

56

International Journal of Advances in Electronics Engineering– IJAEE
Volume 6 : Issue 1 [ISSN : 2278-215X]

Publication Date: 18 April, 2016

FOTA Delta Size Reduction Using File Similarity

Algorithm’s
 [Shyjumon N, Shivansh Gaur, Surendra Gadwal]

Abstract— In today’s word, mobile devices are changing

regularly. Thus the supporting software and applications needs to

be regularly updated. Firmware over the air (FOTA) updates is a

fresh technology for easy updation of mobile devices. However

the FOTA delta size for updates is increasing considerably. Thus

optimizing the network consumption for downloading the

updates is a big challenge. Large FOTA delta size implies greater

network bandwidth consumption while downloading the updates.

This paper addresses this problem and aims to reduce the delta

size for the FOTA updates. Various algorithms were

implemented and their performance was analyzed. The analysis

shows that the percentage reduction in delta size is reasonable.

Keywords— FOTA, delta, fingerprints, chunking, hashing,

simHash, TTTD.

I. Introduction
Over-the-air (OTA) is the method of making data

transfers or transactions wirelessly using the cellular network

instead of a cable or other local connection. It refers various

methods of distributing new software updates, configuration

settings, and even updating encryption keys to devices like cell

phones, set-top boxes or secures voice communication

equipment. In the context of the mobile this OTA is called

FOTA (Firmware-Over-The-Air). On modern mobile devices,

an over-the-air update may refer simply to a software update

that is distributed over Wi-Fi or mobile broadband using a

function built into the operating system, with the "over-the-

air" aspect referring to its use of wireless internet instead of

requiring the user to connect the device to a computer via USB

to perform the update. FOTA facilitates the following:

 Allows manufacturers to repair bugs

Shyjumon N, Senior Development Manager

Advance Solutions Team, Samsung Research Institute Noida, Noida-

201301, Uttar Pradesh, India

Shivansh Gaur, Engineer

Advance Solutions Team, Samsung Research Institute Noida, Noida-

201301, Uttar Pradesh, India

Surendra Gadwal, CS Engineer

Former student from, Department of Computer Science & Engineering,
Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand,

India

 Allows manufacturers to remotely install new

software updates, features and services - even after a

device has been purchased.

Firmware updates through FOTA involves use of tools that
enable developers to identify the essential changes from an
existing firmware version to a new, updated version and
automatically create an extremely compact package (delta
update) of the updated firmware. A delta update is an update
that only requires the user to download the content that has
been changed, not the whole new firmware version. In this
work, we aim at generating lesser size delta by efficiently
eliminating the redundant content to save network bandwidth
and decrease the download time.

In this paper, we introduce a three stage approach,

explained in Sec. Ⅲ, to find out the similarity between two

files. To further reduce the delta size, we have put many
constraints on files that should be matched, based on their size,
parent directory, extension, etc. Hence, using the technique of
file similarity algorithms along with the different constraints
on the files based on the kind of data set we have, our system
is able to reduce the delta size by a significant amount.

To evaluate the effectiveness of our system, we have
conducted many experiments with different types of FOTA
files. Compared with the existing tools, our system performs
competitively when the content of two FOTA files differ
significantly.

II. Related Work
There have been a large number methods dealing with the

problem of finding similar files in a large collection of files
using different kind of file similarity algorithms. Many of
these existing systems are designed for a single collection of
files and not for the two set of files where a file in one set
shouldn’t be compared with the files in the same set.

As in the domain of data deduplication, chunking

algorithms can be mainly divided into two categories: Fix-Size

Chunking (FSC) and Variable-Size Chunking (VSC). FSC is

simple and faster. It breaks the input stream into fix-size

chunks. FSC is used in rsync [1]. A major problem with FSC

is the editing (i.e., insertion/deletion) even a single byte in a

file will shift all chunk boundaries. A storage system Venti [2]

also adopts FSC chunking for its simplicity. VSC derives

chunks of variable size and addresses boundary-shifting

problem by posing each chunk boundary only depending on

the local data content.

