

52

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Higher Order Approximations for Derivatives using

Hypercomplex-Steps

H. M. Nasir

Abstract—Complex-step differentiation is a recent popular

method to compute a real valued function and its first derivative

approximately with second order error using imaginary step size.

We propose a generalization of complex-step method to compute

a complex valued function and its derivatives up to order n – 1

with approximate error of order n, for any desired integer n. For

this, we use a hypercomplex number system of dimension n and

Taylor series expansion of the function at a hypercomplex

number. Computations can be performed efficiently by using fast

Fourier transform.

Keywords—complex-step differentiation, hypercomplex

numbers, automatic differentiation, algorithmic differentiation

I. Introduction
Computation of derivatives of differentiable functions has

many applications in engineering, physics, economics etc. A

simple immediate example in economics is the marginal cost

and revenues of products. The second order Newton-Raphson

root finding algorithm also requires the computation of a

function and its first derivative at every point of the successive

approximate roots. Higher order convergence requires higher

order derivatives of the function to be rooted [1].

A classical method that gives accurate results for

derivatives is known as the continuous method in which the

function, for which the derivative is sought, is differentiated

by hand and the derivatives at the required point are computed

by direct substitutions. Although this method gives highly

accurate results, obviously, for functions with complicated

expressions, this can be a tedious, error-prone and time

consuming process. Numerical methods are, therefore,

preferred in general.

Among the many methods for numerically approximating

derivatives, finite difference method (FDM) is well known.

Despite its popularity, FDM is known for its poor accuracy.

First, the approximations for derivatives with relatively simple

formulas give lower order accuracy, usually one or two and

one needs, therefore, to choose the step size very small for

better approximation results[2]. Second, in doing so, one faces

the ‘step size dilemma’. That is, as the step size decreases

beyond a bound, the accuracy also practically diminishes as

opposed to the expected theoretical improvement [2]. This

degrading accuracy occurs due to subtractive cancellations

that occur when two very close numbers are differenced,

Department of Mathematics and Statistics

Sultan Qaboos University
Oman

which is often the case for finite difference approximation of

derivatives.

Another interesting approach for computing derivatives is

the automatic differentiation (AD), also known as algorithmic

differentiation or computational differentiation. In this

method, the candidate function is transformed into a sequence

of elementary operations of intermediate variables and

intrinsic functions. Then, the variables are transformed into

vectors consisting of the variables and their derivatives up to a

desired order. The algebraic operations on these vectors are

performed with the use of chain rules of differentiation [3].

This method gives exact results in theoretical considerations

and machine precision accuracy in practical computations as

there is no truncation error involved[4]. However, there are

issues expressed related to the implementation of this method.

Transformation of the function expression in to a sequence of

elementary operations with simple functions and their

derivatives is one such issue that requires user interference for

redefining codes [5]. Some reformulations have been

considered to address these issues [5,6]. Still, higher order

derivatives at a point involve computations, where d is

the highest order of derivative desired [5—7].

In [8,9], several methods have been introduced to compute

approximate derivatives up to order , for a given n, based

on approximating the Cauchy integral formula for a complex

valued analytic function. Later, in [10], an alternative

algorithm approximating the Cauchy integral formula by

trapezoidal rule was developed that admits fast Fourier

transform (FFT) to efficiently compute the function and its

first derivatives for a given n.

Squire and Trapp[11] introduced a method to compute the

first derivative of a real valued function with second-order

error. In this method, an imaginary perturbation step is

introduced to the independent variable and Taylor series

expansion is used to obtain an approximation for the first

derivative. This method is now popularly known as the

complex-step (C-S) differentiation [12]. The C-S method

requires only one function evaluation at a complex point and

does not suffer from the subtractive difference faced by FDM

for small step size. Accuracy is, therefore, increased by

comfortably choosing the step size h very small. The order of

derivatives obtained by C-S method is limited to one only.

Higher order derivatives require a form of finite differences

with function evaluations at different complex steps [12]. The

C-S method has gained a notable attention and some variations

have been considered [13—15].

In this paper, we propose an approximation method to

compute a given differentiable complex valued function

and its first n – 1 derivatives

53

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

simultaneously for any given integer n with approximation

error of order n for all derivatives without using any finite

differences. For this, we define a n-dimensional hypercomplex

number system and use a hypercomplex imaginary step h to

compute functions of hypercomplex variables efficiently using

Discrete Fourier Transforms(DFT) and/or FFT.

Our algorithm establishes connections between the

complex-step differentiation and the algorithm in [10] for

differentiation of analytic function in the sense that ours is an

extension of the former and a reformulation of the latter

establishing higher order accuracy.

