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Abstract—The purpose of this paper is to describe and 

present the implementation results of nMPRA-MT processor 

concept designed for small real-time applications. Our target is 

to validate a fine-grained multithreading CPU architecture 

that uses replication and remapping techniques for the 

program counter, general purpose registers and pipeline 

registers. The new predictable CPU implementation is based on 

a hardware scheduler engine, being able to schedule 

dynamically a set of tasks on the five-stage pipeline assembly 

line. Using a FPGA device from Xilinx, we validate the 

innovative nMPRA-MT processor, interleaving different types 

of threads into the pipeline assembly line, providing 

predictability and hardware-based isolation for hard real-time 

threads. Mechanisms for synchronization and inter-task 

communication are also taken into consideration. 

Keywords— predictable; real-time systems; fine-grained 

multithreading; hardware scheduler; pipeline; hard real-time 

I.  Introduction 
One of the present-day tendencies in the automotive and 

industrial field is to migrate towards more and more 
complex multithreading and multi-processor microcontroller 
architectures. The complexity of the applications in the field 
already mentioned require the design and implementation of 
some greater computing power hardware systems. This trend 
is first of all the result of the need to carry out more 
complex, reliable and safer applications. Because increasing 
the operating frequency is not always an effective solution 
due to the energy consumption of mobile applications, one 
of the options is to incorporate in the same silicon chip a 
number of similar computational kernels so as to allow a 
more efficient management of time, tasks and implicitly of 
energy consumption. 

A parameter with a negative influence on the 
performance on a real-time system is the over-control due to 
the operating system [1]. The scheduling algorithm and task 
context switching operations may significantly influence the 
scheduling limit for those systems with a high frequency of 
task switching. This is the reason for which, in parallel with 
the improvement of software scheduling algorithms we also 
aimed at implementing them in the hardware, specifically to 
relieve the processor of the scheduling activity and to 
diminish the over-control specific to the operating system. 
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The present paper validates hardware-implemented real-
time processor architecture on a FPGA-based development 
platform [2], which may be an important solution to mixed-
critically systems. 

Based on a hardware-implemented real-time scheduler, 
this paper comes with a realistic and feasible alternative to 
the already existing solutions, making the use of time more 
efficient and also ensuring the predictability of hard thread 
execution. The solution presented in this paper is a new 
processor which can execute dynamic scheduling algorithms 
without the need to have a software-implemented operating 
system [3], representing an innovative solution for real-time 
systems where time is a decisive factor of correctness. The 
execution of the scheduling blocks in the hardware, 
eliminates over-control due to the operating system, thus 
improving the scheduling limit of task set and the 
performance of the overall system. Since the processor 
architecture with integrated hardware scheduler is one based 
on resource multiplexing where the memory consumption 
used in the implementation varies in proportion to the 
number of used tasks, it is important to indicate that this 
architecture is intended for industrial and automotive 
embedded applications where the number of tasks lies in the 
range [8, 32]. More often than not, a number of tasks 
varying around value 16 is more than enough for most of 
such small applications. In the automotive field, the number 
of tasks used in Powertrain or Safety applications vary 
between 6 and 12. We therefore consider that the use of 
nMPRA-MT architecture for such projects is a realistic one. 
The added efficiency and improving usage safety, in 
accordance with Standard ISO26262, are the main features 
that support this architecture. 

Multi Pipeline Register Architecture - Fine-grained 
Multithreading (nMPRA-MT) offers an excellent solution to 
this issue, because tasks and functions have individual 
contexts that are being hardware-managed, lacking any 
additional over-control which may lead to penalties in the 
performance time of applications. If such an architecture is 
being used, the user is absolved of the necessity to 
implement a software algorithm to check stack integrity. 
The round-robin or preemptive scheduling block which 
nMPRA-MT can implement with the help of time 
integrators and of hardware activated tasks (HAT), closely 
resembles the mechanism implemented in AutosarOS which 
inherits all the features from OSEK/VDX standard (Open 
systems and the corresponding interfaces for automotive 
electronics/ Vehicle Distributed eXecutive) [4]. 

