

73

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

OPTIMIZATION APPROACH TO

SOLVING OF N-VERSION SOFTWARE

SYSTEMS DESIGN PROBLEM

1
Igor Kovalev, Dmitry Kovalev, Pavel Zelenkov, Anna Voroshilova, Natalia Ivleva]

Abstract - The problem of developing an optimal

structure of N-version software system presents a kind of

very complex optimization problem. This causes the use of

deterministic optimization methods inappropriate for solving

the stated problem. In this view, exploiting heuristic

strategies looks more rational. In the field of pseudo-Boolean

optimization theory, the so called method of varied

probabilities (MVP) has been developed to solve problems

with a large dimensionality. Some additional modifications of

MVP have been made to solve the problem of N-version

systems design. Those algorithms take into account the

discovered specific features of the objective function. The

practical experiments have shown the advantage of using

these algorithm modifications because of reducing a search

space.

Keywords - N-version software, optimal structure,

software system design, pseudo-Boolean optimization.

I. INTRODUCTION
Development of high-reliable fault-tolerant

systems is an interesting engineering problem having not

only technical meaning but also social importance.

Systems of this kind determine the stability in social and

technical environments, and multiple examples of such

systems’ crashes prove the strong need for more reliable

constructions which can be realized through the use of up-

to-date methods and approaches.

The rapid progress of computer technique of late

years has made the software an essential part of any

complex automated system. The reliability of software

component may determine the reliability of whole the

hardware-software system. That’s why during last years

large attention is paid to the development of the

methodologies of designing high-reliable software

complexes [1-5].

Practically, multi-channel tools increasing the

system reliability at the expense of a multiple duplication

of certain structure elements are very much in evidence.

This approach has given a good account of itself in the

designing of hardware parts of complex systems. The use

of this methodology leads to a sizable decreasing of

appearance probability of random errors having the

1
 Igor Kovalev, Dmitry Kovalev, Pavel Zelenkov,

Anna Voroshilova, Natalia Ivleva

Institute of Computer Science and Telecommunications

Reshetnev Siberian State Aerospace University

Russian Federation

 physical nature. In turn, this approach is not an

influence on software reliability, since it doesn’t trace so

called dormant (or sleeping) errors which could arise

while writing the program code by a stated specification

[6].

The multi-version programming, as a methodology

of the fault-tolerant software systems design, allows

successful solving of the mentioned tasks. The idea of

multi-version programming has been introduced by A.

Avizienis in 1977 [7]. The term N-version programming

(NVP) used in the literature is of equal meaning and often

takes place in papers on the observed methodology. A.

Avizienis introduced NVP as an independent generation

of N2 functionally equivalent software modules from the

same initial specification. The concurrent execution tools

are provided for such the modules. In cross-check points

(cc-points) software modules generate cross-check vectors

(cc-vectors). The components of the cc-vectors and the cc-

points are to be determined in the specification set.

The use of N-version programming approach turns

out to be effective, since the system is constructed out of

several parallel executed versions of some software

module. Those versions are written to meet the same

specification but by different programmers. Where, the

writing process of each version of concrete software

module in any way must not intersect with or depend on

another version code writing. This is done to avoid the

presence of same dormant (or sleeping) errors in separate

software designs. This kind of errors is typical for

software components.

The problem of developing the optimal structure of

an N-version software system (NVS) is the following: to

choose a set of software modules, so as to provide the

highest reliability for the system subject to the budget

constraint. Since a description of any possible system

configuration is made through such the positioning of its

components, we can say that an observed problem has the

binary essence [8]. Moreover, the existing theory of

pseudo-Boolean functions and their optimization contains

strong tools for solving problems of this kind [9]. And that

fact makes the use of binarization algorithms more

affordable.

74

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

The process of a problem binarization consists in

setting relationships between the system states and the

binary space elements. In the case of our system model,

we need to determine some Boolean vector the elements

of which will characterize the system structure. Each

element of such the Boolean vector will signify either

presence or absence of corresponding system component

[10].

