
 

131 

 

International Journal of Advancements in Mechanical and Aeronautical Engineering 
Volume 3 : Issue 1       [ISSN 2372-4153] 

Publication Date : 18  April,  2016 
 

Multiple Model Adaptive Control Design 
A Computer Algebra Approach 

Sallehuddin Mohamed Haris, Aghil Shavalipour, Zulkifli Mohd Nopiah and Yuzita Yaacob 

 

Abstract—The multiple model adaptive control 

(MMAC) method potentially has the ability of providing 

excellent control performance over a wide range of 

parameter variations. A key part in the design of a 

MMAC system is the choice of candidate models. In this 

work, a method to optimally determine these candidate 

models is proposed. The method exploits the relationship 

between Grobner bases and polynomial spectral 

factorization through the notion of sum of roots. Using 

computer algebra techniques, the symbolic solution to 

the Algebraic Riccati Equation, and hence the H2 

optimal control problem, can be obtained. The symbolic 

solution gives the relationship between the optimal 

controller gains and the uncertain parameters. Hence, 

the candidate controllers in the MMAC system could be 

selected based on this relationship to best counter the 

parameter variations. To illustrate the effectiveness of 

the proposed method, a case study of a MMAC 

implementation on a quarter car active suspension with 

varying sprung mass is presented. The candidate 

controllers chosen using the proposed method was 

compared to a similar MMAC system where the 

candidate controllers were chosen based on equal sprung 

mass spacing. Simulations were performed under 

varying sprung masses, and using changing road profiles 

as a disturbance input. The performance criteria were 

vertical sprung mass acceleration, tyre force and 

suspension deflection. The results demonstrated the 

advantages of the proposed method where improved 

performances were obtained for all three criteria. 

Keywords—MMAC, sum of roots, Grobner bases, spectral 

factorization, active suspension 

I.  Introduction 
Uncertainty exists in systems due to unmodelled 

dynamics, unknown system parameters, disturbances, and/or 
process changes. An effective control system needs to be 
capable of preserving stable and robust system performance 
in spite of the inherent uncertainties. When uncertainties in 
the system are relatively small, modern linear time invariant 
(LTI) control system theories, such as    and   synthesis, 
could sufficiently guarantee closed-loop performance under 
certain specified conditions.  
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Multiple model adaptive control (MMAC) is a control 
concept that extends well established linear control system 
design methods to be applicable over a wider region of 
uncertainty. When the actual parameter uncertainty is 
significantly extensive, the range of parameter values can be 
divided into sets of smaller ranges. Every set is then 
associated with a distinct plant model. Hence, within each 
set, parameter uncertainties from the designated plant model 
is significantly reduced. Thus, it is possible to design 
dynamic compensators for each plant model such that 
satisfactory performance is always obtained within each set. 

The basic idea behind MMAC is to have a set of 
candidate models enveloping the entire operating region of 
the plant. For each candidate model, a controller that 
produces the required plant performance, for that particular 
operating condition, is determined a priori. During system 
operation, using some probabilistic function, the degree of 
matching between each candidate model and the plant is 
determined. Weights are determined for each candidate 
controller based on the probabilistic function. A close match 
would be assigned a weight close to 1, and a bad match 
would have a weight close to 0. The control input into the 
plant is then the weighted sum of all candidate controllers. 
The plant dynamics would always be monitored, and the 
probabilistic function value and control input would be 
continuously updated accordingly [1,2,3]. 

A key part to the successful implementation of a MMAC 
system is the choice of candidate models. Thus far, this is 
very much a heuristic process. In this work, we propose a 
method to optimally determine these candidate models. The 
proposed method makes use of computer algebra techniques 
to formulate the analytical solution to the optimal control 
problem in terms of symbolic parameters. This provides a 
notion on how changes in the uncertain parameters affect 
system performance. Consequently, the candidate models 
can be chosen such that the effect of variation of parameters 
can be reduced in the most effective manner. 

II. H2 Optimal Control 
In this study, for each candidate model, a    optimal 

controller is designed. Consider the control problem as 
illustrated in Fig. 1. Here,   represents the plant to be 
controlled, while the fixed feedback gain is denoted by  . 

