

96

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 1 [ISSN 2250-3757]

Publication Date : 18 April, 2016

Enhancing Software Piracy And Integrity Protection

In Cloud Computing With TPM
Ahmed Bentajer, AbouElMehdi Karim, Hedabou Mustapha, EL Amrani Fatima zohra, EL Fezazi Said

Abstract—Software as a Service (SaaS) is a kind of *aaS

distribution and deployment model in which applications are

provided to customers as a service. The applications can run on

the user’s computing systems or the CSP’s Web servers. The

solution may belong to a software company, which host it

among a CSP and offer it as instances to customers. As men-

tioned [1] software piracy is the major concern of software’s

publisher; lot of solution has been set up, but editors still suffer

and lot of copies was made or the solution was cracked. Our

proposed design demonstrate how software protection can be

protected from redistribution and tampering. The aim is to

secure instance access through the new specification of TPM

1.2[13] that is time stamping to have the exclusive access to an

instance or result of software computation, so only one person

can have the access. Besides the new design, combined to the

TCCP design [12] protects side channel attacks and/or attacks

from the sysadmin.

Keywords—SaaS, IaaS, TPM, Trust Computing

I. Introduction
Cloud computing provides the capability to use

computing and storage resources on a metered basis and
reduce the investments in an organization’s computing IT.
Computing is a combined of many existing technologies
(virtualization, storage….) and the adoption is growing
greatly because of its evolving architecture, and Infra-
structure as a Service is a kind of service provided through
the cloud.

Over recent years, lot of effort has been done to secure
software solution through serials or securing access to code
[1, 2] to avoid tampering and fraud, or even in the case of
tampering this would be limited to some individuals cases.
Thus, the software protection is one of the most important
issues concerning computer science. In the era of the cloud,
software protection become easier to manage because, one,
CSP cannot afford to sell illegal instances, two, software

Bentajer Ahmed, EL Fezazi Said, EL Amrani Fatima zohra

High School of Technology Safi / Cadi Ayyad University
Morocco

Hedabou Mustapha

National School of Applied Science / Cadi Ayyad University
Morocco

AbouElMehdi Karim
LAMAPI, Chouaib doukali University Eljadida Morocco

protection become easier to manage in cloud through TPM,
because this wind of change has allowed a licenses software
acquisition with a lower price as banking instance or health
applications services.

For all this applications and others, the only person who
must have access to them are legitimate and untampered
client. Hence, software publisher wants to be able to verify
that its solution run on a trusted platform and used by a
trusted client.

A verification entity (ETC) or design is able to assure
execution of software, using attestations.

Before going any further, we distinguish between two
problems: Protection against software redistribution and
protection against software illegitimate duplication. Our
proposed design protect software’s from redistribution,
meaning that the software cannot be moved and installed in
another platform and then guard the authenticity of the
application; and blinding read access to code running on
RAM from be read and protect the client from running
software on an untrusted platforms.

In this paper, we address the problem of laaS threats, and
how a SaaS can be placed on a set of trusted node and then
protect the SaaS from redistribution. Since recent, many
enabled TPM computers are sold. Therefore, we are going to
take advantage from this solution without the use of heavily
solution based on software and/or hardware.

II. *aaS Deployment Model
In this section we focus only on IaaS and SaaS delivery

and deployment model, since the trusted Node (N) reside in

the IaaS perimeter and the deployed solution is delivered as

a SaaS. Because we believe that understanding, cloud

computing security risks cannot be achieved without

understanding the relationship and dependencies between

cloud computing models

A. IaaS Architecture and risk issues
Infrastructure as a Service (IaaS) as defined by CSA [3]

is delivering computer virtualized infrastructure as a service

along with raw storage and networking, rather than

purchasing servers, software, data-center space or network

equipment.
In addition, to the risks and threats inherent in traditional

IT computing, IaaS presents an organization with its own set
of security issues. In this section, we will try to highlight the
most significant risks to the IaaS architecture.

