

136

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Exploiting Self-Adaptive, 2-Way Hybrid File

Allocation Algorithm
 [Jaechun No, Sung-Soon Park]

Abstract— We present hybridFS file system that provides a

hybrid structure, which makes use of performance potentials of

NAND flash-based SSD (Solid-State Device). As the technology

of flash memory has rapidly improved, SSD is being used in

various IT products as a nonvolatile storage media.

Applications looking for better I/O performance attempt to

achieve desirable bandwidth, by employing SSD to storage

subsystems. However, building a large-scale SSD storage

subsystem deploys several issues that need to be addressed.

Those issues include peculiar physical characteristics related to

flash memory and high SSD cost per capacity compared to

HDD devices. This paper presents a new form of self-adaptive,

hybrid file system, called hybridFS, which properly attempts to

address aforementioned issues. The main goal of hybridFS is to

combine attractive features of both HDD and SSD devices, to

construct a large-scale, virtualized address space in a cost-

effective way. The performance evaluation shows that

hybridFS generates a comparable bandwidth to that of file

system installed on SSD devices, while offering a much larger

storage capacity.

Keywords—SSD, transparent file mapping, data section, 2-

way extent allocation, data layout

I. Introduction
In this paper, we present hybridFS file system whose

main goal is to integrate the advantages of both SSD and

HDD devices in a cost-effective way. As the potentials of

SSDs have been recognized, such as high random I/O

performance and low-power consumption[1,13], SSD is

widely being used in IT products these days. The

performance superiority of SSDs over HDDs becomes a

driving force of numerous researches related to SSD, with

the expectation of generating high I/O performance in

various applications. For instance, multimedia or database

applications can obtain performance benefits by employing

SSD storage subsystems, to serve a large number of I/O

requests.

Jaechun No

College of Electronics and Information Engineering

Sejong University, Korea

Song-Soon Park

Dept. of Computer Engineering

Anyang University and Gluesys Co. LTD, Korea

Despite its performance potentials, the common usage of

SSD is currently restricted to small-size memory devices,

such as mobile equipments. The key obstacle to the

widening SSD adoption to large-scale storage subsystems is

its high cost per capacity ($3/GB for SSD, whereas $0.3/GB

for HDD)[1]. Even though the cost of flash memory

becomes decrease, the price of SSD is still much higher,

compared to that of HDD. Such a high cost/capacity ratio

makes it less desirable to build large-scale storage

subsystems solely composed of SSD devices. An alternative

storage solution is to build a hybrid storage subsystem

where both SSD and HDD devices are combined in a cost-

effective way, while making use of the strengths of both

devices.

In this paper, we present a hybrid file system, called

hybridFS, developed for exploiting the hybrid storage

structure. HybridFS is capable of generating comparable

performance to the file system installed on SSD devices,

while offering much larger storage capacity at less cost. This

is achieved by integrating vast, low-cost HDD storage space

with a small portion of SSD space through several

optimization schemes, to address the strengths and the

shortcomings of both devices. In this paper, we will discuss

how we implemented hybridFS to make use of SSD’s high

I/O throughput, while providing a flexible internal structure

to retain high sequential read performance of existing file

systems on HDD devices.

This paper is organized as follows: In Section 2, we

discuss the design motivations and related studies. In

Section 3, we describe the detailed implementation issues of

hybridFS. In Section 4, we present the performance

measurements of hybridFS and in Section 5, we conclude

with a summary.

II. Related Study
As pointed out by [2,3], the major drawbacks of flash

memory are write latency due to erasure per block and

cleaning problems. Many flash file systems [4,5,6] take the

out-of-place approach proposed by log-structured file

system [7], to reduce the semiconductor overhead of flash

memory.

The well-known characteristic of log-structured file

system is its sequential, out-of-place update using logs. The

logs are divided into segments, to maintain large disk free

area and to avoid space fragmentation. The garbage

collection is performed per segment, by copying live data

out of a segment. This update approach has been adopted to

most flash file systems, to minimize the block erasure

overhead.

JFFS and JFFS2 [6] maintain file metadata logs for the

sequential writing. To mount file system, they require to

scan all the logs in flash memory, which may take

considerably long time to build. Also, both flash file systems

137

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

were designed for embedded equipments with small-size

NAND flash

memory.