The rest of the paper is organized as follows.

Hypercomplex number systems are described in Section II.

The main result of hypercomplex-step differentiation method

is introduced in Section III. A DFT/FFT based algorithm of

the proposed method is given in Section IV. Numerical results

are presented and discussed in Section V with conclusions in

Section VI.

II. Commutative Algebra Systems
In this section, we describe the necessary theory of

hypercomplex number systems required for the main theme of

this paper. A hypercomplex number system is an algebra (a

ring with unity) with one or more indeterminates. Examples of

hypercomplex systems include complex number systems and

non-commutative systems such as quaternion, octonion and

Clifford algebras. The indeterminates in these examples

satisfy the quadratic relations . In our work, we

consider a generalized hypercomplex system where the

indeterminates satisfy a more general condition and preserve

commutative property.

For brevity of formulas, we set Nn = {0,1,2,…,n - 1}.

Definition A. We call a commutative algebra with unit 1 over

the complex field an n-hypercomplex system, denoted by

 if it has only one fundamental unit satisfying

 The elements in are expressed as

polynomials in , and for convenience, we write them in vector

form ∑

 []
 [].

The fundamental operations on are given by

 [] [] and [∑

]

where and the summation is the cyclic convolution of

the components of the vectors and with the convention

that .

The n-hypercomplex system is not a division algebra since

it has zero divisors. That is, there are non-zero n-

hypercomplex numbers such that . For a

discussion on zero divisors on generalized hypercomplex

systems, see [16].

A. Canonical Representation
An n-hypercomplex number in can be expressed in

a form with another set of indeterminate symbols that allow

easy manipulations and efficient computations of n-

hypercomplex expressions and functions.

Proposition A. For an n-hypercomplex system with

indeterminate having fundamental basis ,

there is a basis ̂ ̂ ̂ ̂ with the orthogonal

property ̂ ̂ and ̂
 for any i, j.

proof: The multiplication of two n-hypercomplex numbers

is given by where

 has the circulant matrix representation given by

 The eigenpairs of the matrix are

 ̂ ∑

 (1)

and ̂ [

]

, , where

 √ .

If we denote the matrix of eigenvectors

√
[̂ ̂ ̂ ̂] , we see that is a unitary matrix

satisying
 and

 where the

superscript * indicates complex conjugate transpose, D is the

diagonal matrix with entries as the eigenvalues ̂ and is

the identity matrix of size n. These two relations give the

desired property of the new basis.■

Expression (1) is the DFT of and the inverse DFT is

obtained from

 ∑ ̂ ̂

 (2)

This gives

∑ ̂

 (3)

Following [17], we call (2) the canonical representation of

the n-hypercomplex number [] and denote the vector of

its coefficients as ̂ (̂) We then immediately have

Proposition B. Let [] and [] be two n-

hypercomplex numbers with their canonical representation

vectors ̂ (̂) and ̂ (̂) respectively. Then,

 ̂ ̂ ̂, ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ when

 has an inverse. The operations on the canonical vectors on

the right are performed element wise.

With these basic operations, an n-hypercomplex valued

function can be expressed in canonical form as

 ∑ ̂ ̂

 and hence we have ̂ ̂ The

coefficients of from the canonical representation vectors

can be obtained by an inverse DFT. This process is

summarized in

ALGORITHM I: Computing

1. Input []

2. Compute ̂ ̂ ̂ ̂ .

3. Compute ̂ (̂ ̂ ̂).

4. Compute inverse DFT

 ̂ [].

54

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Practically, for large n, one can make use of FFT in step 2

and inverse FFT in step 4 for efficient computing of the

function .

B. Differentiation
Assuming Euclidean topology for the system , let

 be a function on an open set . We

state the following definitions and propositions that can be

proved analogous to the proofs of similar results on

multicomplex functions [18, Section 47].

Definition B. A function is said to be

differentiable at if the limit

()

exists. Here, the limit is taken through the values

where
 exist.

Definition C. A function is said to be

holomorphic in an open set if it is differentiable

for all and is called analytic if it is holomorphic in

entire .

Proposition C. A complex holomorphic function can be

extended to an n-hypercomplex valued holomorphic function

of n-hypercomplex variable.

Proposition D. A holomorphic function in

containing a point admits Taylor series expansion.

