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Abstract—Complex-step differentiation is a recent   popular 

method to compute a real valued function and its first derivative 

approximately with second order error using imaginary step size. 

We propose a generalization of complex-step method to compute 

a complex valued function and its derivatives up to order n – 1 

with approximate error of order n, for any desired integer n. For 

this, we use a hypercomplex number system of dimension n and 

Taylor series expansion of the function at a hypercomplex 

number. Computations can be performed efficiently by using fast 

Fourier transform.  
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numbers, automatic differentiation, algorithmic differentiation 

I. Introduction 
Computation of derivatives of differentiable functions has 

many applications in engineering, physics, economics etc. A 

simple immediate example in economics is the marginal cost 

and revenues of products. The second order Newton-Raphson 

root finding algorithm also requires the computation of a 

function and its first derivative at every point of the successive 

approximate roots. Higher order convergence requires higher 

order derivatives of the function to be rooted [1]. 

A classical method that gives accurate results for 

derivatives is known as the continuous method in which the 

function, for which the derivative is sought, is differentiated 

by hand and the derivatives at the required point are computed 

by direct substitutions.  Although this method gives highly 

accurate results, obviously, for functions with complicated 

expressions, this can be a tedious, error-prone and time 

consuming process. Numerical methods are, therefore, 

preferred in general. 

Among the many methods for numerically approximating 

derivatives, finite difference method (FDM) is well known. 

Despite its popularity, FDM is known for its poor accuracy. 

First, the approximations for derivatives with relatively simple 

formulas give lower order accuracy, usually one or two and 

one needs, therefore, to choose the step size very small for 

better approximation results[2]. Second, in doing so, one faces 

the ‘step size dilemma’. That is, as the step size decreases 

beyond a bound, the accuracy also practically diminishes as 

opposed to the expected theoretical improvement [2]. This 

degrading accuracy occurs due to subtractive cancellations 

that occur when two very close numbers are differenced, 
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which is often the case for finite difference approximation of 

derivatives. 

Another interesting approach for computing derivatives is 

the automatic differentiation (AD), also known as algorithmic 

differentiation or computational differentiation.  In this 

method, the candidate function is transformed into a sequence 

of elementary operations of intermediate variables and 

intrinsic functions. Then, the variables are transformed into 

vectors consisting of the variables and their derivatives up to a 

desired order.  The algebraic operations on these vectors are 

performed with the use of chain rules of differentiation [3]. 

This method gives exact results in theoretical considerations 

and machine precision accuracy in practical computations as 

there is no truncation error involved[4]. However, there are 

issues expressed related to the implementation of this method. 

Transformation of the function expression in to a sequence of 

elementary operations with simple functions and their 

derivatives is one such issue that requires user interference for 

redefining codes [5]. Some reformulations have been 

considered to address these issues [5,6]. Still, higher order 

derivatives at a point involve       computations, where d is 

the highest order of derivative desired [5—7].  

In  [8,9], several methods have been introduced to compute 

approximate derivatives up to order    , for a given n, based 

on approximating the Cauchy integral formula for a complex 

valued analytic function.  Later, in [10], an alternative 

algorithm approximating the Cauchy integral formula by 

trapezoidal rule was developed that admits fast Fourier 

transform (FFT) to efficiently compute the function and its 

first     derivatives for a given n. 

Squire and Trapp[11] introduced a method to compute the 

first derivative of a real valued function with second-order 

error. In this method, an imaginary perturbation step is 

introduced to the independent variable and Taylor series 

expansion is used to obtain an approximation for the first 

derivative. This method is now popularly known as the 

complex-step (C-S) differentiation [12]. The C-S method 

requires only one function evaluation at a complex point and 

does not suffer from the subtractive difference faced by FDM 

for small step size. Accuracy is, therefore, increased by 

comfortably choosing the step size h very small. The order of 

derivatives obtained by C-S method is limited to one only. 