 VSC was first used to reduce the network traffic required

for remote file synchronization. Spring et al. [3] adopts

57

International Journal of Advances in Electronics Engineering– IJAEE
Volume 6 : Issue 1 [ISSN : 2278-215X]

Publication Date: 18 April, 2016

Border’s [4] approach to devise the very first chunking

algorithm. It aims at identifying redundant network traffic.

Muthitacharoen et al. [5] presented a VSC based file system

called LBFS which extends the chunking approach to

eliminate data redundancy in low bandwidth networked file

systems. You et al. [6] adopts VSC algorithm to reduce the

data redundancy in an archival storage system. Some

improvements to reduce the variation of chunk sizes for VSC

algorithm are discussed in TTTD [7]. Recent research TAPER

[8] and REBL [9] demonstrate how to combine VSC and delta

encoding [10] for directory synchronization. Both schemes

adopt a multi-tier protocol which uses VSC and delta encoding

for multi-level redundancy detection. In fact, resemblance

detection [4, 11] combined with delta encoding [12] is usually

a more aggressive compression approach. However, finding

similar or near identical files [13] is not an easy task.

Comparison results on delta encoding and chunking are

provided in [14, 15]. In this paper, we adopt the concept of

TTTD discussed in [TTTD paper] along with the simHash

discussed in [simHash paper] to identify near identical files.

III. Methodology
The proposed approach involves computation of similarity

among files. Files which are similar to each other are patched
during the formation of the delta. This section covers the
algorithms used for computation of similarity among files.

Subsection A gives a brief overview about the methods
used for similarity computation. Subsection B covers the
implementation details of the algorithm.

A. Overview
The method for creating FOTA delta involves various

stages as shown in figure 1. The source FOTA and the target
FOTA are taken as input. The files in the two folders that
match in name are picked up and their patch is created
directly. This is done on assumption that the files that have
same name will have a large amount of redundant content. The
files with dissimilar name are processed to find the pair of
files with highest similarity. The pair of files that exceed the
similarity threshold are sent for patching, while the files that
do not qualify the threshold constraint are sent as it is in the
FOTA delta.

The proposed approach consists of three stages: (1)
Chunking or Feature Extraction, (2) Hashing, (3)
Comparison. The approach involves similarity matching,
which is a process of finding pairs of files in a large collection
of files that are similar to each other. As the amount of data an
investigator has to deal with is growing rapidly, it is not
possible to look at each file by hand. Hence a smaller
representation of the file needs to be made.
Chunking: is a way of making a representative of a file of
smaller size by breaking the file into a sequence of chunks.
The well-known chunking approaches are fixed-length
chunking and variable-length chunking (content-defined
chunking). As names suggest, extracted chunks are of fixed
size in fixed-length chunking and in variable-length chunking,

chunk boundaries are determined by the local contents of the
file.

Figure 1: Overall algorithm pipeline

Hashing: Chunks or features selected from a large file needs
to be matched from other files. Matching the chunks directly
bit by bit is not convenient and will be complex. So we use
similarity preserving hash functions. The chunks are hashed to
an integer value using similarity preserving hash function.
Hashing with similarity preserving hash function has the
interesting property that hashes of similar features will be
similar. Hashed chunks make comparison of files faster and
easier.
Comparison: involves matching of set of hash values of files.
Set intersection method is the most commonly used method
for comparison of two files. The greater the intersection
between the two sets, greater is the similarity of two files. The
similarity score between two files is thus obtained.

B. Implementation
In this section we present implementation details of our

proposed approach. We performed chunking of files using
TTTD algorithm proposed by HP laboratory [16] at Palo Alto,
California and to get break points of chunks and to get chunk-
hash values, we used simHash proposed in [17].

TTTD algorithm picks chunks out of the original text using
a variable window and divisors to find trigger points or break
points. The break points mark the boundary of the chunk. It
makes sure that the size of the chunk is neither very large nor
very small. For this it uses thresholds. TTTD Algorithm uses
four parameters, maximum threshold, minimum threshold,
main divisor, and second divisor. We set their values to 200,
180, 540, and 270 respectively to get chunk size between 180
to 200 bytes. The maximum and minimum thresholds are used
to eliminate very large-sized and very small-sized chunks. The
main divisor can be used to make the chunk-size close to our

58

International Journal of Advances in Electronics Engineering– IJAEE
Volume 6 : Issue 1 [ISSN : 2278-215X]

Publication Date: 18 April, 2016

expected chunk-size. In usual, the value of the second divisor
is half of the main divisor.