Side-channel attacks: Traditional attacks on cryptographic
algorithms use only the input and output of the algorithm,

97

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 1 [ISSN 2250-3757]

Publication Date : 18 April, 2016

treating it like a monolithic black box. However, this does
not reflect reality. Algorithms must be implemented in
software and run on hardware, which have various
properties [4, 5 and 6](a physical quantity such as time,
power consumption, electromagnetic radiation or sound...)
that change as a result of the cryptographic algorithm’s
execution. Side-channel attacks try to extract secret
information based on some side channel. In addition, an
attacker may use multitenancy in cloud computing to gain
access to data through side channel attacks by placing its
VM in the same physical machine as another client [8].
Malicious Insiders [4, 7]: The threat of a malicious insider
is well known to most organizations. This threat is amplified
for consumers of cloud services by the convergence of IT
services and customers under a single management domain,
combined with a general lack of transparency into provider
process and procedure.

B. SaaS architecture and risk issues
Software as a Service (SaaS) [3, 9] is solutions deliver

software applications over the Web. A SaaS provider

deploys software to the user on demand, commonly through

a licensing model. The provider may host the application on

its own server infrastructure or use another vendor’s

hardware. The application may be licensed directly to an

organization, a user or group of users, or through a third

party that manages multiple licenses.

Based on the definition of SaaS, security of a SaaS

solution include security up to the software layer including

hypervisor (IaaS and PaaS) security of data and the

applications.

SaaS require more attention from all stakeholders,

because the delivery method that provides access to an

application and its functions remotely as a web-based

service, which is splited into a client side (browser) and

server side. Conceptually this architecture needs that

information (web flows) go through network, so they can be

exposed to side channel attack despite using an HTTPS

protection or if they are encrypted [10]. Besides the account

or service hijacking [3] such as phishing, fraud or

exploitation of software vulnerabilities on which an attacker

may have an admin access to the SaaS.

For more risk issues we refer the reader to [1, 3, 5, 8 and

9].

C. Analyse of *aaS risk issues
By analyzing this risk issues we notice that despite of im-

plemented solution to protect software from illegal redistri-

bution in traditional IT infrastructure, SaaS makes matter

worse, even if the client take advantages of SaaS, but soft-

ware publisher is not. Moreover, its solution still vulnerable

to illegal redistribution because of side channel attacks [4, 5,

6]. Since any software (no matter how encrypted) is just a

binary sequence which a pirate can copy (bit by bit) and run

on his own machine. Hence, to protect against duplication,

some hardware measures must be used.

D. Software Protection

Since our work is based on SaaS, and before the era of
cloud, there was much research that have been done to
secure the software against redistribution and protect
publisher intellectual solution.

Software piracy occurs when people copy, sell, share, or
distribute software illegally. It can vary from a limited case
of installation of a single-user license on multiple computers
to a more chronic problem of widespread online distribution.
Regardless of the rationale or delivery method.

According to the BSA (Business Software Alliance) and
IDC 6th Annual Global Software Piracy Study[21], the retail
value of unlicensed software — representing revenue
―losses‖ to software companies — broke the $50 billion
level for the first time in 2008. Worldwide losses grew by 11
percent to $53 billion. Excluding the effect of exchange
rates, losses grew by 5 percent to $50.2 billion.

In [18, 19] many solutions has been proposed to protect
software redistribution, those solutions are software-based
encryption to protect the access to code running in RAM. In
[1] they show that software based encryption solution is not
enough to protect the software redistribution; but the
problem have to be theoretically studied before the
suggestion of any solutions, because software based solution
cannot grant total protection. Although researchers and
engineer should focus on Software and hardware based
solution as SH-Package [1].

Likewise, organization moved to management solutions
and Framework [15, 22, 23] to protect software against
redistribution and they proposed frameworks and method to
enhance software protection, which include risk
assessments, control activities, monitoring….