In that way, before starting to describe the exact

process of binarization, all the necessary terms should be

coined and the presented system model should be

overviewed in details.

II. OPTIMIZATION MODEL FOR

STRUCTURING NVS
The structure of N-version software system is

determined consisting of a set of tasks (a set

III card,). All the tasks are divided into classes, i.e.

a set of task classes is introduced as well

(JJJ card,).

To solve the tasks belonging to a certain class,

there is a software module, which can be realized by any

of its versions. Thus, JKK card, – the set of

software modules. Let us introduce the vector

),1(}{ JjS j S , each component of which is equal

to a number of module versions (jS – the number of

versions of module solving a task of class j) [11].

To describe the task belonging to particular classes,

in [12] the authors define sets of tasks for every task class.

That is introduced as two-dimensional array in

programming terms. Since the numbers of tasks belonging

to different classes are not equal, that may cause some

difficulties when translating the analytic expressions into

a program code.

Here, it is proposed to use only one set the capacity

of which is equal to the number of tasks in a system. And

each element of this set is equal to the number of class a

task belongs to. So, the set IBB card, is the set of

class membership of tasks, i.e. the element iB of the set

B presents the number of class the i-th task belongs to.

Using the introduced notations, lets us determine a

common analytic form of the number of versions solving

i-th task. If the element iB of the set B is the number of

class the i-th task belongs to, then an element of the set S,

the index number of which is equal to iB , determines the

number of versions in a module solving i-th task.

Therefore, this number can be written like this
i

BS .

Basing on that, we will introduce the Boolean

variables
i

sX to describe the control implication of

different module versions:

.task),1(ththesolve toused

ismoduleofversion),1(ththe
,0

,task),1(ththesolveto

usedismoduleofversion),1(ththe
,1

I

BS

I

BS

X
i

i
B

i
i

B

i

s

ii

ss

ii

ss

not

 (1)

Expanding the introduced variables into the

implication vector is the head moment in applying

pseudo-Boolean optimization methods to the considered

systems design.

Since a vector component number is specified by

only one index and we deal with two-index variables, it is

necessary to establish an algorithm forming an implication

vector and an algorithm determining the component

indices of this vector. Following section contains the

algorithms to convert a problem of optimal structure

design for N-version systems to a problem of pseudo-

Boolean optimization and vice versa.

A. CONVERSION ALGORITHMS
The algorithm of an implication vector forming

acts in the following way (see the scheme on fig. 2). The

first component of an implication vector X describes the

first version of a module to be involved in the solving of

the first system task. If the software module which solves

the first task has more than one version, the next

component of vector X characterizes the second version of

the first task module. In this way, all the versions of all

software modules are overhauled.

Versions
Tasks

Figure 1. An example of the implication vector.

Hence, in order to determine the number of a

vector X component, being aware of corresponding

number of a task i and a number of version s, it is

necessary to sum the number of versions in the modules

solving the first (i-1) tasks and to add s to obtained value.

Analytically this conversion appears as follows:

.1,

,1,

1

1

iifsS

iifs

pos
i

j
j

B

 (2)

In order not to recalculate the first sum (the

number of versions in the first (i-1) tasks) every time

when optimizing a system, it would be better to count

those sums depending on different i and to memorize

them in an index vector:

i

j
j

Bi SG
1

, or in recurrent form

75

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

 .1,

,1,

1

1

iifSG

iifS
G

i
Bi

B

i

Therefore, the value of the i-th component of

vector G equals the number of versions in modules

solving the tasks from the first up to the i-th. It results

from this that the value of the last vector G component is

equal to n – the implication vector dimensionality, i.e.

nS
N

i
i

B
1

.

