
execution of the scheduling blocks in the hardware,
eliminates over-control due to the operating system, thus
improving the scheduling limit of task set and the
performance of the overall system. Since the processor
architecture with integrated hardware scheduler is one based
on resource multiplexing where the memory consumption
used in the implementation varies in proportion to the
number of used tasks, it is important to indicate that this
architecture is intended for industrial and automotive
embedded applications where the number of tasks lies in the
range [8, 32]. More often than not, a number of tasks
varying around value 16 is more than enough for most of
such small applications. In the automotive field, the number
of tasks used in Powertrain or Safety applications vary
between 6 and 12. We therefore consider that the use of
nMPRA-MT architecture for such projects is a realistic one.
The added efficiency and improving usage safety, in
accordance with Standard ISO26262, are the main features
that support this architecture.

Multi Pipeline Register Architecture - Fine-grained
Multithreading (nMPRA-MT) offers an excellent solution to
this issue, because tasks and functions have individual
contexts that are being hardware-managed, lacking any
additional over-control which may lead to penalties in the
performance time of applications. If such an architecture is
being used, the user is absolved of the necessity to
implement a software algorithm to check stack integrity.
The round-robin or preemptive scheduling block which
nMPRA-MT can implement with the help of time
integrators and of hardware activated tasks (HAT), closely
resembles the mechanism implemented in AutosarOS which
inherits all the features from OSEK/VDX standard (Open
systems and the corresponding interfaces for automotive
electronics/ Vehicle Distributed eXecutive) [4].

This paper is organized as follows: section II describes
similar papers in the field of safety-related real-time
embedded systems. Subsequently, section III gives an
overview of the original nMPRA architecture, while the
requirements for hardware support are presented in section
IV. In section V we describe the validation of the nMPRA-
MT project and in section VI we conclude the paper with a
presentation of the future work.

142

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

A
d

d
re

ss

In
st

ru
ct

io
n

A
d

d
re

ss
W

ri
te

D
a

ta

R
ea

d
D

a
ta

 ALU ALU
Register

 File
Instruction

Memory

Data

Memory

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Fetch

Instruction

Decode

Execution Memory

M
E

M
/W

B
M

E
M

/W
B

PC

Write

Back

II. Related work
This chapter presents few similar architecture and

scheduler implementations that perform the development of
real-time kernel primitives in hardware, achieving
predictability and hardware based isolation for hard real-
time threads.

The aim of Merasa Project presented in [5] and [6] was
to implement a predictable processor architecture to be used
successfully in hard real-time embedded systems. MERASA
processor has a hardware designed for mixed-criticality
systems, focused at the multi-kernel level. The proposed
architecture is based on the SMT technique (Simultaneous
Multithreading), being able to execute at the same time hard
real-time (HRT) and non real-time (NHRT) threads.

The main features of this project is the predictibility of
HRT thread execution and the efficient analysis of the
WCET (Worst Case Execution Time) coefficient for each
separated thread.

The FlexPRET project presented in [7] is a predictable
processor designed for mixed-criticality systems. Authors
have fundamented their work on fine-grained multithreading
in order to design a new processor which interlaces an
arbitrary number of threads on the assembly line. By
classifying threads into two categories, hard-real time thread
(HRTT) and soft-real time thread (SRTT), FlexPRET
architecture manages to guarantee hardware isolation for
HRTT threads and to use efficiently the processor by means
of SRTT threads. If there is no HRTT thread scheduled for
the execution, the available cycles may be used by SRTT
threads in the round-robin mode. In this way, the dynamic
scheduler has the advantage of using all processor cycles to
the detriment of a more hard to get WCET.

The disadvantage of this implementation is that the
processor cannot avoid pipeline assembly line stalls, when
the scheduler executes instructions every clock cycle from
the same thread.

The basic idea of the Komodo project presented by
Kreuzinger et al. [8] is to use the multi-thread Komodo
Java-based microcontroller to manage real-time execution
multiple threads. Therefore, the proposed architecture uses
multiple stacks, program counters, instruction windows and
a signal unit to manage a set of execution threads activated
by means of isolations. In order to offer a real-time support,
the authors have improved picoJava instructions set.

Scheduling execution threads of various priorities on a
four-stages assembly line is carried out by Komodo Priority
manager, ensuring a quick change of contexts. In what
concerns transfer and memory access instructions which
may lead to assembly line interrupts, the scheduler may
assign unused cycles to another execution thread.