This paper is organized as follows: section II describes 
similar papers in the field of safety-related real-time 
embedded systems. Subsequently, section III gives an 
overview of the original nMPRA architecture, while the 
requirements for hardware support are presented in section 
IV. In section V we describe the validation of the nMPRA-
MT project and in section VI we conclude the paper with a 
presentation of the future work. 
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II. Related work 
This chapter presents few similar architecture and 

scheduler implementations that perform the development of 
real-time kernel primitives in hardware, achieving 
predictability and hardware based isolation for hard real-
time threads. 

The aim of Merasa Project presented in [5] and [6] was 
to implement a predictable processor architecture to be used 
successfully in hard real-time embedded systems. MERASA 
processor has a hardware designed for mixed-criticality 
systems, focused at the multi-kernel level. The proposed 
architecture is based on the SMT technique (Simultaneous 
Multithreading), being able to execute at the same time hard 
real-time (HRT) and non real-time (NHRT) threads. 

The main features of this project is the predictibility of 
HRT thread execution and the efficient analysis of the 
WCET (Worst Case Execution Time) coefficient for each 
separated thread. 

The FlexPRET project presented in [7] is a predictable 
processor designed for mixed-criticality systems. Authors 
have fundamented their work on fine-grained multithreading 
in order to design a new processor which interlaces an 
arbitrary number of threads on the assembly line. By 
classifying threads into two categories, hard-real time thread 
(HRTT) and soft-real time thread (SRTT), FlexPRET 
architecture manages to guarantee hardware isolation for 
HRTT threads and to use efficiently the processor by means 
of SRTT threads. If there is no HRTT thread scheduled for 
the execution, the available cycles may be used by SRTT 
threads in the round-robin mode. In this way, the dynamic 
scheduler has the advantage of using all processor cycles to 
the detriment of a more hard to get WCET. 

The disadvantage of this implementation is that the 
processor cannot avoid pipeline assembly line stalls, when 
the scheduler executes instructions every clock cycle from 
the same thread. 

The basic idea of the Komodo project presented by 
Kreuzinger et al. [8] is to use the multi-thread Komodo 
Java-based microcontroller to manage real-time execution 
multiple threads. Therefore, the proposed architecture uses 
multiple stacks, program counters, instruction windows and 
a signal unit to manage a set of execution threads activated 
by means of isolations. In order to offer a real-time support, 
the authors have improved picoJava instructions set. 

Scheduling execution threads of various priorities on a 
four-stages assembly line is carried out by Komodo Priority 
manager, ensuring a quick change of contexts. In what 
concerns transfer and memory access instructions which 
may lead to assembly line interrupts, the scheduler may 
assign unused cycles to another execution thread. 

Therefore, although Komodo project allows other 
execution threads in the ready state to be executed when the 
assembly line is free, thus increasing the instructions 
interleaving factor, this paper does not describe any 
synchronization or communication mechanism. 

III. Overview of the nMPRA 
architecture 

The Multi Pipeline Register Architecture (nMPRA) 
implemented for n threads is based on a hardware 
implemented scheduler as an integral part of the processor 
entitled Hardware Scheduler Engine (nHSE). The nMPRA 
concept replaces the stack saving classical method with a 
remapping technique [9], which uses the replication of 
program counter, register file and pipeline registers for n 
threads, as shown in Figure 1. 

The major advantage of the nMPRA project is that, 
although it was designed for the single thread operating 
mode, the assembly line is not affected by the remapping 
operation of task contexts and implicitly the performance of 
the processor is not down-graded. The nMPRA processor 
based on the five stage pipeline assembly line is designed to 
execute the MIPS instruction set, implementing new 
instructions for task scheduling operations (we will use the 
terms “thread” and “task” interchangeably). The original 
architecture presented in [9], guarantees the execution of the 
new scheduled task starting with the next clock cycle or in 3 
clock cycles when we wish to ensure memory consistency. 