Figure 2: Block Diagram of TTTD Algorithm

Processing of each file for fingerprint calculation is done
as shown in Fig. (2). Aalgorithm starts by taking the very first
byte in the window and it hashes it using simHash. It adds
subsequent bytes one at a time to the window and computes
the hash value using simHash. If the size from last breakpoint
to current position is larger than minimum threshold, it starts
to determine the breakpoint by second and main divisors.
Before reaching the maximum threshold, if it can find a
breakpoint by main divisor, then uses it as the chunk

boundary. The sliding window starts afresh at this position and
repeats the computation and comparison until the end of file.
But when the window reaches the maximum threshold, it uses
the backup breakpoint (the very last one) if it finds any one,
otherwise it uses the maximum threshold as a breakpoint. The
new window now starts from this position and the
computation is repeated.

Figure 3: Block Diagram of SimHash Implementation

We used simHash for hashing purpose. SimHash is a
similarity preserving hash function. In simHash very similar
files map to very similar, or even the same, hash key, and
distance between keys give measure of the difference between
files. In simHash, integer valued hash keys of substrings are
produced. As shown in figure 3, every character picked up by
the window is mapped to its ASCII value and represented in
binary form. We call this hash of a character. A 32-bit array is
maintained and for each i

th
 set bit of the hash, arr[i] is

incremented by one. Every time a character is added in the
window this 32-bit array (arr[]) is updated. Finally the
simHash value of the window is again a 32-bit number.
Simhash bit i is 1 if arr[i] is positive, else it is 0.

 For each chunk, its hash code is recorded. This way a set
of simHash values for a file is obtained. This set matched with
the simHash set of another file using set intersection method.
Comparison by set intersection method involves sorting of the
two sets of fingerprints of files and then matching their integer
values linearly. Thus similarity scores are obtained.

IV. Complexity Analysis
In this section, we present the complexity analysis of the

proposed approach- chunking part is linear in terms of the size

of the text in each file. O(Cavg.lg(Cavg)) for sorting of

fingerprints for each file before comparison, where Cavg is the

average number of fingerprints selected from each file. Set

59

International Journal of Advances in Electronics Engineering– IJAEE
Volume 6 : Issue 1 [ISSN : 2278-215X]

Publication Date: 18 April, 2016

intersection time is linear in average set size for each pair of

files. There are several advantages of using this approach, like

it performs better than the basic sliding window algorithm for

chunking. We can control the average chunk size by changing

the value of main divisor. Different tests can be performed

with variable chunk sizes according to the data set we have.

Along with these we have some limitation also, like size of a

few percent of total chunks will be near to maximum threshold

when main divisor or main divisor and second divisor are

unable to find break point.

V. Results and Performance

The performance on given two firmware versions ranges

widely depending on the average chunk size, which is a

controllable parameter. In practice, we often start with a

relatively small chunk size, e.g. 180-200 bytes, to get the

better and true similarity scores. So this analysis will detect

pairs of files that are similar due to shorter common sequences

as well as larger common sequences.

A complete performance characterization with all

implemented approaches is difficult to present. Results were

compared with currently used tool at the Advance Software

Lab, SRI-Noida, GOTA (Google-over-the-Air). We ran

several tests for three FOTA pairs:

1) FOTA_I747MVLUFNE5_1718113_REV04_user_lo

w_ship and

FOTA_I747MVLUEMK5_2140838_REV04_user_lo

w_ship shown as NE5 and MK5 in Table 2. FOTA

delta size of this pair using GOTA engine was

408MB (242MB patch files and 166MB original

files).

2) (OXXCNG1 + XXUCNG1) and (VIMBNA1 +

XXUBML4) shown as (NG1+NG1) and (NA1+ML4)

in Table 2. FOTA delta size of this pair using GOTA

engine was 565MB (312MB patch files and 253MB

original files).