Therefore, although Komodo project allows other
execution threads in the ready state to be executed when the
assembly line is free, thus increasing the instructions
interleaving factor, this paper does not describe any
synchronization or communication mechanism.

III. Overview of the nMPRA
architecture

The Multi Pipeline Register Architecture (nMPRA)
implemented for n threads is based on a hardware
implemented scheduler as an integral part of the processor
entitled Hardware Scheduler Engine (nHSE). The nMPRA
concept replaces the stack saving classical method with a
remapping technique [9], which uses the replication of
program counter, register file and pipeline registers for n
threads, as shown in Figure 1.

The major advantage of the nMPRA project is that,
although it was designed for the single thread operating
mode, the assembly line is not affected by the remapping
operation of task contexts and implicitly the performance of
the processor is not down-graded. The nMPRA processor
based on the five stage pipeline assembly line is designed to
execute the MIPS instruction set, implementing new
instructions for task scheduling operations (we will use the
terms “thread” and “task” interchangeably). The original
architecture presented in [9], guarantees the execution of the
new scheduled task starting with the next clock cycle or in 3
clock cycles when we wish to ensure memory consistency.

In order to implement the nMPRA project, the authors
use nHSE with static scheduling algorithms for tasks,
interrupts, and events. nHSE is directly responsible for the
remapping operation of the pipeline registers set and of the
registers file. Therefore, on the ascending front of a clock
cycle operate the datapath control and pipeline control units,
and on the descending front operates the hardware-based
real-time scheduler [10]. Complete isolation of contexts and
the small response time to events are the main features of
nMPRA architecture. These features enable the integration
of the project into hard real-time systems, guaranteeing real
time performances necessary to these systems.

Operating at a frequency of 50 MHz, nMPRA
implementation can achieve context commutation or answer
to an external event in a time interval between 20 and 60ns,
which confirms the proper operation of the theoretical
model.

Figure 1. Replication of resources of the nMPRA architecture. PC-

program counter, IF/ID-Instruction Fetch/Instruction Decode stage, ID/EX-

Instruction Decode/EXecute stage, EX/MEM-Execute/MEMory stage,
MEM/WB-MEMory/Write Back stage.

143

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Pipeline

levels

TASK 1

TASK 2

TASK 3

TASK 4

TIMER 1

TIMER 2

INT 1

INT 2

I

II

III

IV

V

Scheduling execution

of HT and ST threads

IF ID MEM WBEX

IF ID MEM WBEX

IF ID MEM WBEX

Dynamic

nHSE
IF ID MEM WBEX

IF ID MEM WB

Instruction execution of two

active HT threads, τ0 and τ1

EX

- HT threads;τ0 τ1

TIME (in clock cycles)

IV. Proposed nMPRA-MT
architecture and hardware

support
The nMPRA-MT architecture implemented for n tasks,

called Multi Pipeline Register Architecture - Fine-grained
Multithreading, extends the nMPRA project presented in [9]
and [10]. Our implementation classifies the high priority
real-time tasks as hard threads–HT and low priority tasks as
soft threads–ST [11]. The HTs are threads that need
hardware-based isolation and the STs represent threads for
which the results produced after the deadline do not cause a
critical effect. To guarantee the predictability, we propose a
new dynamic hardware-based real-time scheduler that
executes HTs every two clock cycles; completely
eliminating stalls from the pipeline assembly line. Thus,
nHSE offers hardware-based isolation for HTs and
schedules the STs to use the free CPU cycles. Introducing a
new block in the Instruction Decode pipeline stage that
compares two 32-bit values and outputs the information on
them, the forwarding unit is able to eliminate any delays
caused by hazards at the expense of a larger execution
latency of two clock cycles per instruction [11].

The new nMPRA-MT architecture uses the basic idea of
the FlexPRET processor presented in [7], interleaving HTs
and STs into a five-stage pipeline assembly line. Unlike this
architecture, nMPRA-MT implementation is based on the
remapping process of task contexts which is totally
transparent to the user, generating only a 3 clock cycles
over-control when the software application uses sw
instructions. If applications do not use this type of
instruction then the overcontrol is zero.