In order to implement the nMPRA project, the authors 
use nHSE with static scheduling algorithms for tasks, 
interrupts, and events. nHSE is directly responsible for the 
remapping operation of the pipeline registers set and of the 
registers file. Therefore, on the ascending front of a clock 
cycle operate the datapath control and pipeline control units, 
and on the descending front operates the hardware-based 
real-time scheduler [10]. Complete isolation of contexts and 
the small response time to events are the main features of 
nMPRA architecture. These features enable the integration 
of the project into hard real-time systems, guaranteeing real 
time performances necessary to these systems. 

Operating at a frequency of 50 MHz, nMPRA 
implementation can achieve context commutation or answer 
to an external event in a time interval between 20 and 60ns, 
which confirms the proper operation of the theoretical 
model. 

Figure 1.   Replication of resources of the nMPRA architecture. PC-

program counter, IF/ID-Instruction Fetch/Instruction Decode stage, ID/EX-

Instruction Decode/EXecute stage, EX/MEM-Execute/MEMory stage, 
MEM/WB-MEMory/Write Back stage. 
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IV. Proposed nMPRA-MT 
architecture and hardware 

support 
The nMPRA-MT architecture implemented for n tasks, 

called Multi Pipeline Register Architecture - Fine-grained 
Multithreading, extends the nMPRA project presented in [9] 
and [10]. Our implementation classifies the high priority 
real-time tasks as hard threads–HT and low priority tasks as 
soft threads–ST [11]. The HTs are threads that need 
hardware-based isolation and the STs represent threads for 
which the results produced after the deadline do not cause a 
critical effect. To guarantee the predictability, we propose a 
new dynamic hardware-based real-time scheduler that 
executes HTs every two clock cycles; completely 
eliminating stalls from the pipeline assembly line. Thus, 
nHSE offers hardware-based isolation for HTs and 
schedules the STs to use the free CPU cycles. Introducing a 
new block in the Instruction Decode pipeline stage that 
compares two 32-bit values and outputs the information on 
them, the forwarding unit is able to eliminate any delays 
caused by hazards at the expense of a larger execution 
latency of two clock cycles per instruction [11]. 

The new nMPRA-MT architecture uses the basic idea of 
the FlexPRET processor presented in [7], interleaving HTs 
and STs into a five-stage pipeline assembly line. Unlike this 
architecture, nMPRA-MT implementation is based on the 
remapping process of task contexts which is totally 
transparent to the user, generating only a 3 clock cycles 
over-control when the software application uses sw 
instructions. If applications do not use this type of 
instruction then the overcontrol is zero. 

Beside the processor-coprocessor type architectures, the 
nMPRA-MT architecture has the major advantage of not 
needing additional time for pipeline arbitration and nor does 
it generate delays due to the data transfer between the 
scheduler and the processor, because the scheduler is an 
integral part of the processor. Compared to other schedulers 
implemented in dedicated processors, nHSE has the 
advantage of processing external or interrupts events in the 
hardware scheduling block without generating additional 
overcontrol. 

A. Pipeline and Thread Scheduling 
Because most operating systems use the stack to save the 

function contexts and because the stack is a common 
memory zone, it is not excluded that during the course of the 
application this stack will be accidentally corrupted and the 
contexts of certain functions will turn inconsistent. Most 
dedicated microcontrollers implement as a safety measure 
SEC-DED (Single Error Correction, Double Error 
Detection) control codes to detect and correct certain errors 
for the Flash and RAM memory [12]. But these mechanisms 
perform just a verification of the data integrity and they do 
not guarantee their consistency, too. The corruption of 
certain contexts may be successfully detected only if there 
are mechanisms which could check overall variables and 
memory contexts from both points of view. AutosarOS 
partially implements this requirement, using mostly memory 
protection mechanisms so as to restrict access to memory 
from unauthorized code areas. It is for this reason that the 
project proposed by nMPRA-MT based on resource 

multiplexing normally performs task contexts remapping in 
just one clock cycle or in 3 clock cycles when we wish to 
ensure memory consistency. Guaranteeing a complete 
isolation of hardware contexts for HTs, we can say that 
project nMPRA-MT is a feasible implementation for small 
real-time applications. 