III. Trusting Computing Groupe
The Trusted Computing Group proposed a set software

technologies to enable the construction of trusted computing
platforms (TCP). The TCG proposed a number of
technologies and standards to provide security for systems,
network ….

These technologies include Trusted Platform presents the
component of TPM (figure 1 present the component of
TPM)(TPM) that starts used to address some security issues
in cloud computing as establishing trust in the provider of IT
services and enabling transparency to the physical location
of data in the cloud.

The TPM is a computer chip authenticate a platform
(passwords, encryption keys …). The TPM includes
capabilities such as machine authentication, hardware
encryption, secure key storage, and attestation.

Encryption and signing are well known makes them
stronger by storing keys in protected hardware storage
space. A TPM can be used to store platform measurements
that help ensure that trustworthy and prove that it is what it
claims to be.

98

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 1 [ISSN 2250-3757]

Publication Date : 18 April, 2016

The TGC Software Stack (TSS) architecture’s is neither
platform nor OS dependent, the interaction and relationship
between all modules will be the same regardless of the OS
or platform (figure 2).

A. Time Stamping
The TGC 1.2 main specification define new TPM with

new capabilities. Among these new features, there is Secure
Timing, which use a tick counter with an external time
stamping. The Time Stamp (TS) does not include an actual
universal time clock value it is up to the caller to associate it
with the ticks ta an actual UTC time, because of the price,
but rather the number of timer ticks the TPM has counted
since start-up of the platform.

The Tick Session Nonce (TSN) define the counted ticks
from the start of timing session. At the start of a tick session,
the tick session is reset to 0 and TSN is randomly generated
by the TPM.

Command definition [13]:

TSS_RESULT Tcsip_TickStampBlob

(

TCS_CONTEXT_HANDLE hContext, // in

TSS_HKEY hKey, // in

TPM_NONCE antiReplay, //

TPM_DIGEST digestToStamp, // in

TPM_AUTH* privAuth, // in, out

UINT32* pulSignatureLength, // out

BYTE** prgbSignature, // out

UINT32* pulTickCountLength, // out

BYTE** prgbTickCount // out

);

Parameters

hContext The handle of 20 byte hash of blob to be
tickstamped

hKey The key used to perform the signature operation.

antiReplay An application-supplied nonce to ensure
freshness of the signature.

digestToStamp The value being signed

privAuth The authorization digests that authorizes the
use of hKey.

pulSignatureLength Length of resultant signed
tickstamp

prgbSignature On successful completion this parameter
points to the signature data which makes up the tickstamp.

pulTickCountLength Length of the resulting tick count
prgbTickCount.

B. Integrity measurement
The initial platform state is measured by computing

cryptographic hashes of all software components loaded

during the boot process. The task of the CRTM is to

measure the code and parameters of the BIOS and extend

the first PCR register with this measurement. Next, the

BIOS will measure the binary image of the bootloader

before transferring control to the bootloader, which in its

turn measures the operating system. In this way, a chain of

trust is established from the CRTM to the operating system

and potentially even to individual applications. Changes in

the executing code can be detected by comparing

measurement of executing code against recorded value. The

measurements themselves must be protected from

undetected manipulation. (Figure 3: Integrity measurement

by TPM).

TCG attestation is designed to provide remote

verification of the complete platform configuration since

start-up of the platform.

Figure 1 : Components of TPM

Figure 2 : Simplified architecture of TGC

Software Stack[14]

99

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 1 [ISSN 2250-3757]

Publication Date : 18 April, 2016

IV. Remote Attestation and Pro-
tection of Software Solution

It has been suggested [1], to protect software against
redistribution, to use a physically shielded central processing
Unit with an encrypted program SH-package (Software
Hardware package). However, the solution is a little heavy
to implement, because keeping the content of the RAM
encrypted need more computation.

A. Secure Deployment of a VMi at a
CSP
A client does not have any mean to verify the

confidentiality and integrity of their sensitive data and
computation. As we discussed in section 2.2 and what have
outlined in [15], deploying a public SaaS or IaaS is not safe,
as CSPs would have us to believe (figure 4).