Higher order derivatives require a form of finite differences 

with function evaluations at different complex steps [12]. The 

C-S method has gained a notable attention and some variations 

have been considered [13—15]. 

In this paper, we propose an approximation method to 

compute a given differentiable complex valued function      

and its first n – 1 derivatives                        
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simultaneously for any given integer n with approximation 

error of order n for all derivatives without using any finite 

differences. For this, we define a n-dimensional hypercomplex 

number system and use a hypercomplex imaginary step h to 

compute functions of hypercomplex variables efficiently using 

Discrete Fourier Transforms(DFT) and/or  FFT. 

Our algorithm establishes connections between the 

complex-step differentiation and the algorithm in [10] for 

differentiation of analytic function in the sense that ours is an 

extension of the former and a reformulation of the latter 

establishing higher order accuracy.  

The rest of the paper is organized as follows. 

Hypercomplex number systems are described in Section II. 

The main result of hypercomplex-step differentiation method 

is introduced in Section III. A DFT/FFT based algorithm of 

the proposed method is given in Section IV. Numerical results 

are presented and discussed in Section V with conclusions in 

Section VI. 

II. Commutative Algebra Systems 
In this section, we describe the necessary theory of 

hypercomplex number systems required for the main theme of 

this paper. A hypercomplex number system is an algebra (a 

ring with unity) with one or more indeterminates. Examples of 

hypercomplex systems include complex number systems and 

non-commutative systems such as quaternion, octonion and 

Clifford algebras. The indeterminates   in these examples 

satisfy the quadratic relations      . In our work, we 

consider a generalized hypercomplex system where the 

indeterminates satisfy a more general condition and preserve 

commutative property. 

For brevity of formulas, we set Nn = {0,1,2,…,n - 1}. 

Definition A. We call a commutative algebra with unit 1 over 

the complex field an n-hypercomplex system, denoted by 

        if it has only one fundamental unit   satisfying 

          The elements in        are expressed as 

polynomials in  , and for convenience, we write them in vector 

form   ∑    
    

    [            ]
   [  ].  

The fundamental operations on        are given by 

    [     ]       [   ]  and    [∑         
   
   ]  

where     and the summation is the cyclic convolution of 

the components of the vectors   and   with the convention 

that              . 

The n-hypercomplex system is not a division algebra since 

it has zero divisors. That is, there are non-zero n-

hypercomplex numbers     such that       . For a 

discussion on zero divisors on generalized hypercomplex 

systems, see [16]. 

A. Canonical Representation  
An n-hypercomplex number in        can be expressed in 

a form with another set of indeterminate symbols that allow 

easy manipulations and efficient computations of n-

hypercomplex expressions and functions.  

 

Proposition A. For an n-hypercomplex system        with 

indeterminate   having fundamental basis                , 

there is a basis   ̂   ̂   ̂     ̂     with the orthogonal 

property  ̂  ̂            and  ̂ 
    for any i, j. 

proof: The multiplication of two n-hypercomplex numbers     

is given by        where             
    

     
    has the circulant matrix representation given by 

               The eigenpairs of the matrix are  

 

 ̂  ∑     
   

   

   

       (1) 

and   ̂  [    
    

       
      

]
 

,      , where 

            √  .  

If we denote the matrix of eigenvectors    
 

√ 
[ ̂   ̂   ̂     ̂   ] , we see that    is a unitary matrix 

satisying   
      and   

        where the 

superscript * indicates complex conjugate transpose, D is the 

diagonal matrix with entries as the eigenvalues  ̂  and    is 

the identity matrix of size n. These two relations give the 

desired property of the new basis.■ 

Expression (1) is the DFT of   and the inverse DFT is 

obtained from  

          
   ∑  ̂  ̂ 

   

   

  (2) 

This gives 

 

   
 

 
∑  ̂   

   

   

   

       (3) 

Following [17], we call (2) the canonical representation of 

the n-hypercomplex number   [  ] and denote the vector of 

its coefficients as  ̂  ( ̂ )   We then immediately have 

Proposition B. Let    [  ]  and    [  ]  be two n-

hypercomplex numbers with their canonical representation 

vectors  ̂  ( ̂ ) and  ̂  ( ̂ )  respectively. Then, 

   ̂   ̂   ̂,    ̂    ̂   ̂   ̂ ̂           ̂   ̂  ̂ when 

  has an inverse. The operations on the canonical vectors on 

the right are performed element wise. 

