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Abstract— We present hybridFS file system that provides a 

hybrid structure, which makes use of performance potentials of 

NAND flash-based SSD (Solid-State Device). As the technology 

of flash memory has rapidly improved, SSD is being used in 

various IT products as a nonvolatile storage media. 

Applications looking for better I/O performance attempt to 

achieve desirable bandwidth, by employing SSD to storage 

subsystems. However, building a large-scale SSD storage 

subsystem deploys several issues that need to be addressed. 

Those issues include peculiar physical characteristics related to 

flash memory and high SSD cost per capacity compared to 

HDD devices. This paper presents a new form of self-adaptive, 

hybrid file system, called hybridFS, which properly attempts to 

address aforementioned issues. The main goal of hybridFS is to 

combine attractive features of both HDD and SSD devices, to 

construct a large-scale, virtualized address space in a cost-

effective way. The performance evaluation shows that 

hybridFS generates a comparable bandwidth to that of file 

system installed on SSD devices, while offering a much larger 

storage capacity. 

Keywords—SSD, transparent file mapping, data section, 2-

way extent allocation, data layout 

I.  Introduction 
In this paper, we present hybridFS file system whose 

main goal is to integrate the advantages of both SSD and 

HDD devices in a cost-effective way. As the potentials of 

SSDs have been recognized, such as high random I/O 

performance and low-power consumption[1,13], SSD is 

widely being used in IT products these days. The 

performance superiority of SSDs over HDDs becomes a 

driving force of numerous researches related to SSD, with 

the expectation of generating high I/O performance in 

various applications. For instance, multimedia or database 

applications can obtain performance benefits by employing 

SSD storage subsystems, to serve a large number of I/O 

requests.  
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Despite its performance potentials, the common usage of 

SSD is currently restricted to small-size memory devices, 

such as mobile equipments. The key obstacle to the 

widening SSD adoption to large-scale storage subsystems is 

its high cost per capacity ($3/GB for SSD, whereas $0.3/GB 

for HDD)[1].  Even though the cost of flash memory 

becomes decrease, the price of SSD is still much higher, 

compared to that of HDD. Such a high cost/capacity ratio 

makes it less desirable to build large-scale storage 

subsystems solely composed of SSD devices. An alternative 

storage solution is to build a hybrid storage subsystem 

where both SSD and HDD devices are combined in a cost-

effective way, while making use of the strengths of both 

devices. 

In this paper, we present a hybrid file system, called 

hybridFS, developed for exploiting the hybrid storage 

structure. HybridFS is capable of generating comparable 

performance to the file system installed on SSD devices, 

while offering much larger storage capacity at less cost. This 

is achieved by integrating vast, low-cost HDD storage space 

with a small portion of SSD space through several 

optimization schemes, to address the strengths and the 

shortcomings of both devices. In this paper, we will discuss 

how we implemented hybridFS to make use of SSD’s high 

I/O throughput, while providing a flexible internal structure 

to retain high sequential read performance of existing file 

systems on HDD devices. 

This paper is organized as follows: In Section 2, we 

discuss the design motivations and related studies. In 

Section 3, we describe the detailed implementation issues of 

hybridFS. In Section 4, we present the performance 

measurements of hybridFS and in Section 5, we conclude 

with a summary. 

II. Related Study 
As pointed out by [2,3], the major drawbacks of flash 

memory are write latency due to erasure per block and 

cleaning problems. Many flash file systems [4,5,6] take the 

out-of-place approach proposed by log-structured file 

system [7], to reduce the semiconductor overhead of flash 

memory. 

The well-known characteristic of log-structured file 

system is its sequential, out-of-place update using logs. The 

logs are divided into segments, to maintain large disk free 

area and to avoid space fragmentation. The garbage 

collection is performed per segment, by copying live data 

out of a segment. This update approach has been adopted to 

most flash file systems, to minimize the block erasure 

overhead.  