III. Hypercomplex-Step
Differentiation

In this section, we present our main result which we call

hypercomplex-step differentiation method. Let be an

analytic function of a real or complex variable z. The Taylor

series expansion of the extended n-hypercomplex valued

function at the perturbed point is

given by

This is simplified with the use of as

 (

)

 (

)

 (

)

Equating the coefficients of , we directly obtain

the approximations for and its derivatives up to order

 simultaneously as

 (4)

where denotes the coefficient of the unit .

IV. Implementation
The method described in the previous section reduces the

problem of computing the approximation of derivatives at a

complex number z to an evaluation of the candidate function at

a simple n-hypercomplex number . Computing

 directly will require a separate implementation to

deal with n-hypercomplex operations. However, owing to the

cyclic nature of the system, evaluation of n-hypercomplex

valued functions can be efficiently performed via FFT through

Algorithm I. Based on this, the following algorithm computes

a given function and its first n – 1 derivatives simultaneously.

ALGORITHM II: Hypercomplex-step differentiation

1. Input z, h, function f.

2. Form []

3. Compute DFT(a) with

 ̂ (

) ̂ ̂ ̂

4. Compute ̂ (̂ ̂ ̂).

5. Compute inverse DFT(̂)

 []

6. Compute derivatives by

 .

Remark: Algorithm II is similar to the process given in [19]

derived from approximating the coefficients of the Taylor

series expansion of complex valued analytic function. The

present algorithm was derived from n-hypercomplex

expansion of an analytic function. This has the advantage of

considering other variants of the algorithm that were not

possible in the method of [19].

A. Operation Count
The DFT in Step 3 of algorithm II is performed in

operations since the n-hypercomplex perturbation has only

two non-zero coefficients. Function evaluation in Step 4 has

 operations. If one needs only the first few derivatives

from the output, Step 5 can be reduced to obtain only those

derivatives with operations. Thus over all operations

needed to obtain few derivatives with error is only

 If all the derivatives are needed, it requires only

one inverse FFT in Step 5 with operations.

Note that the DFT and inverse DFT operations can be

reduced by half when f is a real valued function of a real

variable as half of the DFT, inverse DFT values will be

complex conjugates of the other half values [20].

V. Numerical Tests
In order to test the method proposed, the test function used

in [8,11,12]

55

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

 (5)

is considered. The derivatives of at are all integers

and the first ten derivatives at are given in Table I.

The numerical tests were performed on a system having

2.66Ghz speed processor and 2Gb memory with a 32-bit

Ubuntu Linux operating system. The algorithms were

implemented in Python version 2.7 [21].

A. Accuracy
To see the accuracy of the results, the relative errors

between the exact derivatives and the approximate derivatives

were computed by using with varying hypercomplex

step sizes. The results are given in Table II.

The results show that the relative errors improve towards

machine precision when step size h decreases and the accuracy

of the higher order derivatives are slightly lower than that of

the lower order derivatives.

To see the behavior of the errors for various orders with very

small steps sizes, the derivatives for the test function (5) were

computed using the system with orders
and step sizes . Fig. 1 shows the relative

errors for the first five derivatives including the function itself.

In this test, the relative errors for the derivatives decrease

as the step size decreases until the relative error reaches near

machine epsilon. After that it increases without bound as the

step size further decreases. This phenomenon is prevalent in

many approximate differentiation methods for higher

derivatives [2]. Nevertheless, higher accuracy is reached when

h is close to zero for lower order n and when h is close to one

for higher order n. This could mean that one can fix a step size

h and increase the order of the method for improving the

accuracy or vice versa.

To test this viewpoint, the method for the system

was tested again by increasing the order of accuracy while

keeping the step size h fixed. The first ten derivatives of the

function in (5) were computed with fixed step sizes

and and increasing the order of the approximation

with . Fig. 2 shows the relative error of

these computations. For clarity, we have restricted the display

of order up to 200 only.

The test shows that for any fixed step size h, the relative

errors can be brought to the machine precision by suitably

choosing the order of the method and vice versa. This way,

our method is comparable to AD in terms of accuracy.

In view of the order , we may assume the relation

between n and h as or
 .

Some of the values for order n and corresponding h for

machine epsilon

double precision floating point numbers are given in Table III.

Fig. 1 and Fig. 2 show that this estimation is agreed in

practice.