Figure 2 exemplifies how nHSE introduces on the 
assembly line on 1st, 3rd and 5th stages a HT thread noted 
with τ0. In performing this scheduling, in the detriment of 
the latency of an instruction at two clock cycles for HT 
thread execution, we avoid the worst cases of assembly line 
stalling. On the 2nd and 4th levels we introduced another 
HT thread using the round-robin scheduling algorithm, 
managing thus to fully feed the pipeline. The nHSE 
scheduler manages the assembly line threads according to 
their type, HT or ST and controls the introduction without 
penalities of a new task on the assembly line, taking 
advantage of the clock cycles still unused. In case data 
hazard appears, the hazard detection unit performs data 
redirection for each separate thread. 

The state of each thread scheduled by the nHSE, is 
stored in a special STATE register. Every thread τn has its 
own state that can be IDLE, SLEEP or RUN, and a unique 
identifier (ID) which is an integer number from 0 to n-1, that 
identifies each thread with different priorities on the 
occurrence of an event. The scheduling algorithm 
implemented by nHSE executes all HT or ST threads 
according to the scheduling scheme that have passed the 
feasibility test. In what concerns the example shown in 
Figure 2, the τ0 thread depicted in red has the highest 
priority, having the ID equal to 0, while the τ1 thread 
depicted in blue is also a HT thread with the ID equal to 1. 
Thereby, the lowest priority thread, τn-1, corresponds to a ST 
thread having the ID equal to n-1. The STATE and ID 
registers of the active threads, the block dedicated to the 
events and synchronization logic, together with the dynamic 
scheduler, constitute the actual state of the processor. Based 
on these registers, every thread may have a priority on a 
scale from 0 to n-1, where 0 is the highest and n-1 is the 
lowest priority, and a state stored in the STATE register. 
The state of each thread can be changed by a dynamic 
scheduling algorithm implemented in the nHSE. 

Figure 2.   Fine-grained nMPRA-MT pipeline architecture and Dynamic 

nHSE scheduler, IF-Instruction Fetch stage, ID-Instruction Decode stage, 

EX-EXecute stage, MEM-Memory stage, WB- Write Back stage. 
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The scheduler is a finite state machine (FSM) 
implemented into the hardware that can validate or suspend 
the execution of a HT or ST threads, based on the 
implemented scheduling algorithm. If an external event is 
attached to a HT thread, on the occurrence of this event the 
nHSE identifies and executes the thread identified by using 
the ID register [12]. If there are no events or HT threads 
active, the nHSE must execute the ST threads in order to 
eliminate the wasted CPU cycles. 

B. Inter-task synchronization and 
communication 
The hardware implementation of inter-task 

synchronization and communication mechanisms does not 

introduce an unacceptable increase of the overall WCET. 

Thus, the proposed nMPRA-MT architecture is able to 

execute multithreaded workloads using the above mentioned 

mechanisms, increasing the efficiency of implementation 

that support parallel execution of HTs combined with 

additional STs. In order to do this, a set of registers with fast 

access is used to implement the synchronization and 

communication mechanisms [10]. 

The hardware support for the synchronization 

mechanism is represented by Mutex Register File (MRF). 

This special registers contains the mutex state and the 

identifier of the proprietary thread. Sharing resources for all 

HTs and STs imply that mutex registers (MR) can be 

accessed from any thread under the control of the nHSE. 

In order to avoid the priority inversion problematic 

scenario, the priority of a ST thread can be changed 

dynamically by a dynamic scheduling algorithm 

implemented in the nHSE, but cannot become an HT thread. 

Each thread has a hardware block implemented in the nHSE 

that generates signals stored in the Enable Mutex Register 

(EMR) every time whenever MRF is modified. When one or 

several threads wait for a mutex, the nHSE verify the EMR 

and MRF every clock cycle based on the scheduling 

algorithm implemented in the hardware. 