3) FOTA_I9192DDUCNG1_2053775_REV01_user_lo

w_ship_MULTI_CERT and

FOTA_I9192DDUCNF6_2053775_REV01_user_lo

w_ship_MULTI_CERT shown as NG1 and NF6 in

Table 2. FOTA delta size of this pair using GOTA

engine was 555KB (496KB patch files and 59KB

original files).

 We used two different patching tools, bsdiff and

xdelta to make patch or diff files from one source and one

target file. In GOTA engine, they are using sbdiff patching

tool that is a bit more efficient then above mentioned two

tools. Here we present some performance measures:

Name of

the

FOTA

pair

TTTD+simHash results Thres

hold

value

(in

%)

Overall

percent

age

reducti

on

Patch

files

size (in

Origin

al files

size (in

Total

size (in

MB)

MB) MB)

NE5 and

MK5

243 53 296 50 27.45

NE5 and

MK5

231 88 319 70 21.81

(NG1+N

G1) and

(NA1+M

L4)

347 89 436 50 22.83

(NG1+N

G1) and

(NA1+M

L4)

343 98 441 70 21.96

NG1 and

NF6

1.8 0 1.8 50 -230

NG1 and

NF6

1.8 0 1.8 70 -230

TABLE Ⅰ. FOTA delta size and percentage reduction

As we can see in the Table (1), size of patched files is

almost similar or slightly more than to the one we got from

GOTA engine. So FOTA delta applying time on the device

won’t increase by an unacceptable factor.

These measurements were performed on a SAMSUNG

NP300E5V-A06NG Core i3 Laptop with a 2.50 GHz Intel

processor and 4 GB RAM. As results are shown, we got

significant amount of reduction in FOTA deltas as compared

to GOTA engine.

VI. Conclusions and Future
Directions

Various file similarity algorithm were studied and

implemented. For chunking Two Threshold Two Divisor

(TTTD) algorithm, Rabin’s fingerprinting algorithm and

selective fingerprinting algorithms were implemented. With

Rabin’s fingerprinting, rolling hash function was used and

with other chunking algorithms simHash was used. We

applied the algorithms on different Firmware-over-the-Air

(FOTA) update files, which gave us the similar files among

the two folders. So the similar files were sent to a patch

making tool to create a Delta between the two FOTA folders.

The size of the delta folder created was considerably reduced.

We performed extensive experimental comparisons and the

performance for each method was evaluated. The results

obtained were promising and there is a great scope for future

improvements also.

Proposed approach for delta generation can further be

improved by using alternative Matching Algorithms. One is to

use Bloom Filters to store information about chunk-hash

values of each file. A hash value can be in the range of 0 to

2
32

-1, so a bloom filter of size 2
32

or a bloom filter of lesser

size with P hash values will do the work. Comparison between

60

International Journal of Advances in Electronics Engineering– IJAEE
Volume 6 : Issue 1 [ISSN : 2278-215X]

Publication Date: 18 April, 2016

two files will be faster using bloom filter than the set

intersection but the implementation and handling of multiple

bloom filters for each file will increase the complexity. This

approach can also be integrated with Google’s GOTA to keep

device side work (applying patch) unchanged.

Acknowledgment

 This work had been at Samsung R&D Institute Noida. We

thank our colleagues, Mr. Ankit Singh and Mr. Mandeep

Singh for helping us whenever we needed it. We also want to

thank all System Memory team members for the support they

gave us. We would also like to thank our organization for

creating such an informative atmosphere and helping us in

whatever way they could.

References
.

[1] TRIDGELL, A., AND MACKERRAS, P. The rsync algorithm.

Technical report TR-CS-96-05, Deparment of Computer Science.
1996)

[2] Sean Quinlan, Sean Dorward. Venti: a New Approach to Archival
Storage. In Proceedings of the First USENIX Conference on File

and Storage Technologies (FAST'02). 2002.

[3] Neil T. Spring, David Wetherall. A Protocol-Independent
Technique for Eliminating Redundant Network Traffic. In

Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication

(SIGCOMM'00). 2000, pp. 87-95.

[4] Broder, Andrei Z. On the resemblance and containment of
documents. In Proc. of compression and complexity of sequences

(SEQUENCES’97). 1997.

[5] A. Muthitacharoen, B. Chen, and D. Mazi`eres. A low-bandwidth

network file system. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP ’01). October 2001, pp.
174-187.