TABLE I. EXACT DERIVATIVES FOR AT

k
0 1

1 1

2 4

3 4

4 28

5 -164

6 64

7 -13376

8 47248

9 -858224

10 13829824

TABLE II. RELATIVE ERRORS FOR COMPUTED DERIVATIVES USING 16-
HYPERCOMPLEX SYSTEM

k
Step Size

h = 2-1 h = 2-2 h = 2-3 h = 2-4 h = 2-5

0
1

2

3
4

5

6
7

8

9
10

1.8498-04
2.6267-04

1.6181-04

6.0357-04
4.6035-04

4.8001-04

9.5995-03
4.0918-04

1.1659-03

7.4612-04
5.8381-04

2.8203-09
4.0051-09

2.4672-09

9.2029-09
7.0193-09

7.3189-09

1.4637-07
6.2389-09

1.7773-08

1.1372-08
8.9155-09

4.3077-14
6.1284-14

3.7983-14

1.3446-13
2.8858-13

2.9747-13

2.7371-10
1.1221-11

2.3818-09

2.6594-09
2.4154-08

8.6736-19
8.9509-16

2.8039-15

2.4844-13
2.0447-13

3.4020-11

6.9607-09
5.3763-10

3.9658-07

3.2767-07
9.7246-06

2.1684-19
1.3426-15

5.3412-15

3.0007-12
5.7168-12

5.7514-10

1.4855-06
4.6193-07

9.4416-05

6.1315-04
3.6090-02

TABLE III. ORDER AND CORRESPONDING STEP SIZE

n 2 4 8 16 32 64 128

h
1.4901

× 10-8

1.2207

× 10-4

1. 105

× 10-2

1.051

×10-1 0.32421 0.5694 0.7546

B. Computational Efficiency
The following tools were chosen for comparison testing:

Numdifftools[23] which uses finite difference method for

derivatives up to order four with Romberg improvement and

Algopy[23] that uses AD. The reasons for choosing these tools

are that they are comparable to other existing differentiation

tools using methods of same kind in terms of accuracy and

efficiency, and all have been implemented in Python so that

the comparison made in this test will be platform unbiased.

The CPU time to compute the derivatives up to a required

order was obtained by executing the appropriate algorithm

1000 times and averaging. The relative CPU time with respect

to computing the raw function (assuming it takes unit time)

were obtained by the ratio RelCPU = CPU(Der)/CPU(fun) for

comparison. The total relative CPU times to compute the first

four derivatives by the tools are listed in Table IV.

Table IV also gives the relative CPU time to compute the

derivative up to order four using Numdifftools, Algopy and

hypercomplex-step methods. This indicates that the CPUtime

for Algopy grows substantially as the order increases while

hypercomplex-step method performs well. Numdifftools

which computes only up to order four takes high CPUtime.

56

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Figure 1. Relative errors for derivatives versus step size h

Figure 2. Relative error for fixed step size h and varying order n.

TABLE IV. ORDER AND CORRESPONDING STEP SIZE

deriv. NumdiffTools Algopy
Hypercomplex-

step

0 1 1 1

1 119.3 27.4 3.1

2 240.6 45.7 4.3

3 578.2 65.6 5.2

4 718.9 87.7 5.5

99 -- 10004.1 66.9

Efficiency for higher order derivatives was tested by

comparing the relative CPU times for Algopy and the

proposed hypercomplex-step methods for the derivatives of

orders up to 100. Fig. 3 shows the plots of the relative CPU

times against the order. This test shows that the execution time

for Algopy grows quadratically as order increases while for

hypercomplex-step method it grows only linearly.

We mention that while Algopy produces exact results, the

hypercomplex-step method produces approximate values

whose errors can be brought down to near machine precision

by suitably choosing the step size h for a specified order.

57

International Journal of Advances in Computer Science & Its Applications
Volume 6 : Issue 1 [ISSN 2250-3765]

Publication Date : 18 April, 2016

Figure 3. Relative CPU time versus Order

VI. Conclusion

The proposed method computes a given function and its

first n – 1 derivatives simultaneously with approximation error

of order n. Accuracy up to near machine precision can be

achieved by choosing a step size h corresponding to an order

n. The method computes derivatives of real and complex

valued functions efficiently with the use of FFT thereby

improving the previous methods in computing time with fully

automated implementation.

References

[1] A. Householder, The Numerical Treatment of a Single Nonlinear

Equation, McGraw-Hill Publishing Co., NewYork, 1970.

[2] M. Ramesh Kumar and G. Uthra, A Study on Numerical Stability of
Finite Difference Formulae for Numerical Differentiation and
Integration, Annals of Pure and Applied Mathematics, 2014, vol. 8:2, pp.
27-36.

[3] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation (2nd Edition) SIAM, 2008.

[4] A. Griewank, J. Utke and A. Walther, Evaluating Higher Order
Derivative Tensors by Forward Propagation of Univariate Taylor Series,
Mathematics of Computation, vol. 69:231, 2000, pp. 1117-1130.

