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Abstract— In Finite Element Analysis, unlike the classical 

beam theory, when a beam is modeled using Q4 (Bilinear 

Quadratic) plane element, the bending moment appears to be 

less than that of the exact one, i.e. the normal stresses are less 

than their exact values. The difference between the results of 

the bending moment indicates that the beam is more stiffened. 

This problem is defined as shear locking. It is related to the 

linear representation of the displacement field of that plane 

element. There are several methods to eliminate the shear 

locking effect either by increasing the mesh size of the 

elements, using elements with more nodes, or using numerical 

integration to integrate the stiffness matrix. Each of the 

mentioned methods are applied on a cantilever beam modeled 

using MATLAB. 
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I.  Introduction 
Generally, locking effect is used by engineers to describe 

the case where the FE (Finite Element) computations 
produce smaller displacements than it should be. It also 
could be defined as the excessive stiffness in one or more 
deformation mode [3] [7]. 

Q4 element cannot model pure bending moment. Shear 
strain appears (which should not have appeared) as well as 
the bending strain, so the bending moment appears to be less 
than the expected value. 

Many researches have worked to solve the shear locking 
problem. In 1973, E. L. Wilson et al. published in 
“Incompatible Displacement Methods” a new element to 
treat the defects in the Q4 element, the improved bilinear 
Quadrilateral Element Q6. This new element succeeded to 
get better results in more efficient and simple way. 
However, some defects appeared in this element that could 
be treated by using good mesh refinement. 

Also, using different numerical integration to integrate 
the global stiffness matrix, is a good solution to reduce the 
over-stiffness behavior of the beam. These methods of 
integration approach the exact results with almost no 
defects. This could be achieved using Gauss quadrature 
integration. However, an insufficient choice of Gauss points 
may cause a spurious mode which has a really bad effect on 
the deformation of the element. 
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This paper aims to model the treatment of the locking 
problem and to analyze and detect the deficiency of each of 
them. A FE analysis of a cantilever beam is done using 3 
different meshing sizes. MATLAB is used to model and 
analyze the beam. 

II. Problem Definition 

  

Figure 1.    Pure Bending [10] 

In the classical beam theory (Bernoulli’s beam), there 
are two important assumptions. First, the contribution of the 
shear deformation is negligible compared to the rotation; 
this is equivalent to consider the plane sections of the beam -
normal to the longitudinal axes- plane and perpendicular to 
the new Neutral Axes while the top and bottom edges of the 
beam become arcs of the same curvature (as described in the 
deformed shape of the beam subjected to pure bending in 
Fig. 1). The second assumption is that the thickness of the 
beam should be small compared to the other dimensions [1] 
[4]. 

 

Figure 2.    Deformed shape of a simple beam subjected to pure bending 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 
 

Fig. 2 shows a simple beam -modeled using Q4 element- 

subjected to pure bending. Unlike the classical beam theory, 

the edges of the beam are inclined having an acute angle 

with the Neutral axis; as a result of the displacement field of 

Q4 element in Equation (1) & (2). This acute angle is a sign 

of development of shear strains (strain field are shown in 

Equation (3), (4) & (5)) and consequently shear stresses. 

The developed shear stresses that develop lead to over-

stiffness in the beam element; that is, the bending moment is 

resisted by both flexure and shearing stresses. 
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Figure 3 Pure bending and bending in Q4 element [4] 

 

(6) [4] 

Another approach to define the shear locking could be 
explained as follows. The two beams in Fig. 3 have the same 
properties (Poisson’s ratio, elasticity…etc.). Apply moments 
in each beam (M1 and M2) to get equal angles (θ1 and θ2). 
Equation (6) shows the relation between the two bending 
moments where a/b is the aspect ratio (α is the length of the 
beam and b is the height). If the aspect ratio increases so 
much which means insufficient mesh refinement (as shown 
in Fig. 2, where the beam under pure bending is modeled by 
only one element) the moment of the Q4 element will 
increase so much compared to the exact one, in other 
meaning, the element becomes infinitely stiff in bending and 
this phenomena is called locking. Practically, this large 
aspect ratio is avoided by good mesh refinement (as shown 
in the analysis of the Q4 element later) [4]. 

Two remedies are discussed to solve this problem. The 
first remedy is supplementing the element with additional 
modes to allow some flexibility to the element. The second 
remedy is using reduced integration methods to integrate the 
global stiffness matrix K. 

III. FE analysis 
Three Cantilever beams are modeled using different 

meshing sizes by MATLAB. The first one is analyzed with 
only 6 elements, the second one with 60 elements while the 
third one is divided to 1080 elements. Each beam has a 
length of 6 m, the height is 0.9 m and while its thickness is 
0.3 m. The modulus of Elasticity of its material is 210*10

6
 

KN/m
2
 and its Poisson’s ratio is 0.3. They are loaded by 50 

KN at the free end divided in the two nodes, each of 25 KN. 