JFFS and JFFS2 [6] maintain file metadata logs for the 

sequential writing. To mount file system, they require to 

scan all the logs in flash memory, which may take 

considerably long time to build. Also, both flash file systems 
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were designed for embedded equipments with small-size 

NAND flash 

memory. 

TFFS [5] is an optimized file system which suits for the 

small embedded systems with less than 4KB of RAM. TFFS 

is targeted for NOR devices and provides several useful 

functions, such as tailored API for the embedded device and 

concurrent transaction recoveries. ELF [4] is built for sensor 

nodes and keeps a log entry for each flash page. ELF tries to 

optimize the logging overhead by reducing the number of 

log entries. However, most of flash file systems have been 

developed for small-size flash memory and therefore is not 

appropriate for a large-scale data storage. 

As hybridFS does with SSD devices, there are several 

interesting attempts to make use of storage class memories. 

LiFS [8] intends to store file system metadata to smaller, 

faster storage class memory, such as MRAM. Conquest [9] 

uses persistent RAM for storing small files and file system 

metadata. Only the remaining data of large files are stored in 

disk. MRAMFS [10] goes further by adding compression, to 

overcome the limited size of NVRAM. HeRMES [11] 

proposed to keep all file metadata in MRAM and to apply 

compression to minimize the required space for metadata. 

hFS [12] attempts to combine the strengths of both FFS and 

log-structured file system, by separating file data and file 

metadata into two partitions. 

Besides, Agrawal et. al.[13] describes interesting SSD 

design issues using Samsung’s NAND-flash. They also 

suggest several ways of obtaining improved I/O 

performance on SSD, by analyzing a variety of I/O traces 

extracted from real systems.  However, there is little  file 

system works for hybrid storage subsystems where HDD 

and SSD are incorporated to provide a large-scale, 

virtualized address space. 

III. Hybrid File Mapping 

A. Logical Data Layout 
HybridFS was developed to exploit SSD performance 

advantages and data layout flexibility. The entire address 

space of hybridFS is constructed by combining two physical 

partitions: SSD partition and HDD partition. The SSD 

partition of hybridFS works as a write-through persistent 

cache and stores recently referenced files recognized by file 

access time. Also, it stores the metadata being used for 

allocating SSD extents and logs. On the other hand, HDD 

partition of hybridFS stores the backup-ed file data and most 

of file system metadata.  

The SSD partition of hybridFS was designed to retain 

SSD’s performance potentials and to provide the transparent 

file mapping to SSD data layout. To generate improved I/O 

performance, hybridFS attempts to reduce allocation 

overhead, by providing the flexible data layout and the 

extent alignment to flash block size on file system level. The 

layout flexibility is accomplished by defining multiple data 

sections with the different extent size.  Also, aligning extent 

size to the size of flash block is performed on file system 

level because hybridFS is not allowed to access physical 

flash block through FTL embedded in SSD.  

The transparency of file mapping is performed by 

separating the logical directory hierarchy from the file 

mapping to SSD data section. The file mapping to SSD data 

section is initialized at file system creation by reading the 

configuration file and is stored in the in-memory map table. 

In hybridFS, a file can be mapped to the appropriate data 

section, according to file size, usage, and access pattern. 

Furthermore, a file which does not need fast I/O processing 

speed, such as snapshot images, can bypass the caching to 

SSD partition. HybridFS also enables to move sub-level 

directories and their files to another data section without 

modifying the hierarchical structure, in case that the file 

access pattern or usage is changed. 

 

 
Figure 1. An overall structure of hybridFS 

 

Figure 1 illustrates an overview of hybridFS data layout. 

As can be seen in the Figure, I/O unit of SSD partition is an 

extent, whereas I/O unit of HDD partition is a block. Also, 

in the Figure, three logical data sections, D0, D1, and D2, are 

defined with the different extent size, that is 4 for D0, u for 

D1, v for D2 respectively, where 4<u<v. The information 

about SSD configuration, including the number of data 

sections, section range, and extent size of each data section, 

is determined at file system creation.  

