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ABSTRACT 

 

This paper proposes the artificial neural network (ANN) as a 

numerical technique to simulate the microstructure of slag-

blended cements. The ANN model adopted in this research 

consists of three neurons in the input layer which represent 

contents of both water-cooled slag (WCS) and OPC and 

WCS finenesses and three neurons in the output layer which 

represent calcium silicate hydrate (C-S-H), Portalndite (CH), 

and capillary porosity. Back Propagation algorithm was 

employed for the ANN training in which a Tansig function 

was used as the nonlinear transfer function. Thermo-

gravimetric analysis and de-sorption approaches were 

performed to study the microstructure of the different 

OPC/slag pastes. The results obtained from experiments 

agreed with that predicted by ANN, where, the prediction 

ANN model gives very close estimates of C-S-H, CH, and 

capillary porosity of OPC/WCS pastes. Therefore, the 

developed ANN model can be used as an alternative 

approach to evaluate the microstructure of slag-blended 

cements. 
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INTRODUCTION 
 

Classical studies of the microstructure of 

cement paste and concrete have been largely done 

using various techniques [1]. techniques has 

divided these into two categories, direct and 

indirect methods. The direct methods give the 

image of the microstructure in terms of the size 

and shape of the phases relative to each others in 

space. The common techniques in this category 

are optical microscopy, electron microscopy,  
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image analysis and back scattered electron 

microscopy. On the other hand, indirect methods 

provide information about the average size and 

distribution of sizes of some or all the phases. 

Some common techniques in this category are the 

mercury intrusion porosimetry, ethanol 

adsorption, water absorption and thermo-

gravimetric analysis [2]. 

 

Recently, some researches on the artificial 

neural network (ANN) in data processing are 

introduced in the field of durability and they are 

very efficient compared with simple regression 

method obtained from experimental data [3]. In 

area of research on concrete, a neural network 

technique is mainly applied to mixture design 

[4,5], strength evaluation [6,7] and reaction of 

hydration [8]. 

 

An artificial neural network (ANN) is a data 

processing system consisting of a large number of 

simple, interconnected computational elements 

referred to as “neurons” in an architecture inspired 

by the structure of the cerebral cortex of the brain 

[9]. The ANN technique uses very simple 

computational operations (e.g. addition, 

multiplication, and logic operations) to solve 

complex problems that are ill-defined and possess 

high degrees of nonlinearity.  
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The most important element in every ANN 

architecture is the neuron which is similar to the 

biological neurons. It is considered as a cell with a 

built-in activation function connected to other 

neurons by a set of connections. Main elements of 

an Artificial Neural Network are the input layer 

which includes the input neurons corresponding to 

parameters which are assumed to affect the 

outcome of the phenomenon, output layer which 

includes the output neuron(s) which represent(s) 

the solution of the problem, hidden layer(s) 

located between the input layer and the output 

layer and connection weights. Prediction accuracy 

of the network depends on its interconnected 

weights. A network usually performs the 

following three sequential tasks [10]; a) Input 

variables fed to the input layer, b) Processing of 

information within the hidden layer, c) Production 

of outputs at the output layer.  

 

In this research a back-propagation neural 

network (BPNN) was developed to simulate the 

microstructure of different hardened OPC pastes 

made with WCS. Although other neural network 

architectures, such as the generalized regression 

neural network (GRNN) and genetic adaptive nets 

(GAN), could provide faster training, BPNN was 

selected because of its proven mapping 

capabilities and widespread application in civil 

engineering [11]. 

 

In order to collect comparative data, an 

experimental program was conducted in this 

research considering various conditions such as 

(WCS) finenesses (0.4, 1.8, 3.0, and 4.0 m
2
/g) and  

WCS contents (0%, 15%, 20%, and 25% by 

mass of OPC). Furthermore, thermo-gravimetric 

analysis and de-sorption approaches were 

performed to study the microstructure of the 

WCS-blended cements. 

 

SCOPE OF THE RESEARCH 
 

The ultimate objective of this research work is 

to provide a reliable numerical technique capable 

of evaluating the microstructure of WCS-blended 

cements. The specific objectives were as follows: 

1. To investigate impacts of WCS content and WCS 

fineness on the hydration and hence porosity of 

WCS-blended cements using ANN.  

2. To determine the most appropriate 

functions and architecture to be adopted in 

ANN model. 