Before that the SP offer its solutions as a service, he
have to configure it on its own VM, we insist on the fact that
he have to configure the solution on its own VM because: 1)
it will help us to calculate the execution time of an instance
which will be used to determine if there is a third party who
try to inject malicious code or tamper the application. 2) The
SP will use the TCCP design to deploy its preconfigured
VMi in a secure Node then protect the solution from
redistribution. Since the SP will inject its public key in the
software and at every launch the software will verify
through TPM that it still remain at the same Node where it
have been deployed at the first time; if the public key
correspond to the endorsement key (EK) of the TPM then
the instance will be decrypted else the TPM won’t be able to
decrypt the instance (figure 3).

B. The TCCP Design
In [12] Krishna et al. proposed TCCP design to provide a

closed box execution environment that guarantees

confidential execution of guest virtual machines. Moreover,

it allows users to attest to the IaaS provider and determine

whether or not the service is secure before they launch their

virtual machines.

The TCCP is able to guarantee that the VM is launched

on a trusted Node, and the Sysadmin is unable to inspect or

tamper with the initial VM state.

For more information about secure Node registration and

secure VM launch we refer the reader to [12, 16 and 17].

C. Improved TCCP Design for Software

The TCCP design was in the first case designed for IaaS
platform [11, 12], the design can be improved so the
software publisher when configuring its VM, by injecting
the public key of TPM and at each time launch for an
instance the system will try to decrypt it using the private
key of TPM, if the VMi has been moved to another place the
new private key won’t be able to decrypt the instance
because it’s encrypted by public key of another TPM (figure
3).

To protect the software from tampering and blinding
access to data exchanged between the client and server we
will use the time stamping functionality of TSS 1.2
specification.

For the first time that a client will ask for the software’s
instance (INST.)

• The client will use the TPM to create a tick on this

• The software publisher will use TS1 to create a

• The calculated CKSUM get time stamped by TPM

• The client can verify the software integrity :

­ Check TS1=TS2 and SP correspond with the value
that the software publisher has calculated to verify if TPM
has been reset or if they were a hardware attack.

Figure 3: Integrity measurement by TPM Figure 4 : Risk Relationship With Deployments

Model

100

International Journal of Advances in Computer Networks and Its Security
Volume 6 : Issue 1 [ISSN 2250-3757]

Publication Date : 18 April, 2016

­ Extract T2-T1 to check whether it corresponds with
the expected execution time of the checksum function to
verify if software take more time to open and detect any
malicious changes

­ Use the nonce T1 to have the exclusivity of the use
of the instance, so no third party can have access even if in
read mode to the instance.

When the instance has been time stamped, only on user
will be able to use it or have the access to the computation
result. Besides, even if a third party try to use the time
stamping generated by the user to access the instance, the
request will be rejected according to the TSS 1.2
specification [13].

V. Conclusion

In this work, we have proposed improvements to the
TCCP design and we take advantage of new TSS 1.2
functionality. The aim is that the software publisher
configure the SaaS in a VMi and deploy it at a CSP to take
full advantage of TPM 1.2 and TCCP by calculating the
time that the instance take to launch and then compare it
with one of the software publisher to be sure that the
application has not been tampered. Also this design will
enhance software piracy and improve its integrity by
preventing access to code running into RAM or results in
webflow, used by a client, from be read or executed by a
SysAdmin or an attacker

References

[1] Rafail Ostrovsky. Software Protection and

Simulation on Oblivious RAMs. May 17, 1992.

[2] Kennell, R. and L. H. Jamieson, Establishing the

Genuinity of Remote Computer Systems, in: Proceedings of

the 12th USENIX Security Symposium, August 4-8, 2003,

Washington, DC, USA (2003), pp. 295–308.

[3] Security guidance for critical areas of focus in

cloud computing v3.0.

