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Abstract – This research develops an alternative approach 

for the prediction of uncertainty of multi axis machines, 

Coordinate Measuring Machine (CMM), by using geometric 

error information in each axis or repeatedly measured 

coordinates. It also introduces a procedure to calculate the 

probability of accepting a measured position within a 

specified range. The developed model has resulted in an 

improvement in the probability of accepting a measured 

position, compared to previously published models and 

results.  
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1.   Introduction 
       Currently, the automated machine is widely used in 

modern manufacturing. CMM or Coordinate Measuring 

Machine plays a crucial role for measuring the 

complicated workpiece shape or high accurate and precise 

shape, especially, mold making, sheet metal forming or 

automotive machining. Theoretically, the CMM moves its 

probe head to measure the workpiece from point to point 

and then the computer software will simultaneously 

process to estimate the “best fit” for these points as shown 

in Fig. 1. 

The reliability of CMM may be defined as its 

uncertainty. It is the ability to perform its measurement 

function effectively under specified operating condition 

[3,4]. Clearly, all measured positions from CMM 

operation might have been affected by their measurement 

uncertainty [13] because while moving, there are many 

noise factors affecting CMMs’ probe head so that probe 

position at the workpiece surface may deviate from target 

position. The uncertainty of CMM can be explained as the 

interval in which 95% of the measured values are placed 

[14]. 

 

2.   CMM Uncertainty 
 There are many possible causes leading to CMM 

uncertainty as shown in Fig. 2 [8]. However, the most 

significant factors affecting CMM uncertainty can be 

classified into 2 types that are systematic error and 

random error [11,13]. 
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Figure 1. Nature of coordinate metrology [7] 

 
2.1 Systematic error 
       This error is mainly caused by geometric error 

around 60% - 70% of total error as shown in Fig. 3 [2]. 

The geometric error will directly result to measurement 

error because the difference system between workpiece 

and CMM coordinates. 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. All possible factors affecting to CMM 

uncertainty 
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Figure 3. The geometric error of machine structure 

 

2.2 Random error 

   Random errors vary under operating conditions, for 

example the environmental conditions, the skill of 

operators, or CMM itself, etc. It is roughly said that the 

total errors (both systematic and random errors) can be 

taken into consideration as random error because of the 

lack of specific knowledge of the existing errors and 

where they come from and are assumingly treated as 

randomly independent.  

 

3.  The reliability of CMM 
     As known, the main purpose of CMM has been 

used for complex dimension measurement e.g. surface, 

pitch centered diameter (PCD) and what industry highly 

expects from CMM is its accuracy and precision. Since 

the bias (systematic error) of a CMM can be calibrated, 

the only remaining error is that due to uncertainty as seen 

in Fig. 4. 

 

 

 

 

 

Figure 4. Bias and uncertainty [1] 

 As known, uncertainty can arise from various 

sources as shown in Fig.2. While a CMM is performing 

the measurement, there are many factors causing error at 

the probe position. Theoretically, when probe head 

touches the target position on the workpiece surface, the 

probe position at target position (in 2 or 3-dimension) is 

translated to be a reading position that is ideally assumed 

to be as same coordinate as the true coordinate in part 

drawing. However, in reality, while probe head is moving, 

there are many noise factors e.g. probe systems, 

coordinate systems, environments and software & 

hardware affecting its performing, by this reason, probe 

position at the workpiece surface may deviate from target 

position (see Fig. 5). The larger error of measured 

position, the worse accurate and precise of CMM. 

 

Figure 5. The measure positions including error could be 

leading to the wrong substituted geometry 

 

        Theoretically, the reliability of CMM could also be 

considered as the ability to repeat measurement during the 

period of time or, on the other hand, explained as the 

interval in which 95% of the measured values are placed 

in this interval [10]. For example, if a CMM repeatedly 

measures and there are at least 95 % of all measured 

values lie within a tolerance zone of measurement 

specification. It can be said that this CMM has high 

reliability. Fig. 6 represents the outline of this relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. A relationship between the reliability and 

uncertainty of CMM 

 

4.    Uncertainty ellipse 
        As mentioned previously, there is the random error 

in the coordinates of each point within the measuring 

volume of the CMM. Hence, each point in the measuring 

volume can be viewed as having a “random errors cloud” 

associated with it. In general, firstly, these random error 

clouds will not be spherical because the uncertainty 

sources are associated with a particular axis of the CMM, 
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which elongates the cloud along that direction [14]. The 

random errors cloud could be viewed as ellipsoid, as 

shown in Fig. 7 and 5 [5,6]. Secondly, the uncertainty of 

the measured coordinate (x, y, z) is statistically 

independent and distributed in a Gaussian. The set is an 

ellipse overlap with the coordinate (x, y, z). 