Once the index vector is introduced, the analytic

record of a calculation of the implication vector

component number takes the form of the following:

 .1,

,1,

1 iifsG

iifs
pos

i

The reverse conversion task (a conversion of the

implication vector component number to the numbers of

task and version) consists of the consecutive determining

of i and s. The flowchart of this algorithm is show on the

fig. 2.

Initial data

I, J, B, K, S

i=1

Pos

Yes

i=i+1

No

i, s

1 iGposs

Determining a number

of task, which the vector

element belongs to

Determining a

version number

I - a tasks set

J - a task classes set

B - a set of tasks' class

membership

K - a software modules set

S - a versions set

G - an index vector

i
Bii

i

j
j

Bi

i

SGGor

SG

NiG

1

1

,1},{G

iGpos

Figure 2. A conversion of the implication vector component

number into the numbers of task and version.

Since the i-th element of the index vector equals

the number of versions in modules solving the tasks from

the first up to the i-th, the task number is determined by

comparing the index of the implication vector component

with the elements of the index vector. The comparison is

being made from the first element of the index vector till

the last one sequentially. And when the value of the

parameter pos turns out to be less than or equal to the

value of the index vector component, the required task

number takes the value of this element number.

Then subtracting the number of versions in all the

tasks from the first up to the (i-1)-th (equal to 1iG) from

pos we get a version number of software module solving

the i-th task corresponding to pos.

The two presented algorithms are the core of

applying binary approach to solve the stated problem.

Thus, having received the tools for a problem conversion,

it became possible to use the methods developed within

the confines of pseudo-Boolean optimization study. Some

the features of the considered problem are discussed in the

following section. Basing on this the conclusions about

the relevant methods are made.

B. THE MATHEMATICAL
STATEMENT OF THE PROBLEM

The converting algorithms considered above allow

to describe the NVS structure in a form of a Boolean

vector. As it was noticed previously, the optimal design of

control system is held subject to different parameters: the

reliability (it should be as big as possible), the cost (it

should be as small as possible or at least it shouldn't

exceed some limit), the allocation & scheduling and so on

[14].

In terms of optimization theory, a system reliability

function of a system structure is nothing else but an

objective function. And conditions imposed on the system

structure are the constraints set to limit the objective

function domain [13]. Since we are able to associate a

system structure with a Boolean vector, an objective

function is a pseudo-Boolean one. And an optimization

problem becomes a pseudo-Boolean one too.

In the framework of the presented model we will

use a system reliability function as the objective function

and the system cost will be the constraint imposed on the

system [15-19]. In analytic form this problem can be

written as follows:

I

i

iRR
1

max ,

where

iBS

s

i
s

X

s
i

Bi RR
1

)1(1

subject to

 BCX
I

i

i
B

S

s

i

s siB
 1 1

.

Here, s
i

BR and s
i

BC are the reliability and the

cost of the software version s from module which solves

the task of class Bi

III. OPTIMIZATION ALGORITHMS

TO FORM THE NVS

STRUCTURE
To derive an optimal dependability solution by

means of an systematic, the exhaustive comparison

algorithm would mean that all potential system

configurations have to be tentatively generated, checked

for the fulfillment of the side conditions and processed to

76

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

compute the corresponding overall system reliability. This

usually would cause a computing complexity that is

untractable even for the most modern high speed

computers: if, e.g., we consider a system consisting 64

modules, all of which are to be triplicated, thereby

selecting each of the module versions from 5 different

candidate modules, we would have to consider
6464 10]!2!3!5[different system configurations!

Assuming e.g. 1 nsec for processing each system

configuration (of course, a value by far too optimistic!),

the resulting 10
55

 sec of needed computation time would

exceed the estimated age of the universe of about 10
17

 sec

by many orders of magnitude! Therefore, here only

stochastic search methods appear possible to provide, in a

heuristic way, an optimal solution.