[4] Sebastian Schinzel. Time is NOT on Your Side:

Mitigating Timing Side Channels on the Web. Friedrich-

Alexander Universität Erlangen-Nürnberg Lehrstuhl für

Informatik 1 IT-Sicherheitsinfrastrukturen.

[5] Paul Kocher. Timing attacks on implementations of

Diffie-Hellman, RSA, DSS, and other systems. In Proc.

CRYPTO ’96, volume 1109 of LNCS, pages 104–113.

Springer, 1996.

[6] Paul Kocher, Joshua Jaffe, and Benjamin Jun.

Differential power analysis. In Proc. CRYPTO ’99, volume

1666 of LNCS, pages 388–397. Springer, 1999.

[7] Top Threats to Cloud Computing V1.0 Prepared by

the Cloud Security Alliance March 2010–6.

[8] Thomas Ristenpart, Eran Tromer† Hovav Shacham,

Stefan Savagepan. Hey, You, Get Off of My Cloud:

Exploring Information Leakage in Third-Party Compute

Clouds. CCS’09, November 9–13, 2009, Chicago, Illinois,

USA.

[9] Ronald L. Krutz and Russel Dean Vines. Cloud

security A comprehensive guide to secure cloud computing.

Wiley Publishing Inc. ISBN: 978-0-470-58987-8

[10] Shuo Chen, Rui Wang, XiaoFeng Wang, Kehuan

Zhang. Side-Channel Leaks in Web Applications: a Reality

Today, a Challenge Tomorrow. Proceedings of the IEEE

Symposium on Security and Privacy (Oakland)

[11] Ahmed Bentajer, Abou El Mehdi Karim, El Fezazi

Said, Hedabou Mustapha. Protection Of Virtual Machine

Deployment At A Cloud Service Provider Through TPM.

International Journal of Current Research Vol. 7, Issue, 06,

pp.16832-16834, June, 2015

[12] Nuno Santos Krishna P. Gummadi Rodrigo

Rodrigues. Towards Trusted Cloud Computing. Proceeding

HotCloud'09 Proceedings of the 2009 conference on Hot

topics in cloud computing Article No. 3 USENIX

Association Berkeley, CA, USA ©2009

[13] TGC Inc. TCG Software Stack (TSS) Specification

version 1 .2 Level 1 Errata A Part1 : Commands and

Structures March 7, 2007.

[14] http://bsssd.sourceforge.net/architecture.html

[15] Bentajer Ahmed, AbouElMehdi Karim, Dali

Loubna, EL-Fezazi Said, Hedabou Mustapha, El Amrani

FatimaEzzahra. An Assessing Approach Based On Fmeca

Methodology To Evaluate Security Of A Third Party Cloud

Provider. Journal of Theoretical and Applied Information

Technology 30th April 2015 -- Vol. 74. No. 3 – 2015

[16] S. Berger, R. C´aceres, K. A. Goldman, R. Perez,

R. Sailer, and L. van Doorn. vTPM: virtualizing the trusted

platform module. In Proc. of USENIX-SS’06, Berkeley, CA,

USA, 2006.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of

virtual machines. In Proc. of NSDI’05, pages 273–286,

Berkeley, CA, USA, 2005. USENIX Association.

[18] Christian S. Collberg and Clark Thomborson.

Watermarking, Tamper-Proofing, and Obfuscation Tools for

Software Protection. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 28, NO. 8, AUGUST

2002

[19] Georg T. Becker, Wayne Burleson, Christof Paar.

Side-Channel Watermarks for Embedded Software.

[20] Singh N, Singh, S., Agarwal, S. An Efficient

Approach for Software Protection in Cloud Computing.

Fourth International Conference on Communication

Systems and Network Technologies (CSNT), 2014.p. 550 –

554. Publisher : IEEE. DOI:10.1109/CSNT.2014.116.

[21] IDC Study :

http://globalstudy.bsa.org/2008/studies/globalpiracy2008.pd

f

[22] COSO Framework : http://www.coso.org/IC.htm

[23] ISO 27001 : http://www.iso.org