TFFS [5] is an optimized file system which suits for the

small embedded systems with less than 4KB of RAM. TFFS

is targeted for NOR devices and provides several useful

functions, such as tailored API for the embedded device and

concurrent transaction recoveries. ELF [4] is built for sensor

nodes and keeps a log entry for each flash page. ELF tries to

optimize the logging overhead by reducing the number of

log entries. However, most of flash file systems have been

developed for small-size flash memory and therefore is not

appropriate for a large-scale data storage.

As hybridFS does with SSD devices, there are several

interesting attempts to make use of storage class memories.

LiFS [8] intends to store file system metadata to smaller,

faster storage class memory, such as MRAM. Conquest [9]

uses persistent RAM for storing small files and file system

metadata. Only the remaining data of large files are stored in

disk. MRAMFS [10] goes further by adding compression, to

overcome the limited size of NVRAM. HeRMES [11]

proposed to keep all file metadata in MRAM and to apply

compression to minimize the required space for metadata.

hFS [12] attempts to combine the strengths of both FFS and

log-structured file system, by separating file data and file

metadata into two partitions.

Besides, Agrawal et. al.[13] describes interesting SSD

design issues using Samsung’s NAND-flash. They also

suggest several ways of obtaining improved I/O

performance on SSD, by analyzing a variety of I/O traces

extracted from real systems. However, there is little file

system works for hybrid storage subsystems where HDD

and SSD are incorporated to provide a large-scale,

virtualized address space.

III. Hybrid File Mapping

A. Logical Data Layout
HybridFS was developed to exploit SSD performance

advantages and data layout flexibility. The entire address

space of hybridFS is constructed by combining two physical

partitions: SSD partition and HDD partition. The SSD

partition of hybridFS works as a write-through persistent

cache and stores recently referenced files recognized by file

access time. Also, it stores the metadata being used for

allocating SSD extents and logs. On the other hand, HDD

partition of hybridFS stores the backup-ed file data and most

of file system metadata.

The SSD partition of hybridFS was designed to retain

SSD’s performance potentials and to provide the transparent

file mapping to SSD data layout. To generate improved I/O

performance, hybridFS attempts to reduce allocation

overhead, by providing the flexible data layout and the

extent alignment to flash block size on file system level. The

layout flexibility is accomplished by defining multiple data

sections with the different extent size. Also, aligning extent

size to the size of flash block is performed on file system

level because hybridFS is not allowed to access physical

flash block through FTL embedded in SSD.

The transparency of file mapping is performed by

separating the logical directory hierarchy from the file

mapping to SSD data section. The file mapping to SSD data

section is initialized at file system creation by reading the

configuration file and is stored in the in-memory map table.

In hybridFS, a file can be mapped to the appropriate data

section, according to file size, usage, and access pattern.

Furthermore, a file which does not need fast I/O processing

speed, such as snapshot images, can bypass the caching to

SSD partition. HybridFS also enables to move sub-level

directories and their files to another data section without

modifying the hierarchical structure, in case that the file

access pattern or usage is changed.

Figure 1. An overall structure of hybridFS

Figure 1 illustrates an overview of hybridFS data layout.

As can be seen in the Figure, I/O unit of SSD partition is an

extent, whereas I/O unit of HDD partition is a block. Also,

in the Figure, three logical data sections, D0, D1, and D2, are

defined with the different extent size, that is 4 for D0, u for

D1, v for D2 respectively, where 4<u<v. The information

about SSD configuration, including the number of data

sections, section range, and extent size of each data section,

is determined at file system creation.

Such a layout configuration enables to maintain SSD

address space, according to file characteristics. For example,

files with a large, contiguous access pattern, such as video

files, can be assigned to the data section composed of a large

extent size. This layout flexibility is also reflected to the file

mapping. For instance, in Figure 1, since most files in

/mnt/VOD have a large, contiguous access pattern, D2 with

the largest extent size is mapped to the directory. Also, the

files stored in /mnt/snap are configured to bypass SSD cache,

to prevent the costly SSD space from being consumed by

unnecessary files. Figure 1 also shows that the mapping to

the data section can be changed to another data section

without impacting the hierarchical structure. For example,

/mnt/usr/a1/a2 is remapped from D0 to D2 and the mapping

for /mnt/VOD/b1/b2 is changed from D2 to SSD bypass.

B. File Allocation
In hybridFS, the file allocation on SSD partition is

executed on per extent. In designing the file allocation

138

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

scheme, the key objectives were to classify SSD allocation

space according to file access pattern and usage, to

efficiently manage the costly storage capacity, and to align

the data size to flash block size to minimize the erasure

latency. Classifying SSD allocation space is performed by

defining the different extent size for each data section and

then by mapping files to the data section, in terms of their

access characteristics. Also, hybridFS attempts to align file

allocation to the boundary of flash block, to control the

block erasure overhead on the file system level.