However, from a hard real-time point of view, it is 

important to avoid resource sharing among HT and ST 

threads, because the nHSE must perform the dynamic 

scheduling operations introducing additional clock cycles. 

Therefore, a HT thread may have to wait for freeing a mutex 

held by a ST thread, affecting the predictability of the 

system and also increasing the WCET. 

In order to implement the communication mechanism, 

nMPRA-MT architecture uses a number of s event registers 

(ER), each having (1+2n+k) bits, that compose the Events 

Register File (ERF). As we can see in Figure 3, every event 

register uses one bit to store the event state, a set of bits to 

memorize the ID of the source and destination threads, and 

the last bits are used to store the message. 

When a thread sends a message using the ERF, the 

nHSE read the ERF signals and schedule the thread to which 

the message is addressed. The ERF can be accessed from 

any threads; therefore, they are resources shared for all type 

of threads. If a thread receives a message, it is necessary to 

identify the source of that event. 

Figure 3.   Events state, IDs of the source and destination tasks and the 

corresponding messages stored by Events Register File [10]. 

In order to avoid the unacceptable numbers of clock 

cycles used for searching in the ERF to find the source of 

the message, the search is made based on a Content 

Addressable Memory (CAM) principle [10]. Nevertheless, 

the nHSE implemented in the hardware can guarantee 

timing predictability for a set of feasible tasks, the list of HT 

threads being bounded by the relative deadline periods. 

However, from an architectural point of view, the 

implementation of the synchronization and communication 

mechanisms is based on the atomic instruction, providing 

good performance in order to satisfy the individual deadline 

of tasks, and predictable blocking times for HT threads. 

C. Forward Unit and Hazard 
Situations 
For most of the real-time operating systems, the 

execution of the same source code in a different number of 
clock cycles is generated by the hazard situations appeared 
in the pipeline assembly line. 

The proposed nMPRA-MT implementation is a fine-
grained thread-interleaved pipeline architecture, capable of 
fetching instructions from different threads on every clock 
cycle. If data hazards appear when different HTs or STs are 
interleaved in the pipeline assembly line, a dedicated 
forwarding unit is implemented in order to solve all 
situations. In these cases, the data is redirected directly to 
the execution stage, avoiding the performance degradation 
of the pipeline assembly line. If the nHSE fetches 
instructions from the same HT or ST thread every two clock 
cycles, then hazard situations eliminated by the specific 
Forwarding Unit are likely to appear. 

When the instructions executed in the pipeline belong to 
four different threads, there are no possible hazard 
situations. If the nHSE fetches in a continuous manner the 
instructions from a particular ST thread, it is possible to stall 
the pipeline assembly line in order to wait for the data 
processed by the previous instruction. In these cases, the 
wasted clock cycles due to the unsolved hazard situations 
appeared on STs execution, does not affect system 
predictability. 

Because the HTs are scheduled every two cycles in the 
worst case situations preserving the predictable behavior, the 
proposed nMPRA-MT architecture is recommended for 
small real-time applications. 
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V. Validation of the nMPRA-MT 
architecture  

This section describes the operations carried out in order 
to test and validate the nMPRA-MT concept. This 
architecture was implemented and validated using a FPGA 
Virtex6 on a ML605 reference board, produced by Xilinx, as 
we can see in Figure 4. The processor code was RTL 
described in the standard Verilog 2001. At first, various 
implementation options of the nMPRA-MT processor have 
been validated for a 10MHz, 50MHz and 75MHz operation 
frequency. For validation, three scheduler versions were 
used. The first processor version supports the schedule of 4 
tasks, the second supports the schedule of 8 tasks, while the 
last one of 16 tasks, all of them validated for 50MHz 
operation frequency. The generation of some intermediate 
implementations of 4 and 8 tasks respectively was necessary 
first of all due to the large period of time needed for the 
synthesis using Xilinx Design Suite 14.5. development tools, 
but also to detect the use of resources for various processor 
configurations. 