[5] S. F. Walter and L. Lehman, Algorithmic Differentiation with AlgoPy, J.
Comp. Science, vol. 4, 2013, pp. 334-344.

[6] J. A. Fike and J. A. Alonso, Automatic Differentiation through the Use
of Hyper-Dual Number for Second Derivative, In Recent Advances in
Algorithmic Differentiation. Eds. Forth, S., Hovland, P., Phipps, E.,
Utke, J. and Walther A., Lecture Notes in Computational Science and
Engineering: vol. 87, pp. 163-173, Springer Berlin Heidelberg, 2012.

[7] J. A. Fike, S., Jongsma, J. A. Alonso and E. Van der Weide,
Optimization with Gradient and Hessian Information Calculated using
Hyper-Dual Numbers, 29th AIAA Applied Aerodynamics Conference,
pp. 27-30, Honolulu, Hawaii, June 2011.

[8] J. N. Lyness, Differentiation Formulas for Analytic Functions,
Mathematics of Computation.vol. 22, 1968, pp. 352-362.

[9] J. N. Lyness, and C. B. Moler, Numerical Differentiation of Analytic
Functions, SIAM journal on Numerical Analysis,vol. 4, 1967, pp. 202-
210.

[10] B. Fornberg, Numerical Differentiation of Analytic Functions, ACM
Transactions of Mathematical Software, vol. 7:4, 1981, pp. 512-526.

[11] W. Squire and G. Trapp, Using Complex Variables to Estimate
Derivatives of Real Functions, SIAM Review, vol. 40:1, 1998, pp. 110-
112.

[12] J. R. R. A. Martins, P. Sturda and J. J. Alonso, The Complex-Step
Derivative Approximation, ACM Transactions on Mathematical
Software, vol. 29:3, 2003, pp. 245-262.

[13] R. Abreu, D. Stich and J. Morales, On the Generalization of the
Complex Step Method, J. Comp. Appl. Math., vol. 241, 2013, pp. 84-
102.

[14] K. L. Lai, Generalizations of the Complex-Step Derivative
Approximation, PhD Thesis, University at Buffalo, Buffalo, NY, Sept.
2006.

[15] R. W. Ibrahim and H. A. Jalab, The Fractional Complex Step Method,
Discrete Dynamics in nature and Society, Hindawi Publishers, 2013,
doi:10.1155/2013/515973, 2013.

[16] H. M. Nasir, A New Class of Multicomplex Algebra with Applications,
Mathematical Sciences International Research Journal, vol. 2:2, 2013,
pp. 163-168.

[17] C. M. Davenport, A Commutative Hypercomplex Algebra with
Associated Function Theory, In Clifford Algebras With Numeric And
Symbolic Computations, Eds. Ablamowicz, R., Lounesto, P., Parra,
J.M., Birkhauser Boston Inc., Cambridge, MA, USA, pp. 213–227,
1996.

[18] G. B. Price, Introduction to multicomplex spaces and functions, New
York, Marcel Dekker, Inc., 1991.

[19] P. Henrici, Fast Fourier Methods in Computational Complex Analysis,
SIAM Rev., vol. 21, 1979, pp. 481-527.

[20] J. S. Walker, Fast Fouerier Transforms, CRC Press, 1996.

[21] G. van Rossum, Python tutorial, Technical Report CS-R9526: Centrum
voor Wiskunde en Informatica (CWI), Amsterdam, May 1995.

[22] P. A. Brodtkorb, Numdifftools, http://code.google.com/p/numdifftools/,
2009.

[23] F. W. Sebasteian, ALGOPY:Alogorithmic Differentiation in Python,
http://pypi.python.org/pypi/algopy, 2009.

About Author:

Haniffa Mohamed Nasir obtained his B.Sc. degree in

mathematics from University of Jaffna, Sri Lanka and
obtained his M.Eng. and Ph.D. degrees in numerical

analysis of wave scattering problems from The

University of Electro-Communications, Tokyo,
Japan. He was Lecturer in University of Jaffna, Sri

Lanka, Senior Lecturer in University of Peradeniya,

Sri Lanka and served as Head of Department since
2010. Currently, he is Assistant Professor in the

Department of Mathematics and Statistics, Sultan

Qaboos University, Oman.
Dr. Nasir is senior member of International

Association of Computer Science and Information

Technology (IACSIT), Institute of Engineers and
Doctors(IRED), Sri Lanka Association for

Advancement of Science (SLAAS), Senior Scientist

Forum (SSF), and member of Society of Industrial
and Applied Mathematics (SIAM).