Beside the processor-coprocessor type architectures, the
nMPRA-MT architecture has the major advantage of not
needing additional time for pipeline arbitration and nor does
it generate delays due to the data transfer between the
scheduler and the processor, because the scheduler is an
integral part of the processor. Compared to other schedulers
implemented in dedicated processors, nHSE has the
advantage of processing external or interrupts events in the
hardware scheduling block without generating additional
overcontrol.

A. Pipeline and Thread Scheduling
Because most operating systems use the stack to save the

function contexts and because the stack is a common
memory zone, it is not excluded that during the course of the
application this stack will be accidentally corrupted and the
contexts of certain functions will turn inconsistent. Most
dedicated microcontrollers implement as a safety measure
SEC-DED (Single Error Correction, Double Error
Detection) control codes to detect and correct certain errors
for the Flash and RAM memory [12]. But these mechanisms
perform just a verification of the data integrity and they do
not guarantee their consistency, too. The corruption of
certain contexts may be successfully detected only if there
are mechanisms which could check overall variables and
memory contexts from both points of view. AutosarOS
partially implements this requirement, using mostly memory
protection mechanisms so as to restrict access to memory
from unauthorized code areas. It is for this reason that the
project proposed by nMPRA-MT based on resource

multiplexing normally performs task contexts remapping in
just one clock cycle or in 3 clock cycles when we wish to
ensure memory consistency. Guaranteeing a complete
isolation of hardware contexts for HTs, we can say that
project nMPRA-MT is a feasible implementation for small
real-time applications.

Figure 2 exemplifies how nHSE introduces on the
assembly line on 1st, 3rd and 5th stages a HT thread noted
with τ0. In performing this scheduling, in the detriment of
the latency of an instruction at two clock cycles for HT
thread execution, we avoid the worst cases of assembly line
stalling. On the 2nd and 4th levels we introduced another
HT thread using the round-robin scheduling algorithm,
managing thus to fully feed the pipeline. The nHSE
scheduler manages the assembly line threads according to
their type, HT or ST and controls the introduction without
penalities of a new task on the assembly line, taking
advantage of the clock cycles still unused. In case data
hazard appears, the hazard detection unit performs data
redirection for each separate thread.

The state of each thread scheduled by the nHSE, is
stored in a special STATE register. Every thread τn has its
own state that can be IDLE, SLEEP or RUN, and a unique
identifier (ID) which is an integer number from 0 to n-1, that
identifies each thread with different priorities on the
occurrence of an event. The scheduling algorithm
implemented by nHSE executes all HT or ST threads
according to the scheduling scheme that have passed the
feasibility test. In what concerns the example shown in
Figure 2, the τ0 thread depicted in red has the highest
priority, having the ID equal to 0, while the τ1 thread
depicted in blue is also a HT thread with the ID equal to 1.
Thereby, the lowest priority thread, τn-1, corresponds to a ST
thread having the ID equal to n-1. The STATE and ID
registers of the active threads, the block dedicated to the
events and synchronization logic, together with the dynamic
scheduler, constitute the actual state of the processor. Based
on these registers, every thread may have a priority on a
scale from 0 to n-1, where 0 is the highest and n-1 is the
lowest priority, and a state stored in the STATE register.
The state of each thread can be changed by a dynamic
scheduling algorithm implemented in the nHSE.

Figure 2. Fine-grained nMPRA-MT pipeline architecture and Dynamic

nHSE scheduler, IF-Instruction Fetch stage, ID-Instruction Decode stage,

EX-EXecute stage, MEM-Memory stage, WB- Write Back stage.

144

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

ERF - Events Register File ERF - Events Register File

ERS-1ERS-1

0/1 n-1 1 0

Event
state

Event
state source IDsource ID

0/1 n-1 1 0

0/1 n-1 1 0

ER0ER0

ER1ER1

n-1 1 0

destination IDdestination ID

n-1

n-1 1 0

k-1 1 0

messagemessage

1 0

k-1 1 0

1 0 k-1

The scheduler is a finite state machine (FSM)
implemented into the hardware that can validate or suspend
the execution of a HT or ST threads, based on the
implemented scheduling algorithm. If an external event is
attached to a HT thread, on the occurrence of this event the
nHSE identifies and executes the thread identified by using
the ID register [12]. If there are no events or HT threads
active, the nHSE must execute the ST threads in order to
eliminate the wasted CPU cycles.

B. Inter-task synchronization and
communication
The hardware implementation of inter-task

synchronization and communication mechanisms does not

introduce an unacceptable increase of the overall WCET.