The nMPRA-MT architecture uses pipeline registers 
replication, of the program counter and register file 
summing up to 1.08 kB for each thread. Multiplexing this 
resource for 16 tasks requires 17.25 kB of RAM memory. 

A. The Impact of Various 
Configuration Models on FPGA 
Resources  
Although the nMPRA-MT is a resource multiplexing 

architecture, the costs for the implementation of such a 
project are convenient compared to other commercial 
architectures. Still, we should mention that such an 
implementation would make sense for a reasonable number 
of tasks. 

The implementation of this architecture for a large 
number of tasks would call for the synthesis of a logic in 
which the propagation time would be groundlessly high and 
thus the working frequency would significantly drop. 

Table I presents the memory needed for three possible 
implementations of 4, 8 and 16 tasks where the maximum 
nesting depth of functions is on 8 levels. 

Figure 4.  HT thread jitter measurement on nMPRA-MT processor using 

Virtex-6 FPGA ML605 Evaluation Kit – Xilinx. 

We have chosen these values to specifically present the 
memory consumption for an extreme version of the 
implementation: 16 tasks and an call depth of the register 
file on 8 levels. Taking into consideration the data presented 
in Table I, we may surely state that the memory needed to 
implement the nMPRA-MT processor is more than 
acceptable, given the fact that the microcontrollers used 
nowadays employ hundreds of KB of RAM memory. 

TABLE I.  MEMORY REQUIREMENTS FOR DIFFERENT CONFIGURATION 

OF THE NMPRA-MT PROCESSOR 

nMPRA-MT 

configuration 

(number of tasks): 

Memory required for: 
Total memory 

required for 

nMPRA-MT 

(including PC)  
pipeline 

registers 

general 

registers 

4 0.295kB 4kB 4.31kB 

8 0.59kB 8kB 8.62kB 

16 1.18kB 16kB 17.25kB 

The resource that uses most memory is the register file 
and the pipeline registers. In the testing version specific to 
the nMPRA-MT architecture, the register file includes 
separate contexts for the tasks as well as for the functions 
calls. This allows us to get an additional speed gain which 
results from eliminating the need to save and read stack 
parameters. In the case of a general usage application, we 
may state that the nesting of functions calls depends very 
much on the type of application. A task may be divided into 
code areas which use intensively the processor, mixed code 
which uses the processor and the peripheral devices and 
code which accesses mainly the peripheral devices. For 
these types of codes, the common number of nested 
functions calls would be around 8, 6 and 4 respectively. 
Taking into consideration that this architecture does not 
need an operating system whose functions would overload 
the stack, the implementation with a nesting depth on 6 
levels would be a reasonable solution. If a function context 
has 32 registers on 32 bits, the implementation of a register 
file which would ensure independent contexts for 6 nested 
functions for 16 tasks would need 12.28 kB of RAM 
memory. 

Table II presents the energy consumption for the three 
implementations with hardware support for 4, 8 and 16 tasks 
respectively. Static power represents the energy consumed 
by FPGA at start-up, when the device is configured with the 
operating logic, but lacking any clock activity. This value is 
the sum of the static power value, which is the energy 
consumed by the device at start-up but lacking the 
application logic, and the design static power, representing 
the energy consumed of the implemented logic lacking any 
clock activity. 

TABLE II.  POWER SUMMARY FOR DIFFERENT CONFIGURATION OF THE 

NMPRA-MT PROCESSOR 

Nr. of 

tasks 

Clock 

+Logic 

Signals 

+IO 

MMCM DSP Static 

power  

Total 

mW 

4 27.10 34.58 77.30 0.74 3425.89 3565.61 

8 55.93 50.68 77.30 0.77 3427.29 3611.97 

16 87.32 61.15 77.30 0.75 3428.60 3655.13 

The flip-flop (FF) and lookup-table (LUT) usages for 
three possible implementations are shown in Figure 5, the 
percentage indicating only for information purposes the 
components usage degree for the FPGA equipment used 
(Xilinx Virtex-6 xc6vlx240t-1ff1156), depending on the 
nHSE and the synchronization and communication 
mechanisms included.  
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Figure 5.  FPGA resource usage for different nMPRA-MT processor 

configurations. 