A. THE METHOD OF VARYING
PROBABILITIES

In the field of pseudo-Boolean optimization theory,

the so called method of varied probabilities has been

developed to solve complicated problems, especially those

ones with a large dimensionality [8]. The method of

variable probabilities (MVP) presents a family of heuristic

algorithms based on the common scheme: in order to find

an extremal solution of a pseudo-Boolean optimization

problem, a probability vector of dimensionality of sought

solution vector is formed. Each component of the

probability vector presents a probability of assigning a one

value to the correspondent component of a Boolean

vector. In the terms of developing NVS structure, it looks

like a probability to include a version-candidate into the

system structure.

The initial values of the probability vector

components describe a situation when every software

version has the equal probability to be included into the

system structure. Then, at a computational phase, random

decisions are generated according to the probability

distribution specified by means of the probability vector.

Each time the objective function is calculated in several

random points, the values of the probability vector

components are updated, so changing a probability

distribution form. The way of changing these values

defines a separate algorithms of MVP scheme. The

common approach for updating a probability vector can be

characterized by the rule: the better result received with a

one-valued binary vector component the bigger

probability is assigned for it to get the value of one in the

final solution.

These scheme can be augmented whether by some

special methods for updating the probability vector or

through involving the peculiar procedures of generating

random solutions at a computational phase of an

algorithm. This paper discusses the two methods for

updating the probability vector (ARSA and Modified

ARSA ver. 1) and the two procedures of generating

random solutions (the independent generation of random

points and the generation of non-zero solutions) giving

thus as a result four different realizations (algorithms) of

MVP.

The Adaptive Random Search Algorithm (ARSA)

plays a role of the background for the rest of the

algorithms of MVP scheme [13]. Initially, ARSA has been

developed for the problem of pattern recognition to select

an informative subsystem of attributes. The main

disadvantage of this algorithm is a potential problem of

updating values of probability vector components.

Namely, in some cases it is possible to get the values of

intermediate solutions which do not let the probability

vector components to be changed. To correct the defect,

the modification of ARSA has been developed (Modified

ARSA ver.1). The statistical data of applying the modified

version of ARSA display the better behavior of the

algorithm when solving problems of developing a

structure of NVS.

Next, applying to the stated optimization problem,

ARSA doesn’t provide a technique of avoiding zero-

solutions when solving the problem of designing NVS

structure. To protect an algorithm against spending both

computational and time resources for calculating the

objective function values in the points of this kind, the

particular technique of generating random non-zero

solutions has been developed. This technique is utilized in

the MVP based algorithm named NVS MVP (mentioning

the strict field of using the algorithm).

Making use of both of the mentioned

enhancements gave a great raise in the efficiency of

applying the MVP based algorithms to the problem of

NVS structure development. The statistical results

presented in the final part of the paper show it. Different

algorithms have been tasted on the same optimization

problem with the same quantity of objective function

calls.
The objective function of the presented

optimization problem has several specific features which

can assist to reduce a search domain, thus allowing to

decrease the searching time. The objective function as a

function of the whole system reliability represents the

product of reliabilities of separate software modules.

Consequently, when a reliability of any of the modules is

equal to zero the overall system reliability turns into zero

value also. Physically, it represents a case when there are

no versions chosen for (at least) some of the software

modules. The implication vector components

corresponding to such the software modules will be

assigned zeroes as well. Obviously, it is necessary to

avoid computing the objective function in such the points.

The number of system structures having at least

one software module without versions-candidates

assigned can be determined as the difference of the

number of all the possible structures and the quantity of

the structures which provide every software module with

at least one candidate, i.e. 00 Rall NNN . The

number of all possible structures is determined through

the dimensionality of an implication vector n as follows
n

allN 2 . The second intermediate value is found

basing on the multiplication principle from combinatorics

as a number of all possible structures with software

module combinations each without one of them (that with

no versions assigned). Formally, it is described in the

77

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

following way:

I

i

R
ik

N
1

0)12(, where I is the

number of software modules, ik represents a number of

versions for the i-th software module.