 

Figure 1 State feedback design 
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The signals       and   are respectively, the plant state, 
the control input, the plant output and disturbance input. 
Essentially, the problem is to reduce the impact of the 
disturbance,  , on the output,   subject to constraints on the 
control input   caused by actuator limitations. Hence, the 
goal is to ensure stability of the closed-loop system, while 
minimizing the   -norm of the transfer function matrix from 
  to ,   -  . This may be achieved through the use of an 
optimal state feedback gain,  . The optimization can be 
performed through the quadratic cost function given by 

  (   )  ∫ (‖ ( )‖ 
 

 

 

 ‖ ( )‖ 
 )   (1) 

where ‖ ‖  is the (Euclidean) 2-norm. Then, the greatest 

attainable efficiency is given by 

 
  ( )     

             
 (   ) (2) 

Based on the Algebraic Riccati Equation (ARE), a 
solution can be obtained as follows. The plant of degree   
with   inputs and   outputs is given a state-space model as 

   {
 ̇( )    ( )    ( )

 ( )    ( )                
         (3) 

where A n×n
, B n×m

, with C p×n
. Suppose that (A, B) 

and (C, A) are stabilizable and detectable. Thus, the 

following defines the best way to achieve the optimal 

controller. 

Let          be the solution of the ARE, given by 

                    (4) 

Then, the    optimal state feedback gain is given by 

 
       

   (5) 

The best obtainable control performance may be obtained 
from the cost function 

   ( )    *    + (6) 

The ARE may be written in the Hamiltonian matrix 
form, which is of degree       and composed in the form 
of [4]. 

   [
  
     

]  (7) 

Then, spectral factorization of   needs to be performed [5]. 
Assume that the eigenvalues in the open left half plane are 
            . By seeking a basis for   wherein   is the 
invariant subspace of   according to the    , one obtains   , 
   such that 

        [
  
  
]         

     (8) 

Then, the solution takes the form of 

        
        (9) 

From the eigenvectors associated with the eigenvalues, the 
matrix ,  

     
  -  is constructed in the open left half plane. 

Hence, the solution   can be calculated via (9). 

  will vary according to the value of the plant 
parameters given by     and  . If the solution to the ARE 
could be found analytically, in the algebraic form, the 
relationship between  , and hence,  , with the varying 
(uncertain) parameters can be established. Thus, the 
candidate models can be chosen based on this relationship to 
give the most optimal result. In order to obtain the algebraic 
analytical solution to the ARE, the notion of sum of roots 
(SoR) can be used. 

III. Algebraic Solution of the ARE 
Although there exist a number of numerical methods to 

solve spectral factorization problems [6], their use is limited 
in that they cannot handle systems with symbolic 
parameters. It has recently been shown that the concept of 
SoR reveals an intriguing connection between polynomial 
spectral factorization and Gröbner Bases [7]. 

The approach that is used in this paper expresses the 
solution of the ARE in terms of the spectral factor 
coefficients as well as by means of the shape basis concept 
for the SoR. This solution comprises of a polynomial which 
associates the parameters to the SoR, and creates algebraic 
expressions for the elements   in the form of polynomials of 
the SoR and rational functions in terms of the symbolic 
parameters. Parameters of the system and the   matrix are 
consequently associated through an algebraic approach, and 
a direct analysis can be conducted on the impact of the 
parameters on the cost function, and subsequently, the 
controller gains. The approach is made up of the following 
steps: 

1. Use polynomial spectral factorization to relate the 

parameters to the SoR from the Hamiltonian matrix 

 .  

2. Obtain the eigenvectors of   in symbolic form for 

the corresponding eigenvalues. 

3. Construct [X1
T
 X2

T
]

T
 consisting of two matrices — 

the first comprising of polynomials in the form of 

coefficients of the spectral factor and the other 

comprising of monomials in the eigenvalues. This 

separates the coefficients of the spectral factor from 

the eigenvalues; 

4. Obtain an expression of matrix X relating to the 

coefficients of the spectral factor from the divided 

result; so, matrix X could be expressed in the form 

of the Sum of Roots through the results from Step 

1. 
Consider the polynomial  ( ) , where       for all 

        . Assume the SoR to be 

    (          )  (10) 

and let 

 

 ( )  (    )(    )  (    )
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While every element        is symmetric around the origin 

and is also a rational function of   ‘s, it would be realized 
that each      could also be shown to be a rational function 

of   and                      Furthermore, because of 

the fact that the characteristic polynomial of   is equivalent 
to (  )    (  )   ( ), and along with the characteristics of 
the ideal of spectral factorization, the      can become an 

expression of polynomials in   only [8]. Consequently, 
       tend to be an expression of rational functions in  . 