As an illustration, the first implementation with 4 threads 
is named 4MPRA-MT, the second 8MPRA-MT corresponds 
to 8 threads and the last one, 16MPRA-MT has 16 threads, 
all of them with a nesting depth of functions on 4 levels. The 
resource difference between the original nMPRA version 
presented in [10] and 4MPRA-MT shows the cost of fine-
grained multithreading and flexible thread scheduling, with 
a 35% increase in FFs and a 6% increase in LUTs.  

The resource difference shows the cost of adding of a 
new forwarding module and control logic that requires more 
multiplexing based on thread IDs and STATE bits stored for 
each thread. The increase in LUTs is caused mainly by the 
additional control logic necessary for scheduling in the 
predictable mode HTs every two clock cycles. The eight 
thread version 8MPRA-MT is recommended for mixed-
criticality applications, where hardware-based isolation is 
necessary. In this case, the cost of processor areas gains a 
more complex functionality, such as different memory 
hierarchy, more mutexes or peripherals. 

B. Experimental Results and WCET 
Analysis 
The system clock has been designed with the help of the 

LogiCore Clocking Wizard 3.6 generator from the ISE 
Design. For testing, the PLL block was powered by a 
differential input signal of a 200MHz oscillator, capable of 
generating a variable clock frequency ranging from 10 to 
700 MHz. For the frequencies used in testing the processor, 
this PLL block has generated a maximum 120ps jitter. This 
jitter must be taken into consideration when determining the 
time limitations used for tracking the routes through FPGA. 
A major advantage of using the PLL generating block is that 
it implicitly global clock buffers (BUFG) from Virtex6 
which are specific to clock generation, the main 
characteristic in generating the clock. 

The main feature of these blocks is that they support a 
large fan-out (more than 100.000), necessary to clock 
tracking through all logical items of the processor. In 
implementing the nMPRA-MT version with 8 tasks, the fan-
out reached the value of 18.000. The third channel marks the 
answer of the scheduler to an asynchronous external event 
acquired from pushing a button from the ML605 board.At a 

10 MHz frequency, the jitter may be of maximum 133.5 ns, 
depending on the moment of the event. The internal logic of 
the nHSE block requires at most 33.5 ns to perform the 
context scheduling and remapping frequency. 

As we can see in Figure 6, for that case in which the 
program executes sw instructions at an operating frequency 
of 10MHz, the jitter of the nMPRA-MT scheduler is of 340 
ns. This happens because the clock used in the 
synchronization of the nHSE scheduler is out of phase with 
240 degrees as compared to the processor clock used in 
memory and pipeline registers synchronization [10]. Due to 
the impedance inadequacy among the output levels of the 
Virtex6 architecture and the input level of the oscilloscope, 
we may detect some reflections that can be also vied in 
Figure 6. 

In order to calculate the WCET of our processor design, 
we used the static analysis organized in two stages. For the 
beginning, we used the Fibonacci sequence to test our fine-
grained multithreading nMPRA-MT implementations. This 
test bench, however, did not use all the instructions 
implemented in the nMPRA-MT architecture. 

The second test bench we have created loads four values 
from memory and uses them to obtain the WCET for a 
feasible set of HT and ST threads. In some situations, when 
an HT thread is executed every two clock cycles in order to 
meet the deadline, some instructions depend on the previous 
one, while some do not. Each hazard situation is solved by 
the dedicated forward unit, obtaining the WCET for the 
second test bench. At the end of the tests, we can read the 
results stored in memory in order to check if we obtain the 
correct values.  

