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Abstract—This paper studies the safety issues of the 

synchronous composition of Finite State Machines (FSMs). 

Synchronous FSM composition is widely used when designing 

and analyzing various aspects in hardware implementation 

including so-called Trojan subcircuits. When an external input 

sequence is applied and component FSMs cannot agree on 

matched internal actions or there are different matching options, 

the sequence can destruct or block a corresponding device and 

thus, should be clearly avoided. In this paper, we propose a 

formal approach for analyzing which external input sequence can 

induce such situations (if any) and then to derive a finite 

automaton that represents the set of all possible safe external 

input sequences. 
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I. Introduction 
The problem of designing safe digital circuits is well-

known: given a multi-component digital circuit, to avoid the 
situations when for some external input sequences, component 
FSMs cannot agree on matched internal actions or there are 
different such options [1, 2, 3]. Such situations if occurred can 
destruct a corresponding device and thus, have to be detected 
at the verification phase.  

In the paper we consider this problem for sequential 
logic represented by a synchronous composition of Finite State 
Machines (FSMs), i.e., a network of synchronized interacting 
components each modeled by an FSM. The problem can be 
formalized by using different approaches; one of which is 
based on the synchronous regular language composition 
represented by finite automata [3]. In [3], the global 
automaton that represents all possible traces of the FSM 
composition is derived. Based on this global automaton, for 
each current state it can be determined whether the 
composition is not progressive, i.e., whether component FSMs 
cannot agree on matched internal actions at some current 
states. It also can be determined when there are different 
matched options. If a current composition is not safe then an 
unsafe component can be replaced with another safe 
component preserving the external composition behavior. A 
safe component can be selected based on a non-deterministic 
FSM that represents all possible solutions to an appropriate 
FSM [3].  
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The rest of the paper is organized as follows. Section II 
introduces the preliminaries. Section III presents the formal 
approach for deriving synchronous FSM compositions. The 
safety properties of the composition of partial FSMs are 
discussed in Section IV where an approach for checking these 
properties is also proposed as well as a technique for deriving 
the set of all safe external input sequences. Section V 
concludes the paper and in this section, appropriate directions 
for the future work are discussed.  

II. Preliminaries 
A Finite State Machine (FSM) or simply a machine 

throughout this paper is a 5-tuple S = (S, I, O, hS, s0), where S 
is a finite non-empty set of states with the initial state s0, I and 

O are the input and output alphabets, and hS  S  I  O  S is 

a transition relation. The 4-tuple (p, i, o, n)  hS is a transition 
from the present state p under input symbol i to the next state 

n with output symbol o, denoted as p n. Since each FSM has 
an equivalent observable FSM [1], in this paper, an FSM is 
assumed to be deterministic and complete, i.e. for each pair 

(p, i)  P  I there exists exactly one state n  S and one 

output o  O such that (p, i, o, n)  hS. The FSM is connected 
if each state is reachable from the initial state. FSM 

B = (B, I, O, hB, b0) is a submachine of S if B  S and hB  hS. 
In a deterministic FSM, the transition relation is 

usually replaced by two functions, the transition function  

and the output function . Therefore, a complete deterministic 

FSM is a 6-tuple S = (S, I, O, , , s0) where (p, i) = n is a 

transition function and (p, i) = o is an output function. A 

complete deterministic FSM is of a Moore-type [4] if the 
output function does not significantly depend on an input, i.e., 

given a state p  S and any two input symbols i1 and i2, it 

holds that (p, i1) = (p, i2). 
FSMs usually describe the behavior of digital circuits 

that transform input sequences into output sequences. In the 
usual way, the relation hS is extended to sequences over 
alphabets I and O. Let I

*
 denotes the set of all finite strings 

over an alphabet I including the empty sequence . Given 

states p,n  S, i1...ik  I
*
 and o1...ok  O

*
, the 4-tuple 

(i1...ik, p, n, o1...ok)  hS if and only if there exist states 
s

1
,…,s

k+1
 such that s

1
 =  p,…, s

k+1
 = n and for each j = 1,…,k, 

(ij, s
j
, s

j+1
, oj)  hS. The sequence (i1o1)...(ikok) is called an I/O 

sequence of FSM S at state p or a trace at state p. The set of all 

traces at state s, denoted LS(s), is a subset of (IO)
*
 and is 

called the behavior or the language of the FSM S at state s. 
The set LS(s0) of traces of FSM S at initial state s0 is denoted 
LS, for short. A complete FSM is reduced if for each two states 
the languages at these states do not coincide. It is known that 
for each complete FSM there exists a reduced FSM with the 
same behavior [5]. 
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A multi component sequential circuit usually is 
represented as a composition of black boxes with ports. When 
the behavior of each black box is described by a deterministic 
complete FSM the synchronous composition of FSMs [1, 6] 
can model the synchronous behavior of a multi component 
sequential circuit. 