Thus, the proposed nMPRA-MT architecture is able to

execute multithreaded workloads using the above mentioned

mechanisms, increasing the efficiency of implementation

that support parallel execution of HTs combined with

additional STs. In order to do this, a set of registers with fast

access is used to implement the synchronization and

communication mechanisms [10].

The hardware support for the synchronization

mechanism is represented by Mutex Register File (MRF).

This special registers contains the mutex state and the

identifier of the proprietary thread. Sharing resources for all

HTs and STs imply that mutex registers (MR) can be

accessed from any thread under the control of the nHSE.

In order to avoid the priority inversion problematic

scenario, the priority of a ST thread can be changed

dynamically by a dynamic scheduling algorithm

implemented in the nHSE, but cannot become an HT thread.

Each thread has a hardware block implemented in the nHSE

that generates signals stored in the Enable Mutex Register

(EMR) every time whenever MRF is modified. When one or

several threads wait for a mutex, the nHSE verify the EMR

and MRF every clock cycle based on the scheduling

algorithm implemented in the hardware.

However, from a hard real-time point of view, it is

important to avoid resource sharing among HT and ST

threads, because the nHSE must perform the dynamic

scheduling operations introducing additional clock cycles.

Therefore, a HT thread may have to wait for freeing a mutex

held by a ST thread, affecting the predictability of the

system and also increasing the WCET.

In order to implement the communication mechanism,

nMPRA-MT architecture uses a number of s event registers

(ER), each having (1+2n+k) bits, that compose the Events

Register File (ERF). As we can see in Figure 3, every event

register uses one bit to store the event state, a set of bits to

memorize the ID of the source and destination threads, and

the last bits are used to store the message.

When a thread sends a message using the ERF, the

nHSE read the ERF signals and schedule the thread to which

the message is addressed. The ERF can be accessed from

any threads; therefore, they are resources shared for all type

of threads. If a thread receives a message, it is necessary to

identify the source of that event.

Figure 3. Events state, IDs of the source and destination tasks and the

corresponding messages stored by Events Register File [10].

In order to avoid the unacceptable numbers of clock

cycles used for searching in the ERF to find the source of

the message, the search is made based on a Content

Addressable Memory (CAM) principle [10]. Nevertheless,

the nHSE implemented in the hardware can guarantee

timing predictability for a set of feasible tasks, the list of HT

threads being bounded by the relative deadline periods.

However, from an architectural point of view, the

implementation of the synchronization and communication

mechanisms is based on the atomic instruction, providing

good performance in order to satisfy the individual deadline

of tasks, and predictable blocking times for HT threads.

C. Forward Unit and Hazard
Situations
For most of the real-time operating systems, the

execution of the same source code in a different number of
clock cycles is generated by the hazard situations appeared
in the pipeline assembly line.

The proposed nMPRA-MT implementation is a fine-
grained thread-interleaved pipeline architecture, capable of
fetching instructions from different threads on every clock
cycle. If data hazards appear when different HTs or STs are
interleaved in the pipeline assembly line, a dedicated
forwarding unit is implemented in order to solve all
situations. In these cases, the data is redirected directly to
the execution stage, avoiding the performance degradation
of the pipeline assembly line. If the nHSE fetches
instructions from the same HT or ST thread every two clock
cycles, then hazard situations eliminated by the specific
Forwarding Unit are likely to appear.

When the instructions executed in the pipeline belong to
four different threads, there are no possible hazard
situations. If the nHSE fetches in a continuous manner the
instructions from a particular ST thread, it is possible to stall
the pipeline assembly line in order to wait for the data
processed by the previous instruction. In these cases, the
wasted clock cycles due to the unsolved hazard situations
appeared on STs execution, does not affect system
predictability.

Because the HTs are scheduled every two cycles in the
worst case situations preserving the predictable behavior, the
proposed nMPRA-MT architecture is recommended for
small real-time applications.