Additionally,   can be taken as the largest real root of the 
polynomial. By comparing the coefficients of the two sides 
of 

    (     )  (  )  (  ) ( )  (12) 

the set   can be obtained in terms of the polynomials in   as 

well as in     , that gives a Gröbner basis    , of the 

ideal of the spectral factorization. The ideal includes a shape 

basis, with   being the separating element that can 

effectively be calculated by means of the basis conversion 

(changing the order) method. This indicates that the 

characteristic polynomial   ( )  of   can be obtained, and 

that any polynomial in      can be written in terms of   

only.  
As a result, the aim is to obtain an expression of   in the 

form of   and     . Recall that   and       are elementary 

symmetric polynomials (up to sign) in    ‘s, hence, any 
symmetric polynomial in    ‘s can be expressed as a 
polynomial in   and     . Writing an eigenvalue of   as    
and by means of symbolic computation, one can find an 
eigenvector  ( )   , -   such that 

 (    ) ( )    (13) 

where the greatest common divisor of all elements of  (   ) 

is equal to one. As (   )   , one can express ,  
    

 -  in 

terms of   ‘s using  (   ). The task is then to rewrite it in 

terms of   and      . Since  (   )   , it is in fact sufficient 

to consider only the remainder on dividing each element of 

 ( )  by   ( ) . One can immediately deduce that the 

remainder is in       , -    ( ) , 

where      ,             -    . In other words, the 

remainder is a polynomial in   of degree up to     whose 

coefficients are polynomials in   and      . 

Therefore, ,  
    

 -  can be expressed as the transpose of a 

Vandermonde-like matrix, that is, 
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where V is the Vandermonde matrix and  ̃   ̃   
   . 

Notice that variable sets (         ) and (             ) 

are neatly separated, and one can effectively eliminate    ‘s 

and obtain X as 

    ̃  ̃ 
  

 (15) 

where each element of X is an element of 
 

   ( ̃ )
 ,             - . Finally, the unique positive 

definite solution can be obtained from the largest real root 

of    ( ). 

 

IV. Case Study: A Quarter Car 
Suspension Model 

The case study presented here follows the MMAC 
suspension system in [9]. Fig. 2 shows a schematic of the 
quarter car suspension system. Here,    and    are 
respectively the sprung and unsprung masses, and    
represents the tyre stiffness. For simplicity, the shock 
absorber damping and spring forces, as well as the controller 
actuator forces are lumped together, represented here as  . 

 

 

Figure 2 Simplified quarter-car model 

 

The dynamic equations of the suspension can be written 
as 

 
   ̈( )   ( ) 

   ̈( )    ( )    (  ( )   ( )) 
(16) 

where     and   are respectively, the vertical displacements 
of the sprung mass, of the unsprung mass, and of the road 
profile. 

Let 

  ( )  , ( )  ( )  ̇( )  ̇( )-  (17) 

be the state vector. Then, the state space representation is 
given by(Camino et al. 1999). 

  ̇( )    ( )    ( )     ( ) (18) 

where 
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In this case study, it is assumed that all parameters are 
constants, with the exception of   , which may take any 
value in the range of 0 to 500 kg. Using the proposed 
method, a relationship between the cost function   ( ) and 
   was found. The result is a long and complex equation, 
which would be impractical for use without the availability 
of computer algebra software. This relationship is 
represented by the curve in Fig. 3. 

 

Figure 3 Cost vs sprung mass value 
 

By dividing the cost into four equal intervals, four values 
of   , corresponding to the midpoint of each cost interval 
were selected to be used for the candidate models in the 
MMAC system. The corresponding    optimal controller 
for each candidate model was subsequently determined. For 
brevity, we denote this as Method A. 