Consider the collection of n component FSMs 
S1 = (S1, I1, O1, h1, s10), … , Sn = (Sn, In, On, hn, sn0). If the 
component FSM Si has k input ports with alphabets Ii1, …, Iik 
and m output ports with alphabets Oi1, …, Oim then the input 
alphabet Ii of the component FSM Ai is the Cartesian product 
of input alphabets Ii1, …, Iik , i.e. Ii  =  Ii1 × … × Iik , while the 
output alphabet Oi is the Cartesian product of output alphabets 
Oi1, …, Oim , i.e. Oi = Oi1 × … × Oim.  

 

 

 

 

 

 

Fig. 1 – A system of interacting FSMs 
 
For allowing the different modules to communicate 

with each other, their ports must be connected. The structure 

of the composition is defined by the partition  over the set of 

all ports. Each block of  has all the ports that are connected 
and thus, at each moment, we are required to have the same 
signal at all these ports. By this reason, we assume that each 
block has at most one output port. For the sake of simplicity, 
alphabets related to connected ports, i.e. alphabets of each 

block of the partition , are further assumed to be equal and 
are denoted with the same capital letter. External inputs of the 
composed system are associated with blocks that do not have 
output ports. An external output can be associated with any 
block that has an output port. Let {I1, …, Im} and {O1, …, Ok } 
be the sets of alphabets associated with external inputs and 
external outputs of the composed system. Thus, each external 
input of the overall system is the vector i = (i1, …, im), while 
each external output of the system is the vector o = (o1, …, ok). 
A system of interacting FSMs is shown in Fig. 1. 

For communication between several modules, the 
interactions between the different modules within the system 
are assumed to be synchronized by a global clock, and there is 
an interaction at each port during each clock period. Such 
composition is called “synchronous composition”. The joint 
behavior of the composition of FSMs S1, …, Sn can be 
described by the composed FSM Scomp. 

The input alphabet of the FSM Scomp is the Cartesian 
product I1 ×…× Im, the output alphabet of the FSM Scomp is the 
Cartesian product O1 ×…× Ok. Let V1, …, Vr, U1, …, Uf be the 
internal alphabets of the composition. The initial state of the 
FSM Scomp is s0 = s10 … sn0, where s10,…, sn0 are initial states 
of the component FSMs S1,…, Sn. Other states of the FSM can 

be derived performing the reachability analysis, i.e., by use of 
the reachability tree.  

The root of the tree is the initial state s0 = s10 … sn0. 
Given the node s1 … sn of the tree, an input vector 
i = (i1, …, im) and an output vector o = (o1, …, om), there is a 

transition from state s1 … sn to state s1 … sn labeled with the 
I/O pair i/o if and only if there exist internal matching signals 
v1, …, vr and u1, …, up such that corresponding 4-tuples are in 

the transition relations of component FSMs, i.e. (i1, s1, s1, 

o1)  h1, …, (in, sn, sn, on)  hn, where ij, oj are corresponding 
input and output vectors of Sj, j = 1,…,n, and therefore, some 
components of ij and oj can be taken from the internal 
alphabets V1, …, Vr and U1, …, Uf. The process is terminated 
when the successors of each node are in the tree. The reduced 
form of the machine derived from the reachability tree is 

called the synchronous composition S1 … Sn of component 
FSMs S1, …, Sn. The composition is safe if for each input at 
each node there is exactly one successor; otherwise, the 
composition is unsafe. It is well known that given complete 
and deterministic component FSMs, in general case, the 
composition is not safe, i.e., the FSM Scomp obtained from the 
reachability tree can be partial and non-deterministic [3].  

A truncated successor can be represented in a more 
compact way as an appropriate product of component FSMs. 
The set of safe external input sequences can be then derived as 
the projection of the product onto external composition 
alphabets.  

III. Product based approach for 
checking the safety properties of 

the synchronous FSM composition  
We illustrate our approach for binary FSM composition shown 

in Fig. 2. 

 

 

 

 

 

 

Fig. 2 – Composition of two FSMs 

A. Global machine 
In order to describe the composition of two FSMs by a 

product machine each FSM should be represented as a 

component of such composition. Since the FSM composition 

is based on the interchange of sequences at the ports, we use 

the notion of finite automata [7] when representing such a 

composition. A finite automaton is a quintuple 

S = S, A,  S, s0, FS, where S is a finite nonempty set of states 

with the initial state s0 and a subset FS of final (or accepting) 
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states, A is an alphabet of actions, and S  A S  S is a 

transition relation. We say that there is a transition from a state 

s to a state s' labeled with an action a, if and only if the triple 

(a, s, s') is in the transition relation S. The automaton S is 

called deterministic, if for each state s  S and any action aA 

there exists at most one state s', such that (a,s,s') S. If S is 

not deterministic, then it is called nondeterministic.  