145

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

V. Validation of the nMPRA-MT
architecture

This section describes the operations carried out in order
to test and validate the nMPRA-MT concept. This
architecture was implemented and validated using a FPGA
Virtex6 on a ML605 reference board, produced by Xilinx, as
we can see in Figure 4. The processor code was RTL
described in the standard Verilog 2001. At first, various
implementation options of the nMPRA-MT processor have
been validated for a 10MHz, 50MHz and 75MHz operation
frequency. For validation, three scheduler versions were
used. The first processor version supports the schedule of 4
tasks, the second supports the schedule of 8 tasks, while the
last one of 16 tasks, all of them validated for 50MHz
operation frequency. The generation of some intermediate
implementations of 4 and 8 tasks respectively was necessary
first of all due to the large period of time needed for the
synthesis using Xilinx Design Suite 14.5. development tools,
but also to detect the use of resources for various processor
configurations.

The nMPRA-MT architecture uses pipeline registers
replication, of the program counter and register file
summing up to 1.08 kB for each thread. Multiplexing this
resource for 16 tasks requires 17.25 kB of RAM memory.

A. The Impact of Various
Configuration Models on FPGA
Resources
Although the nMPRA-MT is a resource multiplexing

architecture, the costs for the implementation of such a
project are convenient compared to other commercial
architectures. Still, we should mention that such an
implementation would make sense for a reasonable number
of tasks.

The implementation of this architecture for a large
number of tasks would call for the synthesis of a logic in
which the propagation time would be groundlessly high and
thus the working frequency would significantly drop.

Table I presents the memory needed for three possible
implementations of 4, 8 and 16 tasks where the maximum
nesting depth of functions is on 8 levels.

Figure 4. HT thread jitter measurement on nMPRA-MT processor using

Virtex-6 FPGA ML605 Evaluation Kit – Xilinx.

We have chosen these values to specifically present the
memory consumption for an extreme version of the
implementation: 16 tasks and an call depth of the register
file on 8 levels. Taking into consideration the data presented
in Table I, we may surely state that the memory needed to
implement the nMPRA-MT processor is more than
acceptable, given the fact that the microcontrollers used
nowadays employ hundreds of KB of RAM memory.

TABLE I. MEMORY REQUIREMENTS FOR DIFFERENT CONFIGURATION

OF THE NMPRA-MT PROCESSOR

nMPRA-MT

configuration

(number of tasks):

Memory required for:
Total memory

required for

nMPRA-MT

(including PC)
pipeline

registers

general

registers

4 0.295kB 4kB 4.31kB

8 0.59kB 8kB 8.62kB

16 1.18kB 16kB 17.25kB

The resource that uses most memory is the register file
and the pipeline registers. In the testing version specific to
the nMPRA-MT architecture, the register file includes
separate contexts for the tasks as well as for the functions
calls. This allows us to get an additional speed gain which
results from eliminating the need to save and read stack
parameters. In the case of a general usage application, we
may state that the nesting of functions calls depends very
much on the type of application. A task may be divided into
code areas which use intensively the processor, mixed code
which uses the processor and the peripheral devices and
code which accesses mainly the peripheral devices. For
these types of codes, the common number of nested
functions calls would be around 8, 6 and 4 respectively.
Taking into consideration that this architecture does not
need an operating system whose functions would overload
the stack, the implementation with a nesting depth on 6
levels would be a reasonable solution. If a function context
has 32 registers on 32 bits, the implementation of a register
file which would ensure independent contexts for 6 nested
functions for 16 tasks would need 12.28 kB of RAM
memory.

Table II presents the energy consumption for the three
implementations with hardware support for 4, 8 and 16 tasks
respectively. Static power represents the energy consumed
by FPGA at start-up, when the device is configured with the
operating logic, but lacking any clock activity. This value is
the sum of the static power value, which is the energy
consumed by the device at start-up but lacking the
application logic, and the design static power, representing
the energy consumed of the implemented logic lacking any
clock activity.

TABLE II. POWER SUMMARY FOR DIFFERENT CONFIGURATION OF THE

NMPRA-MT PROCESSOR

Nr. of

tasks

Clock

+Logic

Signals

+IO

MMCM DSP Static

power

Total

mW

4 27.10 34.58 77.30 0.74 3425.89 3565.61

8 55.93 50.68 77.30 0.77 3427.29 3611.97

16 87.32 61.15 77.30 0.75 3428.60 3655.13

The flip-flop (FF) and lookup-table (LUT) usages for
three possible implementations are shown in Figure 5, the
percentage indicating only for information purposes the
components usage degree for the FPGA equipment used
(Xilinx Virtex-6 xc6vlx240t-1ff1156), depending on the
nHSE and the synchronization and communication
mechanisms included.