For comparison, a second MMAC system was designed 
by dividing the range of    into four equal intervals. The 
candidate models were then selected from the midpoint 
value of each interval. The    optimal controller for each 
candidate models were also determined, and this was 
denoted as Method B. 

The road profile was taken as the disturbance input. This 

was represented by a square wave of 20-second period and 

2 cm amplitude. In performing the simulations, a piecewise 

varying scenario was adopted where, in addition to the 

varying road profile, the sprung mass value also changes at 

5 second intervals, as shown in Fig. 4.  

 

Figure 4 Scenario for the simulation tests 
 

A Luenberger observer was used to estimate the 
operating plant dynamics and the    regulator 
corresponding to each candidate model was designed. Table 
1 gives the sprung mass values for each candidate model, 
and the corresponding regulator and estimator gains 
obtained Method A, and Table 2 give the values obtained 
using Method B.  
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Table 1 Regulator and estimator gains for Method A 
Candidate 

Model 

Regulator Gain Estimator Gain 

A1(30.5kg) [77.4597 -67.2658 3.64502 

1.56807] 

[119.509; 31.3615; 

2539.66; -1345.32] 

A2(83.5kg) [77.4597 -77.1053 6.37309 

0.302132] 

[76.3245; 6.04264; 

927.661; -1542.11] 

A33(177kg) [77.4597 -76.3903 9.24355 

-0.523656] 

[52.2235; -10.4731; 

437.625; -1527.81] 

A4(369kg) [77.4597 -72.5249 13.0676 

-1.11066] 

[35.4135; -22.2131; 

209.918; -1450.5] 

Table 2 Regulator and estimator gains for Method B 
Candidate 

Model 

Regulator Gain Estimator Gain 

B1(71.25kg) [77.4597 -76.4836 
5.86761 0.500424] 

[82.3525; 10.0085; 
1087.15; -1529.67] 

B2(193.75kg) [77.4597 -76.0158 

9.65165 -0.607725] 

[49.815; -12.1545; 

399.792; -1520.32] 

B3(316.25kg) [77.4597 -73.4449 
12.1595 -1.00486] 

[38.449; -20.0972; 
244.932; -1468.9] 

B4(438.75kg) [77.4597 -71.469 14.165 -

1.21941] 

[32.285; -24.3883; 

176.546; -1429.38] 

The time response simulation results for the sprung mass 
vertical acceleration, tyre deflection and suspension 
deflection are shown in Figs. 5, 6 and 7 respectively, and 
their RMS values are given in Table 4.4. From all three time 
responses, the improvement obtained from using Method A 
compared to Method B is most evident between the time of 
5 – 10 seconds, where the oscillatory response is greatly 
reduced. It should be noted that the sprung mass value is 
smallest over this period. From Fig. 3, in the low sprung 
mass region, the cost function value changes significantly 

with small changes in sprung mass. The MMAC system 
designed using Method A had more candidate models 
concentrated in this region, compared to the higher sprung 
mass region, where the cost function is significantly less 
affected by changes in sprung mass values. Hence, the 
advantage of selecting candidate models based on the 
relationship between cost function and the varying 
parameter is evident. 

The RMS values also show improvements gained from 
using Method A, particularly for sprung mass acceleration. 
The RMS values obtained here were taken over the whole 
simulation time. Outside the time of 5 – 10 seconds period, 
the differences between Method A and Method B are 
minimal. Hence the overall RMS values is lowered, 
particularly for the suspension deflection criterion. 

 

Figure 5 Sprung mass acceleration response 

 

Figure 6 Tyre force response 

 

 pp.

 

Figure 7 Suspension deflection response 

 

Table 3 RMS values for the performance criteria 

 

V. Conclusion 
The MMAC is a control method that has potential in 

wide areas of applications, including parameter varying and 
nonlinear systems. A method has been proposed to enable 
the candidate models to be selected effectively so as to 
provide improved performance. The availability of computer 
algebra software has enabled the relationship between the 
solution of the ARE and the varying parameter be obtained 
in the symbolic algebra form. From this relationship, the 
MMAC candidate models can be selected based on how 
changes in the varying parameter would affect the system 
performance. A test case study of MMAC design for a 
quarter car suspension with changing sprung mass values 
highlights the advantages of using the proposed method. 
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