However, the shortcoming of hybridFS extent scheme is

the extent fragmentation where a portion of extent is left

unused. Furthermore, constantly aligning extent size to flash

block may be difficult, especially in such a case that the

extent size is smaller than the size of flash block.

Figure 2. File allocation procedure

In hybridFS, the file allocation on SSD partition is

executed on per extent. In designing the file allocation

scheme, the key objectives were to classify SSD allocation

space according to file access pattern and usage, to

efficiently manage the costly storage capacity, and to align

the data size to flash block size to minimize the erasure

latency. Classifying SSD allocation space is performed by

defining the different extent size for each data section and

then by mapping files to the data section, in terms of their

access characteristics. Also, hybridFS attempts to align file

allocation to the boundary of flash block, to control the

block erasure overhead on the file system level.

However, the shortcoming of hybridFS extent scheme is

the extent fragmentation where a portion of extent is left

unused. Furthermore, constantly aligning extent size to flash

block may be difficult, especially in such a case that the

extent size is smaller than the size of flash block.

To alleviate the extent fragmentation problem, hybridFS

divides the extents into two groups: one group for the clean

extent where all the blocks are free and the other group for

the extent segment where a portion of blocks in an extent are

unused. Using the extent segment might sacrifice the

performance advantage of SSD because the file allocation

on the extent segment might not be aligned to the boundary

of flash block. However, we decided to concentrate on

making use of the costly SSD address space as much as

possible.

With an extent composed of x number of blocks, there

exist log(x)+1 number of extent bitmaps, one for the first

group and log(x) number of segment bitmaps for the second

group. HybridFS reuses only extent segments whose

remaining number of free blocks is more than or equal to

half of total blocks in an extent, to prevent widespread file

allocation across extent segments. The first bitmap of the

second group, that is 0
th

 segment bitmap, shows the

allocation status of the extent segments where x-1 number of

blocks is unused. Similarly, i
th

 segment bitmap indicates

whether the extent segments with x-2
i

(0≤i≤log(x)-1)

number of blocks are used.

Figure 2 illustrates the file allocation process with the

extent consisting of 64 blocks. This procedure is the default

allocation process for SSD partition and is applied in such a

case that either the extent size of a data section is equal to or

larger than the flash block size, or the SSD flash block size

is not clearly specified. In Figure 2, there exist seven extent

bitmaps, one for the clean extent and the other six for the

extent segments. Searching for an extent is started by

scanning the clean extent bitmap.

Suppose that file A needing 1block is assigned to the

clean extent, as shown in Figure 2(b). In this case, the bit of

the clean extent bitmap is set to one. In Figure 2(c), if file B

requires 11 blocks to allocate, hybridFS then reuses the

same extent to store data, while setting the associated bit of

0
th

 segment bitmap to one. The corresponding bits from 1
th

to 3
th
 segment bitmaps would be unavailable because, after

the file allocation of B, the remaining number of unused

blocks is smaller than that indicated by those bitmaps.

In Figure 2(d), if file C needs 48 blocks to store new data,

then the associated bit of 4
th

 segment bitmap is set to one, to

indicate the corresponding extent no longer to be a candidate

for the file allocation. Upon releasing all the files, the extent

returns to the clean state.

When the extent size of the data section is smaller than

the flash block size, hybridFS defines a virtual extent

composed of multiple, real extents. The size of a virtual

extent matches the size of flash block and the allocation

policy including extent bitmap and extent segment is

executed on per virtual extent. With a virtual extent

consisting of y number of extents, there exists log(y) +1

number of virtual extent bitmaps, one for the virtual clean

extent and the other log(y) number of bitmaps for the virtual

extent segment. The virtual extent bitmaps indicate the

allocation status of virtual extents, in a similar way as

hybridFS did with real extents composed of x number of

blocks. In other words, i
th

 virtual segment bitmap indicates

whether the virtual extent segments with y-2
i
(0≤i≤log(y)-

1) number of extents are used.