 

 

 

 

 

 

 

 

 

 Figure 7. Equivalent ellipse for a random errors cloud 

 

       The random errors can be considered as uncertainty of 

measurement. When the probe is moved to the destination, 

there will be the difference between the true position and 

the measured position. If a specific position is measured 

over and over (repeatability), the random space will be as 

ellipsoid with which the major axis will be parallel to the 

axis that is moving (see Fig. 8). So the random error is 

similar to the uncertainty and is also likely presented in 

the most mechanically accurate CMMs. The most 

commonly applied method of uncertainty evaluation is the 

Guide to the Expression of Uncertainty in Measurement 

(GUM) [3]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The three-dimensional random error in the 

coordinates 

 

 

5.    Reliability Model for 
Probability of Accepting 

Measured Positions 
        Assuming that a measured point (P) on the 

workpiece surface can be treated as random position, 

therefore, the x, y coordinates can also be considered the 

random variables. It is assumed that uncertainty is 

normally distributed around the nominal value of the 

position. The CMM’s reliability model can be expressed 

by the probability of a randomly measured position P(x, y) 

within an allowable zone of uncertainty (Au). The double 

integral for joint probability density is to find the area 

under the curve or probability itself [9].  

 

Pr (u) = Probability that a measured position lies within an 

allowable zone of uncertainty (Au) 

 

 
UA

dxdyyxfu ),()Pr(                 (1) 

where,  

 

f(x, y) is bivariate normal joint probability density function 

of random measured position variables (x, y), in which x ~ 

N(0,
2
x ), y ~ N(0, 

2
y ) and no correlation coefficient 

exists between two axial errors (x and y).  

 

The bivariate probability density function is given by: 
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where,  

 

x  is the standard deviation of error in x – axis 

y  is the standard deviation of error in y – axis 

 

Fig. 9 shows a contour of the bivariate probability 

density function (solid line) that lies on uncertainty zone 

(dash line) that is the probability of accepting a measured 

position (shade area). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The probability of accepting a measured position 

P (x, y) lies within an elliptical uncertainty (Au) 

 

 The probability that the measured position P (x, y) 

lies within an allowable area of uncertainty zone (Au) is, 

as shown in Figure 7, given by   
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The equation (3) can be transformed from Cartesian to be 

Polar coordinates and expressed as follows; 
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“Composite Trapezoidal Rule” is applied to solve 

Equation (5.4) by numerical method as follows; 
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and “Simpson’s Rule” 
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where; b = 2, a = 0, n = 1000 and   
   

 
 

 

6.    Comparing the models 
        The developed model in this paper has been 

compared with the model done in previous research. 

Those who performed the research in this area are well 

known such as Shin and Wei [12].  The parameters used 

to calculate the probability of accepting a measured 

position P (x, y) that lies within an elliptical uncertainty 

(Au) are: 

 the standard deviation of error in x – axis ( x ) = 

0.11825 mm. 

 the standard deviation of error in y – axis ( y ) = 

0.10549 mm. 

 the radius of tolerance zone (R) from 0.02 mm. to 0.40 

mm 
 

 

 Comparing the developed model solved by 

Trapezoidal and Simpson’s rule with Shin & Wei model, 

finally, the results of probability of accepting a measured 

position are shown in Table 1 and Figure 10. 

 

 

 

 

TABLE 1: Comparing the probability of accepting a 

measured position with the tolerance zone between the 

developed model and Shin & Wei model 

 

Radius of 

Tolerance 

Zone (mm) 

Shin & 

Wei 

(1992) 

Trapezoidal 

Rule 

 

Simpson 

Rule 

 

0.02 0.0159 0.0159 0.0159 

0.04 0.0621 0.0621 0.062 

0.06 0.1343 0.1343 0.1341 

0.08 0.2261 0.2261 0.2258 

0.10 0.3299 0.3299 0.3294 

0.12 0.4379 0.4379 0.4373 

0.14 0.5432 0.5432 0.5425 

0.16 0.6404 0.6404 0.6395 

0.18 0.7256 0.7256 0.7246 

0.20 0.7971 0.7971 0.796 

0.22 0.8545 0.8545 0.8534 

0.24 0.8989 0.8989 0.8977 

0.26 0.9318 0.9318 0.9306 

0.28 0.9554 0.9554 0.9542 

0.30 0.9717 0.9717 0.9704 

0.32 0.9826 0.9826 0.9813 

0.34 0.9896 0.9896 0.9883 

0.36 0.9940 0.9940 0.9926 

0.38 0.9966 0.9966 0.9953 

0.40 0.9981 0.9981 0.9968 

 

 

 

 

Figure 10. Graphical comparison of the probability of 

accepting a measured position with the tolerance zone 

between the developed model and  Shin & Wei model 

 

 From Table 1 at the same radius of tolerance zone, 

the probability of accepting a measured position 

calculated by numerical method is nearly closed to those 

reported by Shin & Wei. 
 

7. Conclusion 
       Several methods can be employed to assess the 

reliability or uncertainty of CMM. Presently, using laser 

interferometer, ball bar, and artifacts for calibrating and 

enhancing the performance have received wide acceptance 

in the research community dealing with performance 
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evaluation of CMM. Although these methods are very 

effective, they are too costly and time consuming to make 

them implementable on the shop floor. 

        The research work presented here is an extension to 

these recent research efforts. It has utilized the concept of 

measurement uncertainty in CMM to provide a faster and 

less expensive approach to assess the CMM performance. 

The developed models resulted in an improved probability 

of accepting measurements.  
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