Such a layout configuration enables to maintain SSD 

address space, according to file characteristics. For example, 

files with a large, contiguous access pattern, such as video 

files, can be assigned to the data section composed of a large 

extent size. This layout flexibility is also reflected to the file 

mapping. For instance, in Figure 1, since most files in 

/mnt/VOD have a large, contiguous access pattern, D2 with 

the largest extent size is mapped to the directory. Also, the 

files stored in /mnt/snap are configured to bypass SSD cache, 

to prevent the costly SSD space from being consumed by 

unnecessary files. Figure 1 also shows that the mapping to 

the data section can be changed to another data section 

without impacting the hierarchical structure. For example, 

/mnt/usr/a1/a2 is remapped from D0 to D2 and the mapping 

for /mnt/VOD/b1/b2 is changed from D2 to SSD bypass. 

B. File Allocation 
In hybridFS, the file allocation on SSD partition is 

executed on per extent. In designing the file allocation 
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scheme, the key objectives were to classify SSD allocation 

space according to file access pattern and usage, to 

efficiently manage the costly storage capacity, and to align 

the data size to flash block size to minimize the erasure 

latency. Classifying SSD allocation space is performed by 

defining the different extent size for each data section and 

then by mapping files to the data section, in terms of their 

access characteristics. Also, hybridFS attempts to align file 

allocation to the boundary of flash block, to control the 

block erasure overhead on the file system level. 

However, the shortcoming of hybridFS extent scheme is 

the extent fragmentation where a portion of extent is left 

unused. Furthermore, constantly aligning extent size to flash 

block may be difficult, especially in such a case that the 

extent size is smaller than the size of flash block. 

 

 
Figure 2. File allocation procedure  

 

In hybridFS, the file allocation on SSD partition is 

executed on per extent. In designing the file allocation 

scheme, the key objectives were to classify SSD allocation 

space according to file access pattern and usage, to 

efficiently manage the costly storage capacity, and to align 

the data size to flash block size to minimize the erasure 

latency. Classifying SSD allocation space is performed by 

defining the different extent size for each data section and 

then by mapping files to the data section, in terms of their 

access characteristics. Also, hybridFS attempts to align file 

allocation to the boundary of flash block, to control the 

block erasure overhead on the file system level. 

However, the shortcoming of hybridFS extent scheme is 

the extent fragmentation where a portion of extent is left 

unused. Furthermore, constantly aligning extent size to flash 

block may be difficult, especially in such a case that the 

extent size is smaller than the size of flash block. 

To alleviate the extent fragmentation problem, hybridFS 

divides the extents into two groups: one group for the clean 

extent where all the blocks are free and the other group for 

the extent segment where a portion of blocks in an extent are 

unused. Using the extent segment might sacrifice the 

performance advantage of SSD because the file allocation 

on the extent segment might not be aligned to the boundary 

of flash block. However, we decided to concentrate on 

making use of the costly SSD address space as much as 

possible.  

With an extent composed of x number of blocks, there 

exist log(x)+1 number of extent bitmaps, one for the first 

group and log(x) number of segment bitmaps for the second 

group. HybridFS reuses only extent segments whose 

remaining number of free blocks is more than or equal to 

half of total blocks in an extent, to prevent widespread file 

allocation across extent segments. The first bitmap of the 

second group, that is 0
th

 segment bitmap, shows the 

allocation status of the extent segments where x-1 number of 

blocks is unused. Similarly, i
th

 segment bitmap indicates 

whether the extent segments with x-2
i 

(0≤i≤log(x)-1) 

number of blocks are used. 

Figure 2 illustrates the file allocation process with the 

extent consisting of 64 blocks. This procedure is the default 

allocation process for SSD partition and is applied in such a 

case that either the extent size of a data section is equal to or 

larger than the flash block size, or the SSD flash block size 

is not clearly specified. In Figure 2, there exist seven extent 

bitmaps, one for the clean extent and the other six for the 

extent segments. Searching for an extent is started by 

scanning the clean extent bitmap.  