Figure 3. Virtual extent allocation

Figure 3 shows how the virtual extent segment is

organized in the data section composed of 4KB of extents,

139

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

on top of SSD partition with 256KB of flash block. In this

case, a virtual extent is consisted of 64 4KB of real extents

and the seven virtual extent bitmaps are created to indicate

the allocation status of virtual extents. In Figure 3, when file

A stores 48KB of data, the bit of the virtual clean extent

bitmap is set to one, followed by setting the associated bits

from 0
th

 to 3
th

 virtual segment bitmaps to be unavailable. On

the 192KB of allocation request, hybridFS reuses the virtual

extent segment starting from the 16
th

 real extent, while

setting the associated bit of 4
th

 virtual segment bitmap to

one.

IV. Performance Evaluation
We evaluated I/O performance of hybridFS, comparing

to the performance of two file systems: ext2[14] and xfs[15].

We chose ext2 for the performance comparison because the

block allocation implemented on HDD partition is similar to

ext2. The comparison with ext2 gives an opportunity to

observe how significantly SSD partition of hybridFS affects

the performance of various file operations.

The reason for choosing xfs for the performance

comparison is its extent-based allocation using B+ tree.

HybridFS uses the pre-determined extent allocation to be

configured at file system creation. We will observe how

differently both allocation schemes work on several file

operations.

The experimental platform has Intel Xeon 3GHz CPU,

16GB of RAM, 750GB of SATA HDD, and 80GB of

fusion-io SSD. We compared I/O performance of three file

systems, using IOzone benchmark[16], on top of HDD and

SSD devices. In IOzone benchmark, in case of read

evaluations, we saw that the impact of memory cache

greatly contributes to generate high I/O bandwidth.

 Figure 4. IOzone write

 Figure 5. IOzone rewrite

Figure 6. IOzone read

Figure 4 shows the write bandwidth on both devices. As

can be seen, the performance of hybridFS is almost three

times higher than that of both ext2 and xfs installed on HDD

devices, whereas is 12% faster than xfs on SSD device.

Even though the performances of ext2 and xfs on SSD

devices are much higher than those on HDD devices, it is

less desirable to build a large-scale storage subsystem solely

composed of SSD devices, due to the limited storage

capacity and high cost. The performance shows that in such

a case, hybridFS offers an alternative way of utilizing SSD’s

high performance and HDD’s vast storage capacity with low

cost.

The performance evaluation of write operations on two

devices points out several interesting aspects. First, the

difference between the worst and best performance of ext2

and xfs on HDD devices is much larger than the

corresponding difference on SSD devices. For example, on

top of HDD device, when the performance with 512MB of

file size is compared to that with 256KB of file size, ext2

shows almost eight times speed improvement. On the other

hand, on top of SSD device, the performance difference

between 64KB and 512MB of file sizes is about 35%, which

is much less than that on HDD device.

Xfs also shows a similar behaviour to ext2, resulting in

about 33% of performance speedup between 64KB and

512MB of file sizes on SSD device, while producing much

higher difference between the same file sizes on HDD

device. This indicates that the overhead of HDD moving

parts more deteriorates write performance than the overhead

of SSD semiconductor property does. Due to the absence of

moving overhead, both ext2 and xfs on SSD devices

generate almost three times higher bandwidth than those on

HDD devices.

Second, although hybridFS uses HDD portion as

metadata store, such an internal structure does not greatly

degrade write performance because we can observe that,

except for 64KB of file size, the performance difference

between small-size and large-size files is very small even

though more metadata accesses occur in the small-size files

than in the large-size files.

In Figure 5, we compared the rewrite performance of

hybridFS to that of both ext2 and xfs. Similar to the write

performance on HDD device, the rewrite throughput of

hybridFS outperforms that of both ext2 and xfs installed on

HDD devices. When compared to both file systems on SSD

devices, hybridFS generates almost the same bandwidth

with ext2, but is marginally faster than xfs.

In the file read operation (Figure 6), unlike in the write

experiments on HDD device, hybridFS does not produce

140

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

noticeable performance difference. For ext2 and xfs, the

performance difference between worst and best cases on

both devices is much less than that in the write experiment.

This is because, in the IOzone benchmark, most read

requests are served from memory cache.