With these basic operations, an n-hypercomplex valued 

function      can be expressed in canonical form as      

 ∑    ̂   ̂ 
   
    and hence we have     ̂     ̂   The 

coefficients of      from the canonical representation vectors 

can be obtained by an inverse DFT. This process is 

summarized in  

ALGORITHM I: Computing      

 

1. Input    [            ]  

2. Compute  ̂           ̂   ̂     ̂    . 

3. Compute    ̂   (   ̂      ̂        ̂    ). 

4. Compute inverse DFT 

        ̂         [             ].  
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Practically, for large n, one can make use of FFT in step 2 

and inverse FFT in step 4 for efficient computing of the 

function     .  

B.  Differentiation  
Assuming Euclidean topology for the system       , let 

           be a function on an open set          . We 

state the following definitions and propositions that can be 

proved analogous to the proofs of similar results on 

multicomplex functions [18, Section 47]. 

 

Definition B. A function                 is said to be 

differentiable at           if the limit 

   
    

(          )      
          

exists. Here, the limit      is taken through the   values 

where       
   exist. 

 

Definition C. A function                 is said to be 

holomorphic in an open set          if it is differentiable 

for all      and is called analytic if it is holomorphic in 

entire       . 

 

Proposition C. A complex holomorphic function can be 

extended to an n-hypercomplex valued holomorphic function 

of n-hypercomplex variable. 

 

Proposition D. A holomorphic function in          

containing a point      admits Taylor series expansion. 

III. Hypercomplex-Step 
Differentiation 

In this section, we present our main result which we call 

hypercomplex-step differentiation method. Let      be an 

analytic function of a real or complex variable z. The Taylor 

series expansion of the extended n-hypercomplex valued 

function      at the perturbed point               is 

given by 

                     
          

  
  

                             
                 

      
 

           

  
   

 

This is simplified with the use of      as 

         (     
         

  
  )

  (
     

  
 

           

      
  )   

     (
         

      
 

            

       

  )      

Equating the coefficients of        , we directly obtain 

the approximations for      and its derivatives up to order 

    simultaneously as   

 
        

  

  
                       (4) 

where     denotes the coefficient of the unit   . 

IV. Implementation  
The method described in the previous section reduces the 

problem of computing the approximation of derivatives at a 

complex number z to an evaluation of the candidate function at 

a simple n-hypercomplex number         .  Computing 

        directly will require a separate implementation to 

deal with n-hypercomplex operations. However, owing to the 

cyclic nature of the system, evaluation of n-hypercomplex 

valued functions can be efficiently performed via FFT through 

Algorithm I. Based on this, the following algorithm computes 

a given function and its first n – 1 derivatives simultaneously. 

ALGORITHM II: Hypercomplex-step differentiation 

 

1. Input z, h, function f. 

2. Form         [         ]  

3. Compute DFT(a) with            

 ̂  (     
 
)     ̂   ̂     ̂      

4. Compute    ̂  (   ̂      ̂        ̂    ). 

5. Compute  inverse DFT(   ̂ )  

       [            ]  

6. Compute derivatives by 

        
  

         . 

Remark: Algorithm II is similar to the process given in [19] 

derived from approximating the coefficients of the Taylor 

series expansion of complex valued analytic function. The 

present algorithm was derived from n-hypercomplex 

expansion of an analytic function. This has the advantage of 

considering other variants of the algorithm that were not 

possible in the method of [19].  