146

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Figure 5. FPGA resource usage for different nMPRA-MT processor

configurations.

As an illustration, the first implementation with 4 threads
is named 4MPRA-MT, the second 8MPRA-MT corresponds
to 8 threads and the last one, 16MPRA-MT has 16 threads,
all of them with a nesting depth of functions on 4 levels. The
resource difference between the original nMPRA version
presented in [10] and 4MPRA-MT shows the cost of fine-
grained multithreading and flexible thread scheduling, with
a 35% increase in FFs and a 6% increase in LUTs.

The resource difference shows the cost of adding of a
new forwarding module and control logic that requires more
multiplexing based on thread IDs and STATE bits stored for
each thread. The increase in LUTs is caused mainly by the
additional control logic necessary for scheduling in the
predictable mode HTs every two clock cycles. The eight
thread version 8MPRA-MT is recommended for mixed-
criticality applications, where hardware-based isolation is
necessary. In this case, the cost of processor areas gains a
more complex functionality, such as different memory
hierarchy, more mutexes or peripherals.

B. Experimental Results and WCET
Analysis
The system clock has been designed with the help of the

LogiCore Clocking Wizard 3.6 generator from the ISE
Design. For testing, the PLL block was powered by a
differential input signal of a 200MHz oscillator, capable of
generating a variable clock frequency ranging from 10 to
700 MHz. For the frequencies used in testing the processor,
this PLL block has generated a maximum 120ps jitter. This
jitter must be taken into consideration when determining the
time limitations used for tracking the routes through FPGA.
A major advantage of using the PLL generating block is that
it implicitly global clock buffers (BUFG) from Virtex6
which are specific to clock generation, the main
characteristic in generating the clock.

The main feature of these blocks is that they support a
large fan-out (more than 100.000), necessary to clock
tracking through all logical items of the processor. In
implementing the nMPRA-MT version with 8 tasks, the fan-
out reached the value of 18.000. The third channel marks the
answer of the scheduler to an asynchronous external event
acquired from pushing a button from the ML605 board.At a

10 MHz frequency, the jitter may be of maximum 133.5 ns,
depending on the moment of the event. The internal logic of
the nHSE block requires at most 33.5 ns to perform the
context scheduling and remapping frequency.

As we can see in Figure 6, for that case in which the
program executes sw instructions at an operating frequency
of 10MHz, the jitter of the nMPRA-MT scheduler is of 340
ns. This happens because the clock used in the
synchronization of the nHSE scheduler is out of phase with
240 degrees as compared to the processor clock used in
memory and pipeline registers synchronization [10]. Due to
the impedance inadequacy among the output levels of the
Virtex6 architecture and the input level of the oscilloscope,
we may detect some reflections that can be also vied in
Figure 6.

In order to calculate the WCET of our processor design,
we used the static analysis organized in two stages. For the
beginning, we used the Fibonacci sequence to test our fine-
grained multithreading nMPRA-MT implementations. This
test bench, however, did not use all the instructions
implemented in the nMPRA-MT architecture.

The second test bench we have created loads four values
from memory and uses them to obtain the WCET for a
feasible set of HT and ST threads. In some situations, when
an HT thread is executed every two clock cycles in order to
meet the deadline, some instructions depend on the previous
one, while some do not. Each hazard situation is solved by
the dedicated forward unit, obtaining the WCET for the
second test bench. At the end of the tests, we can read the
results stored in memory in order to check if we obtain the
correct values.

Even when using the isolation, the computed WCET for
the HT threads can be difficult to bind because the
predictability of the architecture depends, at the same time,
on the scheduling scheme implemented in hardware by the
nHSE, pipeline ordering, synchronization and
communication mechanisms. Due to a dynamic interaction
between the various threads executed at the same time on
the pipeline assembly line, the WCET is difficult to obtain
because the real WCET significantly differs from the
computed execution times.

Figure 6. Jitter of the highest HT priority thread in relation with the

assigned external asynchronous event.

147

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

C. Design Methodology
For implementation purposes, the nMPRA-MT project

was subdivided into modules which were previously created
and tested, being brought together to obtain a functional
processor. The nMPRA project presented by Gaitan et al. in
[10] had a similar design to the fine-grained multithreading
architecture presented in this paper. For this reason, we
decided to continue the nMPRA design, designing a new
Hazard Detection Unit, a Forward Unit, and then make
substantial changes to the data path, control, and pipeline
registers. The nHSE was also completely different from the
nMPRA design, and thus a new dynamic nHSE was
designed. Once all the modules were completed and tested,
we obtained the CPU module that joins all of the individual
components with logic.