[6] Lawrence L. You, Kristal T. Pollack, Darrell D. E. Long. Deep

Store: An Archival Storage System Architecture. In Proceedings of
the 21st International Conference on Data Engineering. April 2005,

pp. 804--815.

[7] K Eshghi, HK Tang. A Framework for analyzing and improving

content-based chunking algorithms. Hewlett-Packard Labs

Technical Report TR. 2005.

[8] Navendu Jain, Mike Dahlin, Renu Tewari. TAPER: Tiered

Approach for Eliminating Redundancy in Replica synchronization.

In Proceedings of the 2005 USENIX Conference on File and
Storage Technologies (FAST'05). 2005.

[9] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M.
Tracey. Redundancy Elimination within Large Collections of Files.

In Proceedings of 2004 USENIX Technical Conference. 2004.

[10] Calicrates Policroniades, Ian Pratt. Alternatives for detecting
redundancy in storage systems data. In Proceedings of the 2004

Usenix Conference. June 2004.

[11] Manber, U. Finding similar files in a large file system. In

Proceedings of the USENIX Winter 1994 Technical Conference.

January 1994, pp. 1-10.

[12] Fred Douglis, Arun Iyengar. Application-specific Delta-encoding

via Resemblance Detection. In Proceedings of 2003 USENIX
Technical Conference. 2003, pp. 113-126.

[13] Deepak R. Bobbarjung, Suresh Jagannathand and Cezary

Dubnicki. Improving Duplicate Elimination in Storage Systems.
ACM Transaction on Storage. 2006, Vol. 2, 4.

[14] Lawrence L. You, Christos Karamanolis. Evaluation of efficient

archival storage techniques. In Proceedings of the 21st IEEE
Symposium on Mass Storage Systems and Technologies (MSST).

April 2004.

[15] Nagapramod Mandagere, Pin Zhou, Mark A Smith, Sandeep

Uttamchandani. Demystifying data deduplication. In Proceedings

of the ACM/IFIP/USENIX Middleware '08 Conference
Companion. 2008.

[16] Eshghi, Kave; Tang, Hsiu Khuern, A framework for analyzing and

improving content-based chunking algorithms. Tech. Rep. HPL-
2005-30(R.1), Hewlett Packard Laboratories, Palo Alto, 2005.

[17] Bingfeng Pi, Shunkai Fu, Weilei Wang , and Song Han Roboo
Inc., Suzhou, P.R.China, SimHash-based Effective and Efficient

Detecting of Near-Duplicate Short Messages. In Proceedings of the

Second Symposium International Computer Science and
Computational Technology (ISCSCT ’09) Huangshan, P. R. China,

26-28,Dec. 2009, pp. 020-025

About Authors:

Surendra Gadwal did his B.Tech. from Indian

Institute of Technology, Roorkee. His researches

interests include image processing, Information &

Network Security and Distributed Computing. In

the field of image processing, he has developed an

application for Detecting Texts from Natural

Images. He is an active Android and Windows

phone app developer. He is an Executive Member

of IIT-Roorkee ACM Student Chapter.

Shivansh Gaur dis his B.Tech in Computer Science

and Engineering from Indian Institute of

Technology, Roorkee. His research interests include

artificial intelligence, Data Mining and Graphical

Models, Cryptology and Information Security. He

developed a music recognition application on

JAVA that could identify a music track from small

audio recording. He has been involved in

development of applications for Windows phone

also. Presently working with Samsung.

Shyjumon N did his B.Tech in Electrical &

Electronics Engineering from Govt. Engineering

College, Thrissur, Kerala in the year of 2002. He

worked with Various R&D centers such as

Samsung, Toshiba, Cranes, Otwo in the field of

Embedded Systems for the development of

handheld devices. He is having more than 12 years

of experience in the Linux Kernel and device

drivers and also worked on different Bootloader

Developments. He is specialized in BSP

& Peripheral bus technologies such as SDIO, USB

and presently mastering the System Memory area.

Having more than 3 years international work

experience in countries like South Korea,

Philipanes.

He specializes in BSP & Peripheral bus

technologies such as SDIO, USB and System

Memory area.