V. Conclusion
As the technology of flash memory rapidly grows, SSD

has drawn a great attention from IT enterprises as an
attractive storage solution for fast I/O processing needs.
SSD not only generates high I/O performance because of the
absence of mechanical moving overhead but also provides
significant power savings. However, despite its promising
potentials, most SSD usages in real products have been
limited to small-size memory devices, such as mobile
equipments, because of its high cost per capacity. In this
paper, we proposed a way of integrating SSD devices with
HDD devices in a cost-effective manner, to build a large-
scale, virtual address space. To achieve better I/O
performance, hybridFS uses SSD partition as a write-
through cache, which contains hot files recognized by file
access time. Besides making use of the advantages of SSD,
hybridFS attempts to provide a flexible internal structure to
retain the excellent sequential read performance of existing
file systems. HybridFS evaluation shows that achieving high
I/O performance by combining the advantages of both SSD
and HDD devices is possible. The strength of hybridFS is
most noticeable when its write performance is compared to
the corresponding performance of both ext2 and xfs installed
on HDD devices. The write experiment indicates that the
mechanical moving overhead of HDD more affects the write
performance than the semiconductor overhead of SSD does.
HybridFS frequently produced comparable performance to
that of both ext2 and xfs installed on SSD devices. Since
building a large-scale storage subsystem using SSD devices
is less desirable due to high cost and limited storage
resource, hybridFS can be a good alternative to make use of
high I/O performance of SSD and vast storage capacity of
HDD. As a future work, we would verify the performance of
hybridFS by using more benchmarks.

Acknowledgment
This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (NRF-2014R1A2A2A01002614). Also,
this work was supported by Institute for Information &
communications Technology Promotion(IITP) grant funded by the
Korea government(MSIP) (No.B0101-15-0548(2015),
Development of Integrated Management Technology for
Micro Server Resources).

References

[1] M. Saxena and M. Swift, “FlashVM: Virtual Memory Management

on Flash,” 2010 USENIX Annual Technical Conference , Boston,

MA, 2010.

[2] W. K. Josephson, L. A. Bongo, and D. Flynn, “DFS: A File System

for Virtualized Flash Storage,” In Proceedings of the 8th USENIX

Conference on File and Storage Technologies, San Jose, USA, 2010.

[3] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T.

Wobber, “Extending SSD Lifetimes with Disk-Based Write

Caches,” In Proceedings of the 8th USENIX Conference on File and

Storage Technologies, San Jose, USA, 2010.

[4] H. Dai, M. Neufeld, and R. Han, “ELF: An Efficient Log-

Structured Flash File System for Micro Sensor Nodes,” SenSys’04,
Baltimore, USA, 2004.

[5] E. Gal and S. Toledo, “A Transactional Flash File System for

Microcontrollers,” In Proceedings of 2005 USENIX Annual
Technical Conference, Anaheim, CA, 2005.

[6] D. Woodhouse, “JFFS: The Journaling Flash File System,“ In

Ottawa Linux Symposium, 2001.

[7] M. Rosenblum and J. Ousterhout, “The Design and Implementation

of a Log Structured File System,” In Proceedings of the 13th ACM

Symposium on Operating Systems Principles, 1991, pp.1-15.

[8] S. Ames, N. Bobb, K. Greenan, O. Hofmann, M. W. Storer, C.

Maltzahn, E. L. Miller, and S. A. Brandt, “LiFS: An Attribute-Rich

File System for Storage Class Memories,” In Proceedings of the
23rd IEEE/14th NASA Goddard Conference on Mass Storage

Systems and Technologies ,” College Park, USA, 2006.

[9] A. Wang, G. Kuenning, P. Reiher, and G. Popek, “Conquest: Better

Performance Through a Disk/Persistent-RAM Hybrid File System,”

In Proceedings of the 2002 USENIX Annual Technical Conference,

Monterey, CA, 2002.

[10] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt, “MRAMFS:

A compressing file system for non-volatile RAM,” In Proceedings

of the 12th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems,

Volendam, Netherlands, 2004.

[11] E. L. Miller, S. A. Brandt, and D. D. E. Long, “HeRMES: High-

performance reliable MRAM-enabled storage,” In Proceedings of

the 8th IEEE Workshop on Hot Topics in Operating Systems,
Schloss, Germany, 2001, pp.83-87.

[12] Z. Zhang and K. Ghose, “hFS: A Hybrid File System Prototype for

Improving Small File and Metadata Performance,” EuroSys’07,
Lisbon, Portugal, 2007.

[13] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy, “Design Tradeoffs for SSD Performance,” 2008
USENIX Annual Technical Conference , 2008.

[14] R. Card, T. Ts’o, and S. Tweedie, “Design and Implementation of

the Second Extended Filesystem,” In Proceedings of the First Dutch
International Symposium on Linux, 1995.

[15] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and

G. Tech, “Scalability in the XFS File System,” In Proceedings of
the USENIX 1996 Technical Conference, San Diego, USA, 1996.

[16] IOzone, Available at: http://www.iozone.org