In Verilog, all modules operate simultaneously, being a
challenging step to make changes in the data path and
adding a new dynamic scheduler. This means that we had to
make sure that our control unit signals had to command the
correct modules at the correct time. The register file and
pipeline registers were clocked on the positive edge and the
nHSE on the negative edge.

Once all of the pipeline modules were created and fully
debugged, we executed the test programs in order to debug
our working nMPRA-MT processor and make sure that the
hazards were being handled correctly, complying with all
the instructions. Our implementation had to be able to
simultaneously work on five different instructions on the
pipeline assembly line at the same time. Therefore, we had
to detect if there appear any hazard situations if the nHSE
schedules a HT or ST thread at every two clock cycles, or if
a branch instruction was correctly evaluated.

In conclusion, as a future work we will calculate a tight
WCET for complete benchmarks and industrial applications
running on the nMPRA-MT processor with both WCET
tools.

VI. Conclusion and future work
The nMPRA-MT concept leads to all pipeline registers

multiplexing so as to ensure complete isolation of software
contexts and of hardware contexts too, which comprise
internal signals of the processor according to the HT or ST
executed instructions and thread. Therefore, the
implementation proposed in this paper is a deterministic
architecture as compared to SMT processors, which may
expose additional overcontrol if the program does not
expose an ILP (Instruction Level Parallelism).

Complete isolation of contexts and the unique time of
response to events are different characteristics of nMPRA-
MT architecture, making it possible to use this project in
small dimensions mixed-criticality real time systems,
ensuring the real time behavior necessary to such systems.

In order to improve functionality as compared to original
implementation [9], the processor includes a solid support
for the protection and operation using critical resources for
HT and ST threads. The implementation of these
mechanisms in hardware capable of operating in the same
time interval with the scheduling algorithm, contributes to
designing a more powerful processor architecture from its

functionality point of view, without reducing its response
times.

In conclusion, we may say that using a nMPRA-MT
architecture with 16 tasks is fully accounted for, due to the
benefits it brings, while implementation cost/effectiveness
increases. Table I presents the memory necessity for various
configurations of the nMPRA-MT architecture just as it was
described in section V.

The architecture proposed in this paper may be
improved. In the nMPRA-MT architecture, the dimensions
of the memory consumed for the implementation of the
register file is proportional to the number of HT and ST
threads. It would be useful for the ST thread dedicated
memory to be used as general usage memory with quick
access, thus reducing the total architecture implementation
cost. Otherwise, introducing HT dedicated scratchpad
memories and the implementation of an efficient memory
controller would bring significant improvements to
architecture predictability and a better WCET.

Another interesting idea would be to develop a scheduler
which would also support multi-core nMPRA-MT
architectures. This approach would bring more dynamism in
practice, offering the possibility to use the processor in
performing multi-core processes or distributed systems.

Acknowledgment
This paper was supported by the project "Increasing the

competitiveness of the EURONEST ICT&Hub Regional
Innovation Cluster and stimulating interactions between
members to develop high tech products and services” -
Contract no.: 1CLT/800.020/19.05.2014, project co-funded
from European Social Fund through Sectorial Operational
Program Increase of Economic Competitiveness 2007-2013.

References

[1] Giorgio C. Buttazzo, ”Hard Real-Time Computing Systems” -

Predictable Scheduling Algorithms and Applications, Third edition,
2011.

[2] Kumthekar, B.; Benini, L.; Macii, E.; Somenzi, F., "In-place power
optimization for LUT-based FPGAs," Design Automation
Conference, 1998. Proceedings, pp.718,721, 19-19 June 1998.

[3] Biondi, A.; Melani, A.; Marinoni, M.; Di Natale, M.; Buttazzo, G.,
"Exact Interference of Adaptive Variable-Rate Tasks under Fixed-
Priority Scheduling," Real-Time Systems (ECRTS), 2014 26th
Euromicro Conference on , vol., no., pp.165,174, 8-11 July 2014, doi:
10.1109/ECRTS.2014.38.

[4] OSEK. OSEK/VDX Operating System Specification 2.2.1. OSEK
Group, http://www.osek-vdx.org, 2003.