Then, the final expression determining a sought

value looks like this:

I

i

n ik
N

1

0)12(2 .

The value of this expression depends on an overall

number of candidates (a dimensionality of the

optimization problem), a number of software modules I

and the numbers of versions for each of the software

module (ki, Ii ,1). In general case, this expression takes

grand values counting up to allN9.0 , i.e. 90% of all the

possible solutions. This means in this case that in order to

find a solution it is sufficient to search through only 10%

of the definitional domain of the objective function.

Unfortunately, there is the other side of the

question making this result not so optimistic. Namely, for

the problems of large dimensionalities reducing the search

domain to 10% means diminishing the dimensionality of a

problem by very small value. For instance, for a test

problem of dimensionality n=117, avoiding all the null-

valued points lowered the problem dimensionality only

down to 1160 Rn .

Nevertheless, exploiting this feature of the

objective function has given satisfactory results when

applying the algorithms of the method of varied

probabilities (MVP). The modification of the MVP with

the ability of avoiding null-valued points called NVS

MVP has its own way of generating random points at

iterational steps of the algorithms. In NVS MPV, random

points are generated so that to provide each software

module with at least one version.

At every iterational step, the whole implication

vector generated is concerned as consisting of parts each

describing the structure of a separate software module.

Thus indeed, random vector generating consists of

generating of random structures of modules. This

approach allows having only non-zero solutions in result.

B. THE RANDOM SEARCH OF
BOUNDARY POINTS

Another stochastic algorithm to optimize the

structure of NVS is the algorithm of random search of

boundary points [8]. It is based on the proved fact that a

solution of the stated optimization problem is a so called

boundary point. Or in terms of binary space topology, a

point neighboring to the set of infeasible solutions. Such a

point describes a system structure which can not be

updated through including a software versions

additionally without violating the resource conditions, i.e.

no version can not be added to a system structure of this

kind paying attention to restrictions. The algorithm of

random search of boundary points constitutes a generating

of multiple boundary solutions and comparing the

objective functions values in them.

The constraint in this optimization problem

partitions the whole binary space into two domains – the

domain of solution satisfying the constraint function and a

set of points not satisfying to the constraint. It is shown

that these domains represent the connected sets and that a

solution of correspondent optimization problem is a point

neighboring to the set of infeasible solutions. This kind of

solution can be called a boundary point.

Basing on the results stated above, it is clear that it

is sufficient to search among only boundary points in

order to find the best value of the objective function.

Thus, the problem of finding a best solution becomes a

problem of an exhaustive search on the boundary points

set.

The following is the algorithm of generating

boundary point for the problem of developing the optimal

structure of NVS (Fig. 3).

Different boundary points can be reached using

this algorithm when different combinations of ways to

choose i at the second step of the algorithm will be

followed.

Hence, the algorithm of searching boundary points

will have the following scheme.

1. The initializing step: i=0.

2. Determine a boundary point Xbi (b – as an

index means “boundary”).

3. Calculate the objective function value

Fi=F(Xbi).

4. If the stopping condition is satisfied go to p.

5, otherwise i=i+1 and go to p. 2.

5. The solution is i
i

FF max* .

C(X)+C
i
>B

nixi ,1},0{0 X

})(:{),/(221

* BCBDDBO nn XXX

yes

no

0thatsuch

1Choose

ix

Ii

x
i
=1

Figure 3. Generating a boundary point.

Separate variations of the algorithm of boundary

points search may differ from each other in a stopping

condition and in ways of reaching boundary when

generating boundary points. For the optimization

problems of high complexity it is more rational to use

stochastic version of the algorithm when boundary points

78

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

are reached in a random way and this process is executed

repeatedly.

IV. THE COMPARISON OF THE

RANDOM OPTIMIZATION

PROCEDURES
Concluding the paper, let us cite the comparative

data of the computational results for different random

optimization procedures. To gather such the information,

the presented algorithms have been used to solve the test

NVS structure optimization problems. The efficiency of

the random search algorithms has been judged by the

values of the objective and constraining functions.