Even when using the isolation, the computed WCET for 
the HT threads can be difficult to bind because the 
predictability of the architecture depends, at the same time, 
on the scheduling scheme implemented in hardware by the 
nHSE, pipeline ordering, synchronization and 
communication mechanisms. Due to a dynamic interaction 
between the various threads executed at the same time on 
the pipeline assembly line, the WCET is difficult to obtain 
because the real WCET significantly differs from the 
computed execution times. 

Figure 6.  Jitter of the highest HT priority thread in relation with the 

assigned external asynchronous event. 
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C. Design Methodology  
For implementation purposes, the nMPRA-MT project 

was subdivided into modules which were previously created 
and tested, being brought together to obtain a functional 
processor. The nMPRA project presented by Gaitan et al. in 
[10] had a similar design to the fine-grained multithreading 
architecture presented in this paper. For this reason, we 
decided to continue the nMPRA design, designing a new 
Hazard Detection Unit, a Forward Unit, and then make 
substantial changes to the data path, control, and pipeline 
registers. The nHSE was also completely different from the 
nMPRA design, and thus a new dynamic nHSE was 
designed. Once all the modules were completed and tested, 
we obtained the CPU module that joins all of the individual 
components with logic.  

In Verilog, all modules operate simultaneously, being a 
challenging step to make changes in the data path and 
adding a new dynamic scheduler. This means that we had to 
make sure that our control unit signals had to command the 
correct modules at the correct time. The register file and 
pipeline registers were clocked on the positive edge and the 
nHSE on the negative edge. 

Once all of the pipeline modules were created and fully 
debugged, we executed the test programs in order to debug 
our working nMPRA-MT processor and make sure that the 
hazards were being handled correctly, complying with all 
the instructions. Our implementation had to be able to 
simultaneously work on five different instructions on the 
pipeline assembly line at the same time. Therefore, we had 
to detect if there appear any hazard situations if the nHSE 
schedules a HT or ST thread at every two clock cycles, or if 
a branch instruction was correctly evaluated. 

In conclusion, as a future work we will calculate a tight 
WCET for complete benchmarks and industrial applications 
running on the nMPRA-MT processor with both WCET 
tools. 

VI. Conclusion and future work  
The nMPRA-MT concept leads to all pipeline registers 

multiplexing so as to ensure complete isolation of software 
contexts and of hardware contexts too, which comprise 
internal signals of the processor according to the HT or ST 
executed instructions and thread. Therefore, the 
implementation proposed in this paper is a deterministic 
architecture as compared to SMT processors, which may 
expose additional overcontrol if the program does not 
expose an ILP (Instruction Level Parallelism). 

Complete isolation of contexts and the unique time of 
response to events are different characteristics of nMPRA-
MT architecture, making it possible to use this project in 
small dimensions mixed-criticality real time systems, 
ensuring the real time behavior necessary to such systems.   

In order to improve functionality as compared to original 
implementation [9], the processor includes a solid support 
for the protection and operation using critical resources for 
HT and ST threads. The implementation of these 
mechanisms in hardware capable of operating in the same 
time interval with the scheduling algorithm, contributes to 
designing a more powerful processor architecture from its 

functionality point of view, without reducing its response 
times. 

In conclusion, we may say that using a nMPRA-MT 
architecture with 16 tasks is fully accounted for, due to the 
benefits it brings, while implementation cost/effectiveness 
increases. Table I presents the memory necessity for various 
configurations of the nMPRA-MT architecture just as it was 
described in section V. 

The architecture proposed in this paper may be 
improved. In the nMPRA-MT architecture, the dimensions 
of the memory consumed for the implementation of the 
register file is proportional to the number of HT and ST 
threads. It would be useful for the ST thread dedicated 
memory to be used as general usage memory with quick 
access, thus reducing the total architecture implementation 
cost. Otherwise, introducing HT dedicated scratchpad 
memories and the implementation of an efficient memory 
controller would bring significant improvements to 
architecture predictability and a better WCET. 

Another interesting idea would be to develop a scheduler 
which would also support multi-core nMPRA-MT 
architectures. This approach would bring more dynamism in 
practice, offering the possibility to use the processor in 
performing multi-core processes or distributed systems. 
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