[5] T. Ungerer et al., Merasa: Multicore execution of hard real-time
applications supporting analyzability, IEEE, Micro, vol. 30, no. 5, pp.
66–75, 2010.

[6] Wolf, J.; Gerdes, M.; Kluge, F. Uhrig, S. Mische, J. Metzlaff, S.
Rochange, C. Cass , H. Sainrat, . Ungerer, T., RT S Support for
Parallel Execution of Hard Real-Time Applications on the MERASA
Multi-core Processor," Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 2010 13th IEEE International
Symposium on , vol., no., pp.193,201, 5-6 May 2010, doi:
10.1109/ISORC.2010.31.

[7] Michael Zimmer, David Broman, Chris Shaver, and Edward A. Lee.
FlexPRET: A Processor Platform for Mixed-Criticality Systems.
Proceedings of the 20th IEEE Real-Time and Embedded Technology
and Application Symposium (RTAS), Berlin, Germany, April 15-17,
2014.

148

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

[8] Kreuzinger, J.; Marston, R.; Ungerer, T.; Brinkschulte, U.;
Krakowski, C., "The Komodo project: thread-based event handling
supported by a multithreaded Java microcontroller," EUROMICRO
Conference, 1999. Proceedings. 25th , vol.2, no., pp.122,128 vol.2,
1999, doi: 10.1109/EURMIC.1999.794770.

[9] E. Dodiu and V.G. Gaitan, “Custom designed C U architecture based
on a hardware scheduler and independent pipeline registers – concept
and theory of operation,“ 2012 IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, IN, USA, 6-8 May
2012, ISBN: 978-1-4673-0818-2, ISSN: 2154-0373.

[10] Gaitan, V.G.; Gaitan, N.C.; Ungurean, I, "CPU Architecture Based on
a Hardware Scheduler and Independent Pipeline Registers" Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on,
no.99, pp.1,1 doi: 10.1109/TVLSI.2014.2346542.

[11] Gaitan, Nicoleta Cristina; Zagan, Ionel and Gaitan, Vasile Gheorghita,
“ redictable C U Architecture Designed for Small Real-Time
Application - Concept and Theory of peration” International Journal
of Advanced Computer Science and Applications(IJACSA), 6(4),
2015.

[12] Zhu Ming; Xiao Li Yi; Luo Hong Wei, "New SEC-DED-DAEC
codes for multiple bit upsets mitigation in memory," VLSI and
System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th International
Conference on , vol., no., pp.254,259, 3-5 Oct. 2011, doi:
10.1109/VLSISoC.2011. 6081647.

[13] Gaitan, Nicoleta Cristina; Gaitan, Vasile Gheorghita; Ungurean, Ioan;
Zagan, Ionel, "Methods to Improve the Performances of the Real-
Time Operating Systems for Small Microcontrollers," Control
Systems and Computer Science (CSCS), 2015 20th International
Conference on , vol., no., pp.261,266, 27-29 May 2015.

[14] B. Meakin, G. Gopalakrishnan, "Hardware Design, Synthesis, and
Verification of a Multicore Communication API ", SRC TECHCON,
2009 - cs.utah.edu.

[15] Dodiu Eugen, “Real-Time Hardware Scheduler for FPGA Based
Embedded Systems”, h.D. dissertation, University Stefan cel Mare
of Suceava, Romania, 2013.

About Authors:

Vasile Gheorghita Gaitan received the

MS and PhD degrees from the

„Gheorghe Asachi” Technical

University of Iasi, Romania in 1984 and

1997, respectively. He is currently

professor with the Computers,

Electronics and Automation Department,

“Stefan cel Mare” University of

Suceava, Romania. His main research

interests include real time scheduling,

embedded middleware, digital systems

design with FPGAs, fieldbuses and

embedded system application. He is a

member of the IEEE and a member of

the IEEE Computer Society.

Ionel Zagan received the Eng. degrees in

computer science from the Stefan cel

Mare University of Suceava, Suceava,

Romania, in 2005. He is currently a

Ph.D. student with the Department of

Computers, Electronics and Automation,

Stefan cel Mare University of Suceava

Romania. His current research interests

include real-time systems,

microcontrollers and pipeline processors

with parallel execution of tasks. Mr.

Zagan is a member of the IEEE

Computer Society.