The problem of dimensionality 117 has been

chosen as the test problem, i.e. the developed software

system included 117 software versions. It's worth

mentioning that every of the random search algorithms

needed approximately same period of time for calculating

under equal conditions. That's why the time has not been

set as an efficiency characteristic.

Table 1 contains the computational results of

algorithms testing. The best searching capabilities have

been revealed with the use of NVS MVP algorithm and

the algorithm of boundary points search. The latter

displayed the highest stability of the solutions found,

although using NVS MVP it is sometimes possible to find

more reliable system configurations.

№

B
u

d
g

et
 c

o
n

st
ra

in
t

В

N
u

m
b

er
 o

f
it

er
at

io
n

s The random search algorithms

NVS MVP

Random

search of

boundary

points

R(X
*
) C(X

*
) R(X

*
) C(X

*
)

1. 800

15000

0.7872

0.7916

0.7907

789

791

791

0.8074

0.7998

0.8177

796

797

794

30000

0.8136

0.8054

0.8118

786

775

784

0.8318

0.8331

0.8377

794

797

798

2. 900

15000

0.9040

0.9207

0.9039

850

896

887

0.9149

0.9164

0.9148

899

899

898

30000

0.9076

0.9082

0.9155

867

875

890

0.9192

0.9167

0.9177

897

897

892

3. 1000

15000

0.9701

0.9523

0.9546

995

986

989

0.9622

0.9609

0.9635

993

998

998

30000

0.9651

0.9554

0.9712

994

988

997

0.9652

0.9661

0.9631

997

995

996

Table 1. The results of random search algorithms working.

V. CONCLUSION
The problem of structuring an N-version software

system is specified by the binary character, what made it

plausible to apply the methods of pseudo-Boolean

optimization. Within the limits of the discrete

optimization a set of methods and algorithms has been

proposed. The search capabilities of each of the

algorithms realized have been investigated by solving the

test problems. It was shown that the modification of the

method of varying probabilities for NVS MVP together

with the algorithm of boundary points search provide the

best searching capabilities concerning the time efficiency

and the solution quality.

References

[1] Laprie J.-C. et al. Hardware- and Software-fault tolerance:

definition and analysis of architectural solutions//

Proceedings of the IEEE, 1987, Pp. 116-121.
[2] Anderson T., Barrett P.A., Halliwell D.N., Moudling M.L.,

“An evaluation of software fault tolerance in a practical

system”, Proc. Fault Tolerant Computing Symposium 1985,
pp. 140-145.

[3] Scheer, S., Maier, T.: Towards Dependable Software

Requirement Specifications. In: Daniel, P. (ed.) Proceedings
of SAFECOMP 1997, New York (1997)

[4] Kovalev I. et al The control of developing a structure of a

catastrophe-resistant system of information processing and
control // In: 2015 IOP Conf. Ser.: Mater. Sci. Eng. 70

012008. doi:10.1088/1757-899X/70/1/012008.

[5] Kovalev I.V., Engel E.A., Tsarev R.Ju.
Programmatic support of the analysis of cluster structures of

failure-resistant information systems. Automatic

Documentation and Mathematical Linguistics. 2007. Т. 41. №
3. С. 89-92.

[6] Keene, S. J. Comparing Hardware and Software Reliability.

Reliability Review, 14(4), December 1994, pp. 5-21.
[7] Avizienis A. The methdology of N-version programming// In:

Software fault tolerance/ edited by M.R. Lyu, Wiley, 1995,

Pp. 23-47.
[8] Antamoshkin A., Schwefel H.P., Torn A., Yin G. and

Zilinskas A. System Analysis, Design and Optimization.