Well-known results state that each regular language can 

be represented by a deterministic finite automaton and that 

regular languages are closed under the union, intersection and 

complementation [7]. Regular languages are also closed under 

projection, lifting, restriction and expansion. Below we sketch 

the constructions for the less known operations of projection, 

lifting, restriction and expansion.  

Projection ( ) Given FA F that accepts language L over 

I U, FA F I  that accepts language L I  over I is obtained by 

replacing each edge ((i,u),s,s) in F by the edge (i,s,s).
1
  

Lifting ( ) Given FA F that accepts language L over I, 

FA F I , U }  that accepts language L I , U }  over I  U is 

obtained by replacing each edge (i,s,s) in F by the set of edges 

{((i,u),s,s): uU}.  

Procedure 1 Deriving the global automaton for the 

composition of two FSMs. 

Input. FSMs S1 and S2 (Fig 1)  

Output. The FSM that describes all possible global  

traces of the joint work of FSMs S1 and S2 

1. Derive finite automata F1 and F2 which accept 

respectively languages of FSMs S1 and S2. 

2. Obtain the automaton F2 I ,  O }  by replacing each label 

(u,v) with all 4-tuples (i, u, v, o), i  I, o  O. 

5. Build the intersection F1  F2 I ,  O })  keeping the 

same order of alphabets I, V, U, O in both automata. 

The states of the obtained automaton are pairs of 

states of F1 and F2 I ,  O } ; the initial state is the pair 

of initial states, and a state of the intersection is 

accepting if both states of the pair are accepting.  

6. Project F1  F2 I ,  U ,  O }  onto alphabets I (inputs) 

and V  U  O (outputs)
1
. Call the obtained FSM a 

global FSM G for the composition of FSMs S1 and S2. 

 
The global FSM G is constructed keeping in mind the 

same rules as for the truncated successor tree. For this reason, 

it can be used for checking the safety properties of the 

composition.  

 

B. Detecting safety synchronous 
composition properties 
Given deterministic and complete component FSMs S1 and 

S2, let G be the global FSM returned by Procedure 1. The 

following statement holds. 

Proposition 1. The composition is safe if and only if the 

global machine G is complete and deterministic.  

                                                           
1
 Apply the subset construction to obtain an equivalent deterministic 

FA. 

Indeed, if there is no transition at some current state of G 

that means that there are no matching internal actions at 

component current states. If at some current state, there are 

two transitions the latter means that nondeterministic behavior 

can occur as there are at least two pairs of matching internal 

actions at current states of component FSMs.  

Consider FSMs in Fig. 3; the global machine is in Fig 4. 

By direct inspection, one can assure that at states a1 and b1 of 

component FSMs there are no matching internal signals for 

the input i2. 

In order to derive safe input sequence unsafe states should 

be iteratively delete from the global FSM. An input is unsafe 

at state sp if there is no transition or there are at least two 

transitions in the global FSM.at this state under this input. A 

state is unsafe if there are no transitions at this state or all the 

inputs are unsafe at this state.  

Procedure 2 Deriving safe input sequences for the 

composition of two FSMs. 

Input. Global FSM for the composition of FSMs S1 and 

S2 (Fig 1)  

Output. The automaton representing the set of all safe 

input sequences 

Iteratively delete unsafe inputs at each state, all unsafe 

states and transitions to these states.  

If the initial state is deleted then there are no safe input 

sequences in the composition. 

If the initial state is not deleted and the machine has only 

safe states then take the projection onto external alphabet.  

Proposition 2. The automaton returned by Procedure 2 

represents the set of all safe input sequences.  
Consider the FSM composition in Fig. 2 with 

component FSMs in Fig. 3. 
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b) 

Fig. 3 – FSMs S1 (a) and S2 (b) 
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The global FSM G is shown in Fig. 4. The state set of 
G equals {a0b0, a1b1, a0b2, a1b2}. There is no transition from 
state a1b1 under input i2. Correspondingly, the automaton 
representing safe input sequences for this composition is 
shown in Fig. 5. 

 
 
 

 

 

 

 

 

 
 

Fig. 4 – FSM G 
 

The only case when the composition is guaranteed to 
be safe is given in Proposition 3 when each loop has a Moore 
FSM. Unfortunately this condition is too strong and does not 
hold for real compositions. 

Proposition 3 [3]. Given a composition of complete 
and deterministic FSMs S1, …, Sn, let each loop have a 

machine of a Moore-type. Then the FSM S1 … Sn is 
complete and deterministic.  

 
 
 

 

 

 

 

 

 
 

Fig. 5 – The automaton representing safe external input 
sequence 

IV. Concluding remarks 
This paper proposes a formal model for checking whether 

the composition is safe, i.e., has no input sequences which lead 
to states where deadlocks and concurrency is possible, When 
composition possesses these futures it opens a door for 
inserting malicious subcircuits which influence the safety of 
corresponding hardware. The future research is devoted for 
more rigorous analysis of inserting such unsafe circuits into 
FSM compositions.  
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