A. Operation Count 
The DFT in Step 3 of algorithm II is performed in      

operations since the n-hypercomplex perturbation has only 

two non-zero coefficients. Function evaluation in Step 4 has 

     operations. If one needs only the first few derivatives 

from the output, Step 5 can be reduced to obtain only those 

derivatives with      operations. Thus over all operations 

needed to obtain few derivatives with       error is only 

       If all the      derivatives are needed, it requires only 

one inverse FFT in Step 5 with           operations. 

Note that the DFT and inverse DFT operations can be 

reduced by half when f is a real valued function of a real 

variable as half of the DFT, inverse DFT values will be 

complex conjugates of the other half values [20]. 

V. Numerical Tests 
In order to test the method proposed, the test function used 

in [8,11,12] 
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     (5) 

is considered. The derivatives of      at     are all integers 

and the first ten derivatives at       are given in Table I. 

The numerical tests were performed on a system having 

2.66Ghz speed processor and 2Gb memory with a 32-bit 

Ubuntu Linux operating system. The algorithms were 

implemented in Python version 2.7 [21].  

A. Accuracy 
To see the accuracy of the results, the relative errors 

between the exact derivatives and the approximate derivatives 

were computed by using          with varying hypercomplex 

step sizes. The results are given in Table II. 

The results show that the relative errors improve towards 

machine precision when step size h decreases and the accuracy 

of the higher order derivatives are slightly lower than that of 

the lower order derivatives. 

To see the behavior of the errors for various orders with very 

small steps sizes, the derivatives for the test function (5) were 

computed using the system with orders                    
and step sizes                  . Fig. 1 shows the relative 

errors for the first five derivatives including the function itself. 

In this test, the relative errors for the derivatives decrease 

as the step size decreases until the relative error reaches near 

machine epsilon. After that it increases without bound as the 

step size further decreases. This phenomenon is prevalent in 

many approximate differentiation methods for higher 

derivatives [2]. Nevertheless, higher accuracy is reached when 

h is close to zero for lower order n and when h is close to one 

for higher order n. This could mean that one can fix a step size 

h and increase the order of the method for improving the 

accuracy or vice versa.  

To test this viewpoint, the method for the system        

was tested again by increasing the order of accuracy while 

keeping the step size h fixed. The first ten derivatives of the 

function in (5) were computed with fixed step sizes         

and          and increasing the order of the approximation 

with                 .  Fig. 2 shows the relative error of 

these computations. For clarity, we have restricted the display 

of order up to 200 only.  

The test shows that for any fixed step size h, the relative 

errors can be brought to the machine precision by suitably 

choosing the order of the method and vice versa. This way, 

our method is comparable to AD in terms of accuracy.   

In view of the order      , we may assume the relation  

between n and h as           or                  
               . 

Some of the values for order n and corresponding h for 

machine epsilon                                

double precision floating point numbers are given in Table III. 

Fig. 1 and Fig. 2 show that this estimation is agreed in 

practice.  

 

 

 