Ofset Press, Krasnoyarsk, 1993.- 312 p.
[9] Antamoshkin, A.N. Random Search Algorithm for the p-

Median Problem / A.N. Antamoshkin, L.A. Kazakovtsev //

Informatica – 2013. - № 3(37). – Р. 127–140.
[10] Lev Kazakovtsev, Predrag Stanimirovic, Idowu Osinga,

Mikhail Gudima and Alexander Antamoshkin / Algorithms

for location problems based on angular distances. Advances
in Operations Research. – 2014. – Vol. 2014. Articale ID

701267. 12 pages. -
http://www.hindawi.com/journals/aor/raa/701267/

[11] Kovalev I. Optimization problems when realizing the

spacecrafts control// In: Advances in Modeling and Analysis,
C, Vol. 52, No. 1-2, 1998, pp. 62-70.

[12] Kovalev I.V., Dgioeva N.N., Slobodin M.Ju. The

mathematical system model for the problem of multi-version
software design. Proceedings of Modelling and Simulation,

MS'2004 AMSE International Conference on Modelling and

Simulation, MS'2004. AMSE, French Research Council,
CNRS, Rhone-Alpes Region, Hospitals of Lyon. Lyon-

Villeurbanne, 2004.

http://iopscience.iop.org/1757-899X/70/1/012008
http://iopscience.iop.org/1757-899X/70/1/012008
http://iopscience.iop.org/1757-899X/70/1/012008
http://dx.doi.org/10.1088/1757-899X/70/1/012008
http://elibrary.ru/contents.asp?titleid=25530
http://elibrary.ru/contents.asp?titleid=25530
http://www.hindawi.com/journals/aor/raa/701267/
http://elibrary.ru/item.asp?id=15039453
http://elibrary.ru/item.asp?id=15039453
http://elibrary.ru/item.asp?id=15039453
http://elibrary.ru/item.asp?id=15008317
http://elibrary.ru/item.asp?id=15008317

79

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

[13] Kovalev I., Grosspietsch K.-E. Deriving the Optimal
Structure of N-version Software under Resource

Requirements and Cost/Timing Constraints// Proc.
Euromicro' 2000, Maastricht, 2000, IEEE CS Press, pp. 200-

207.

[14] Kovalev I. et al. The Minimization of Inter-Module Interface
for the Achievement of Reliability of Multi-Version Software

/ Kovalev I., Zelenkov P., Ognerubov S // 2015 IOP Conf.

Ser.: Mater. Sci. Eng. 70 012006. doi:10.1088/1757-
899X/70/1/012006.

[15] Ashrafi N. et al. Optimal Design of Large Software-Systems

Using N- Version Programming// IEEE Trans. on Reliability,
Vol. 43, No. 2, 1994, pp. 344-350.

[16] Ashrafi N., Berman O. Optimization models for selection of
programs, considering cost and reliability// IEEE Trans. on

Reliability, Vol. 41, No. 2, 1992, pp. 281-287.
[17] Ashrafi N., Berman O. Optimization models for reliability of

modular software systems// IEEE Trans. on Software

Engineering, Vol. 19, No. 11, November 1993, pp. 1119-
1123.

[18] Kovalev I. et al. Model of the reliability analysis of the

distributed computer systems with architecture "client-
server". IOP Conf. Series: Materials Science and Engineering

70 (2015) 012009. doi:10.1088/1757-899X/70/1/012009.

[19] Kovalev, I.V. Fault-tolerant software architecture creation
model based on reliability evaluation / I.V. Kovalev,

R.V.Younoussov; Advanced in Modeling & Analysis, vol.

48, № 3-4. Journal of AMSE Periodicals, 2002, pp. 31-43.

http://dx.doi.org/10.1088/1757-899X/70/1/012006
http://dx.doi.org/10.1088/1757-899X/70/1/012006
http://iopscience.iop.org/1757-899X/70/1/012009
http://iopscience.iop.org/1757-899X/70/1/012009
http://iopscience.iop.org/1757-899X/70/1/012009