Suppose that file A needing 1block is assigned to the 

clean extent, as shown in Figure 2(b). In this case, the bit of 

the clean extent bitmap is set to one. In Figure 2(c), if file B 

requires 11 blocks to allocate, hybridFS then reuses the 

same extent to store data, while setting the associated bit of 

0
th

 segment bitmap to one. The corresponding bits from 1
th

 

to 3
th
 segment bitmaps would be unavailable because, after 

the file allocation of B, the remaining number of unused 

blocks is smaller than that indicated by those bitmaps.  

In Figure 2(d), if file C needs 48 blocks to store new data, 

then the associated bit of 4
th

 segment bitmap is set to one, to 

indicate the corresponding extent no longer to be a candidate 

for the file allocation. Upon releasing all the files, the extent 

returns to the clean state. 

When the extent size of the data section is smaller than 

the flash block size, hybridFS defines a virtual extent 

composed of multiple, real extents. The size of a virtual 

extent matches the size of flash block and the allocation 

policy including extent bitmap and extent segment is 

executed on per virtual extent. With a virtual extent 

consisting of y number of extents, there exists log(y) +1 

number of virtual extent bitmaps, one for the virtual clean 

extent and the other log(y) number of bitmaps for the virtual 

extent segment. The virtual extent bitmaps indicate the 

allocation status of virtual extents, in a similar way as 

hybridFS did with real extents composed of x number of 

blocks. In other words, i
th

 virtual segment bitmap indicates 

whether the virtual extent segments with y-2
i 
(0≤i≤log(y)-

1) number of extents are used. 

 
Figure 3. Virtual extent allocation 

 

Figure 3 shows how the virtual extent segment is 

organized in the data section composed of 4KB of extents, 
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on top of SSD partition with 256KB of flash block. In this 

case, a virtual extent is consisted of 64 4KB of real extents 

and the seven virtual extent bitmaps are created to indicate 

the allocation status of virtual extents. In Figure 3, when file 

A stores 48KB of data, the bit of the virtual clean extent 

bitmap is set to one, followed by setting the associated bits 

from 0
th

 to 3
th

 virtual segment bitmaps to be unavailable. On 

the 192KB of allocation request, hybridFS reuses the virtual 

extent segment starting from the 16
th

 real extent, while 

setting the associated bit of 4
th 

 virtual segment bitmap to 

one. 

IV. Performance Evaluation 
We evaluated I/O performance of hybridFS, comparing 

to the performance of two file systems: ext2[14] and xfs[15]. 

We chose ext2 for the performance comparison because the 

block allocation implemented on HDD partition is similar to 

ext2. The comparison with ext2 gives an opportunity to 

observe how significantly SSD partition of hybridFS affects 

the performance of various file operations.  

The reason for choosing xfs for the performance 

comparison is its extent-based allocation using B+ tree. 

HybridFS uses the pre-determined extent allocation to be 

configured at file system creation. We will observe how 

differently both allocation schemes work on several file 

operations. 

The experimental platform has Intel Xeon 3GHz CPU, 

16GB of RAM, 750GB of SATA HDD, and 80GB of 

fusion-io SSD. We compared I/O performance of three file 

systems, using IOzone benchmark[16], on top of HDD and 

SSD devices. In IOzone benchmark, in case of read 

evaluations, we saw that the impact of memory cache 

greatly contributes to generate high I/O bandwidth. 

 

 
     Figure 4.  IOzone write 

 

 
   Figure 5. IOzone rewrite 

 
Figure 6. IOzone read  

 

Figure 4 shows the write bandwidth on both devices. As 

can be seen, the performance of hybridFS is almost three 

times higher than that of both ext2 and xfs installed on HDD 

devices, whereas is 12% faster than xfs on SSD device. 