TABLE I.  EXACT DERIVATIVES FOR       AT      

k         
0 1 

1 1 

2 4 

3 4 

4 28 

5 -164 

6 64 

7 -13376 

8 47248 

9 -858224 

10 13829824 

TABLE II.  RELATIVE ERRORS FOR COMPUTED DERIVATIVES USING  16-
HYPERCOMPLEX SYSTEM 

k 
Step Size 

h = 2-1 h = 2-2 h = 2-3 h = 2-4 h = 2-5 

0 
1 

2 

3 
4 

5 

6 
7 

8 

9 
10 

1.8498-04 
2.6267-04 

1.6181-04 

6.0357-04 
4.6035-04 

4.8001-04 

9.5995-03 
4.0918-04 

1.1659-03 

7.4612-04 
5.8381-04 

2.8203-09 
4.0051-09 

2.4672-09 

9.2029-09 
7.0193-09 

7.3189-09 

1.4637-07 
6.2389-09 

1.7773-08 

1.1372-08 
8.9155-09 

4.3077-14 
6.1284-14 

3.7983-14 

1.3446-13 
2.8858-13 

2.9747-13 

2.7371-10 
1.1221-11 

2.3818-09 

2.6594-09 
2.4154-08 

8.6736-19 
8.9509-16 

2.8039-15 

2.4844-13 
2.0447-13 

3.4020-11 

6.9607-09 
5.3763-10 

3.9658-07 

3.2767-07 
9.7246-06 

2.1684-19 
1.3426-15 

5.3412-15 

3.0007-12 
5.7168-12 

5.7514-10 

1.4855-06 
4.6193-07 

9.4416-05 

6.1315-04 
3.6090-02 

TABLE III.  ORDER AND CORRESPONDING STEP SIZE  

n 2 4 8 16 32 64 128 

h 
1.4901 

× 10-8 

1.2207 

× 10-4 

1. 105 

× 10-2 

1.051 

×10-1 0.32421 0.5694 0.7546 

B. Computational Efficiency 
The following tools were chosen for comparison testing: 

Numdifftools[23] which uses finite difference method for 

derivatives up to order four with Romberg improvement and 

Algopy[23] that uses AD. The reasons for choosing these tools 

are that they are comparable to other existing differentiation 

tools using methods of same kind in terms of accuracy and 

efficiency, and all have been implemented in Python so that 

the comparison made in this test will be platform unbiased.  

The CPU time to compute the derivatives up to a required 

order was obtained by executing the appropriate algorithm 

1000 times and averaging. The relative CPU time with respect 

to computing the raw function (assuming it takes unit time) 

were obtained by the ratio RelCPU = CPU(Der)/CPU(fun) for 

comparison.  The total relative CPU times to compute the first 

four derivatives by the tools are listed in Table IV.  

Table IV also gives the relative CPU time to compute the 

derivative up to order four using Numdifftools, Algopy and 

hypercomplex-step methods.  This indicates that the CPUtime 

for Algopy grows substantially as the order increases while 

hypercomplex-step method performs well. Numdifftools 

which computes only up to order four takes high CPUtime. 
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Figure 1.  Relative errors for derivatives versus step size h 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Relative error for fixed step size h and varying order n. 

 

TABLE IV.  ORDER AND CORRESPONDING STEP SIZE  

deriv. NumdiffTools Algopy 
Hypercomplex-

step 

0 1 1 1 

1 119.3 27.4 3.1 

2 240.6 45.7 4.3 

3 578.2 65.6 5.2 

4 718.9 87.7 5.5 

99 -- 10004.1 66.9 

 

 

Efficiency for higher order derivatives was tested by 

comparing the relative CPU times for Algopy and the 

proposed hypercomplex-step methods for the derivatives of 

orders up to 100. Fig. 3 shows the plots of the relative CPU 

times against the order. This test shows that the execution time 

for Algopy grows quadratically as order increases while for 

hypercomplex-step method it grows only linearly. 

We mention that while Algopy produces exact results, the 

hypercomplex-step method produces approximate values 

whose errors can be brought down to near machine precision 

by suitably choosing the step size h for a specified order. 

 

 

 

 

 
 

 

 
 



 

57 

 

International Journal of Advances in Computer Science & Its Applications 
Volume 6 : Issue 1       [ISSN 2250-3765] 

Publication Date : 18  April,  2016 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Relative CPU time versus Order 

VI. Conclusion 

The proposed method computes a given function and its 

first n – 1 derivatives simultaneously with approximation error 

of order n. Accuracy up to near machine precision can be 

achieved by choosing a step size h corresponding to an order 

n. The method computes derivatives of real and complex 

valued functions efficiently with the use of FFT thereby 

improving the previous methods in computing time with fully 

automated implementation. 
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