According to the classical beam theory [1], the 

maximum normal stress is 7404 KN/m
2 
and the deflection is 

9.406*10
-4

 m as shown in Equation (7) & (8) receptively. 

 
(7) 

 
(8) 

The deformed shape of the beam shown in Fig. 4 
clarifies the linear relation of the displacement field and x & 
y (Equation (1) & (2)). It also shows that εx is independent 
of x (εx is constant along the length of the beam); which 
means that Q4 cannot model a state of pure bending. 

The FE analysis shows that the maximum normal stress 
using 6 Q4 elements is 2110 KN/m

2
 which is too small 

compared to the exact value 7407 KN/m
2
. While the shear 

stress
1
 shown in Fig. 5a for the same model is -731 KN/m

2
 

which is too large compared to the corresponding exact 

                                                           
1 The shear stress in Fig. 4a was calculated at the centroid of the elements. 

value -277.7 KN/m
2
. By increasing the meshing size, the 

deflection and the normal stress reach -8.449*10
-4 

m and 
4831 KN/m

2
 respectively, while the shear stress approaches 

its exact value which is zero
2
. So, it is obvious that the 

normal stress of the FE model -in small mesh size- is less 
than that of the exact value, while the shear stress is more 
than the exact value as a result of the shear locking problem. 

 
Figure 4  Deformation of Cantilever beam- 6 elements using Q4 element 

 

(a)  [8]3 

 

(b) 

 

(c) 

Figure 5 Analysis of Cantilever Beam - 1080 elements using Q4 element 

                                                           
2 The shear stress in Fig. 4b & 4c was calculated at the top elements. 
3
 The MATLAB code in the reference mentioned was modified. 
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IV. Improved Bilinear 
Quadrilateral Element Q6 

 

(9) 

 
(10) 

Incompatible elements or Improved Q4 element have 
been developed with six shape functions as shown in 
Equation (9) & (10); where αi are the generalized 
coordinates. The two additional displacement modes shown 
in Fig. 6 allow some flexibility in the beam and satisfy the 
pure bending conditions. They are also called as nodeless 
d.o.f. (Degrees of freedom). The additional displacement 
modes accompanied by them are called incompatible 
displacement fields because they allow overlaps or gaps 
between the elements; each element has its own nodeless 
d.o.f. and they are not connected to each other. 

 
Figure 6 Additional displacement modes [2] 

 
(11) 

 (12) 

 

; where  

(13) 

 

(14) 

 
(15) 

 
(16) 

 
(17) 

 
(18) 

 
(19) 

 (20) 

 (21) 

  

(a) (b) 

Figure. 7      Displacement modes of Q6 element 

The strain of Q6 element in Equation (11) consists of the 
strain of the nodal d.o.f and that of the  nodeless d.o.f. In 
Equation (12), the deformation matrix [B] for this element is 
expanded to include the deformation matrix of the 
compatible displacements of Q4 element [Bc] and that of the 
additional incompatible displacements [Bi]. [Bc] in Equation 
(13) is the same as calculated before in Q4 element. The 
Jacobian matrix is based only on the nodal d.o.f, so it is not 
changed. The incompatible displacement field is added to 
the shape function matrix and its deformation matrix can be 
found as in Equation (14). The stiffness matrix of a Q6 
element in Equation (19) consists of four matrices explained 
in Equation (15) to (18). The displacement mode of 
Equation (21) is shown in Fig. 7 [5] [7]. 

A. Defects of the Q6 element 
However, the Q6 element in this way fails to represent a 

state of constant stress unless it is rectangular. Consider a 
mesh of non-rectangular elements is loaded in a way to 
prevail a state of constant stress, in case of absence of 
nodeless d.o.f (Q4 element), the elements will behave 
properly. But in case of the presence of the nodeless d.o.f., 
the elements will not respond properly. The nodeless d.o.f. 
should be zeros but they are not. 
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A remedy for this defect is adding initial stresses vector 
{σ0} to represent the state of uniform stresses. By applying 
uniform stresses, zeros nodeless d.o.f could be achieved by 
doing a patch test as Equation (22) shows. To satisfy this 
patch test, the deformation matrix of the incompatible d.o.f. 
should be modified by adding a corrected deformation 
matrix as Equation (23) shows. The corrected deformation 
matrix [Bi corr] in Equation (27) is solved by substituting 
Equation (23) in Equation (22) [5] [7]. 

,    hence  (22) 

 
(23) 

 
(24) 

 
(25) 

 
(26) 

 
(27) 

Another defect of the Q6 element is incompatibility 
between elements. The nodeless d.o.f. (α1 to α4) are not 
connected between the elements except for the nodal d.o.f. 
This may allow some gaps or overlaps between the elements 
as shown in Fig. 8. However, this defect could be avoided 
by good mesh refinement [4]. 