Even though the performances of ext2 and xfs on SSD 

devices are much higher than those on HDD devices, it is 

less desirable to build a large-scale storage subsystem solely 

composed of SSD devices, due to the limited storage 

capacity and high cost. The performance shows that in such 

a case, hybridFS offers an alternative way of utilizing SSD’s 

high performance and HDD’s vast storage capacity with low 

cost. 

The performance evaluation of write operations on two 

devices points out several interesting aspects. First, the 

difference between the worst and best performance of ext2 

and xfs on HDD devices is much larger than the 

corresponding difference on SSD devices. For example, on 

top of HDD device, when the performance with 512MB of 

file size is compared to that with 256KB of file size, ext2 

shows almost eight times speed improvement. On the other 

hand, on top of SSD device, the performance difference 

between 64KB and 512MB of file sizes is about 35%, which 

is much less than that on HDD device. 

Xfs also shows a similar behaviour to ext2, resulting in 

about 33% of performance speedup between 64KB and 

512MB of file sizes on SSD device, while producing much 

higher difference between the same file sizes on HDD 

device. This indicates that the overhead of HDD moving 

parts more deteriorates write performance than the overhead 

of SSD semiconductor property does. Due to the absence of 

moving overhead, both ext2 and xfs on SSD devices 

generate almost three times higher bandwidth than those on 

HDD devices. 

Second, although hybridFS uses HDD portion as 

metadata store, such an internal structure does not greatly 

degrade write performance because we can observe that, 

except for 64KB of file size, the performance difference 

between small-size and large-size files is very small even 

though more metadata accesses occur in the small-size files 

than in the large-size files. 

In Figure 5, we compared the rewrite performance of 

hybridFS to that of both ext2 and xfs. Similar to the write 

performance on HDD device, the rewrite throughput of 

hybridFS outperforms that of both ext2 and xfs installed on 

HDD devices. When compared to both file systems on SSD 

devices, hybridFS generates almost the same bandwidth 

with ext2, but is marginally faster than xfs. 

In the file read operation (Figure 6), unlike in the write 

experiments on HDD device, hybridFS does not produce 
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noticeable performance difference. For ext2 and xfs, the 

performance difference between worst and best cases on 

both devices is much less than that in the write experiment. 

This is because, in the IOzone benchmark, most read 

requests are served from memory cache. 

V. Conclusion 
As the technology of flash memory rapidly grows, SSD 

has drawn a great attention from IT enterprises as an 
attractive storage solution for fast I/O processing needs. 
SSD not only generates high I/O performance because of the 
absence of mechanical moving overhead but also provides 
significant power savings. However, despite its promising 
potentials, most SSD usages in real products have been 
limited to small-size memory devices, such as mobile 
equipments, because of its high cost per capacity. In this 
paper, we proposed a way of integrating SSD devices with 
HDD devices in a cost-effective manner, to build a large-
scale, virtual address space. To achieve better I/O 
performance, hybridFS uses SSD partition as a write-
through cache, which contains hot files recognized by file 
access time. Besides making use of the advantages of SSD, 
hybridFS attempts to provide a flexible internal structure to 
retain the excellent sequential read performance of existing 
file systems. HybridFS evaluation shows that achieving high 
I/O performance by combining the advantages of both SSD 
and HDD devices is possible. The strength of hybridFS is 
most noticeable when its write performance is compared to 
the corresponding performance of both ext2 and xfs installed 
on HDD devices. The write experiment indicates that the 
mechanical moving overhead of HDD more affects the write 
performance than the semiconductor overhead of SSD does. 
HybridFS frequently produced comparable performance to 
that of both ext2 and xfs installed on SSD devices. Since 
building a large-scale storage subsystem using SSD devices 
is less desirable due to high cost and limited storage 
resource, hybridFS can be a good alternative to make use of 
high I/O performance of SSD and vast storage capacity of 
HDD. As a future work, we would verify the performance of 
hybridFS by using more benchmarks.  
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