 

Figure 8     Incompatibility modes in Q6 element [4] 

B. Illustrative example 

TABLE I  Results of Q4 & Q6 elements 

 Elements Exact Q4 element Q6 element 

Normal 
stress 

(KN/m2) 

6 

7407 

2110 3056 

60 4831 5848 

1080 6637 6611 

Deflection 
(m) 

6 

-9.406*10-4 

-6.078*10-4 -9.36*10-4 

60 -8.449*10-4 -8.9*10-4 

1080 -9.49*10-4 -9.5*10-4 

The cantilever beam in the previous examples is now 
modeled by the Q6 element. Table I shows that the values of 
the maximum deformation and normal stresses are improved 
and approaching the exact values rather than that of Q4 

element as a result of reducing the shear locking problem. 
So the beam now in Q6 element is not over-stiffened in 
bending. Also Fig.9 shows better results of the shear stresses 
compared to its corresponding in Q4 element. 

 

Figure 9      Analysis of Cantilever Beam – 60 elements using Q6 element 

V. Weighted Integration 
method 

Comparing the exact strain energy of the element to that 
modeled by FEA (Finite Element Analysis) is a way to 
know whether the element is over-stiffened or not. The 
energy ratio r in Equation (28) shows the relation between 
the strain energy of Q4 element Uquad and the exact one of 
the beam Ubeam. If it is greater than 1, then the element is 
over-stiffened, but if it is less than 1, it is under-stiffened, 
and the result is exact if it is equal to 1 [6]. 

It is required to find a value of r in terms of the element 
dimension. Consider a beam subjected to pure bending and 
is divided to Q4 element each of length α and height b. The 
strain energy in the Q4 elements is computed as in Equation 
(29), where ubeam is the nodal displacement vector and 
consists of ux & uy, and K

e
 is the stiffness matrix of the 

element. But K
e
×uy vanishes because this is a state of pure 

bending and no shear forces are developed. The 
corresponding strain energy in this beam segment is 
calculated using Equation (30), where M is the applied 
bending moment and κ is the curvature of the beam. 

 

(28) 

 

(29) 

 

(30) 

 

(31) 

[6] 
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The energy ratio r can be calculated in terms of the 
aspect ratio γ (b/a) and Poisson’s ratio ν by substituting both 
of Equation (29) & Equation (30) in Equation (28). From 
Equation (31), if γ is much larger than 1, r will be much 
smaller than 1 and the element is under-stiffened and vice 
versa. This is similar to what it had been discussed before, in 
the first section, specifically in Equation (6). High values of 
r cause shear locking problems. 

A remedy for this problem is to compensate the 
difference in the energy ratio by getting an adjusted stiffness 
matrix integrated by the weighted integration method. It is 
better to get the stiffness matrix of an element by using a 
linear combination of stiffness produced by two different 
integration rules and this is called weighted integration 
method. Equation (32) shows the stiffness matrix of a 4-
node element formulated by combining two stiffness 
matrices integrated by 1×1 and 2×2 gauss points, while β is 
a factor to reduce the shear locking effect (Equation (33) & 
(34)). In the linear combination of Equation (32), K1×1 is too 
soft and K2×2 is too stiff. Such a combination may give 
balanced stiffness to adjust the energy ratio, as mentioned. 

 
(32) 

 

(33) 

 

(34) 

A. Illustrative Example  

 

Figure 10   Analysis of Cantilever Beam – 60 elements using Q4 element 
with Weighted Integration method 

The same cantilever used before is now modeled using 
the weighted integration method. Table II shows better 
results compared to Q4 elements (without weighted 
integration method) in both deformation and normal stresses 
as a result of some reduction in the shear locking problem. 
The shear stresses in Fig.10 are almost the same compared 
to its corresponding in Q4 elements (without weighted 
integration method). 

TABLE II Results of the Q4 using Weighted Int. Method 

 Elements Exact Q4 element 
Weighted 

Int. 

Normal 

stress 

(KN/m2) 

6 

7407 

2110 2977 

60 4831 5514 

1080 6637 7228 

Deflection 

(m) 

6 

-9.406*10-4 

-6.078*10-4 -8.54*10-4 

60 -8.449*10-4 -9.26*10-4 

1080 -9.49*10-4 -0.001 

Concluding remarks 
Fig. 11 summarizes the results of the analysis presented 

in this work. It shows a comparison of the different types of 

elements and procedures that were used. The small values of 

the normal stresses of Q4 element is a result of the shear 

locking problem. This problem is reduced using Q6 element, 

by adding two additional displacement modes. Another 

remedy to the problem is done by splitting the stiffness 

matrix (or the elasticity matrix) to two parts where each part 

is integrated separately using different Gauss points. 
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Figure 11 Comparison of the different elements with respect to the max. 

Normal stresses 
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