3. To compare between experimental data 

and ANN model predictions in order to 

determine the efficacy and accuracy of the 

developed ANN modes. 

 

EXPERIMENTAL  
 

Materials, Slag Preparation and Mix 

Proportions 
 

The standard materials used were ordinary Portland cement 

(OPC) and water-cooled slag (WCS). OPC was provided by 

Beni-suef Portland Cement Company and WCS was 

supplied from the Iron and Steel Company, Helwan, Egypt. 

The chemical analysis and surface areas of OPC and WCS 

are listed in Table 1. 
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 Table 1 Chemical analysis and surface areas of 

OPC and WCS. 

 

 

The water-cooled slag (WCS) was produced by rapid 

quenching of slag in water. The water-cooled slag was oven 

dried at 105 ºC for 24 hours to remove the moisture, which 

occurred during the granulation process, using an electrical 

oven with digital monitoring. The grinding of WCS was 

performed using a laboratory ball mill with maximum 

capacity of 10 kg. The surface area of the slag was measured 

volumetrically from the adsorption of the nitrogen gas at the 

liquid nitrogen temperature (-195.8 ºC) using a BET 

volumetric apparatus. The surface areas of the produced slag 

were 0.4, 1.8, 3, and 4 m
2
/g.  

 

Thirty OPC/WCS paste mixes were prepared, using various 

WCS contents (0, 15, 20 and 25%, by weight of OPC), 

various WCS finenesses (0.4, 1.8, 3, and 4 m
2
/g) and 

constant Water-to-binder ratio (w/b) of 0.5. 

 

Preparation of Test Samples 
 

Mixing the cement paste was carried out manually, till 

complete homogeneity of mixes was achieved. Circular 

cement paste discs of thickness 5 mm and 50 mm diameter 

were then prepared for microstructure analysis (using 

thermo-gravimetric and de-sorption approaches). After 

casting, all molded samples were covered with plastic sheets  

for 24 hours and then immersed in water curing tank (20 ± 

2ºC) till the age of testing. 

 

Test Techniques 
 

De-sorption test 
 

This test was used to estimate the amount of interconnected 

pores (capillary porosity), as described by Ngala et al [12] 

and Parrott et al [13]. The saturated specimens specified for 

this study were dried at 90.7% relative humidity by placing  

 

 

 

them above saturated salt solution of barium chloride 

contained in a desiccator until a near-constant sample weight 

was obtained. The weight loss on drying was then converted 

to volume fraction of the bulk paste. This particular capillary 

porosity corresponds to pores wider than about 30 nm. The 

Full details of the techniques and procedures of this test are 

described in [12-14]. The average capillary porosity results 

were calculated using five specimens.  

 

Thermo-gravimetric analysis 
 

 

The hardened cement paste specimens specified for this 

study were subjected to thermo-gravimetric analysis (TGA), 

by monitoring the % weight loss (% decomposition) that 

takes place as a result of raising temperature according to a 

defined regime. Previous studies found that calcium silicate 

hydrate (C-S-H) and calcium hydroxide (CH) decompose at 

a range of temperature of 110 to 250 ºC and 450 to 600 ºC, 

respectively [15,16]. Therefore, the amount of C-S-H and 

CH can be expressed as a function of the difference in the % 

weight loss occurred at these defined range of temperatures 

[16].  

 

Following this concept, the hardened cement paste samples 

were subjected to a wide range of temperature increase and 

the weights were recorded at 110, 250, 450 and 600ºC. The 

% weight loss due to decomposition of C-S-H and CH were 

consequently estimated for all tested samples. The average 

results of these abovementioned parameters for five samples 

were calculated. 

 

 

 

 

 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 LOI 
Surface 

area, m
2
/g 

OPC 21.3 3.58 5.05 63.48 1.39 0.26 0.22 2.05 2.57 0.37 

WCS 44.05 13.78 1.73 36.2 0.3 0.6 0.15 2.07 0.23 
0.4, 1.8, 3, 

and 4 
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NETWORK ARCHETICTURE  
 

The design of the ANN model requires identifying the 

network architecture (i.e. number of input neurons, output 

neurons, hidden layers, and neurons in each hidden layer) 

and the network settings (activation function and learning 

rate). The network architecture adopted in this research 

consists of five neurons in the input layer, which represents 

content of OPC, content of water-cooled slag (WCS), 

fineness of WCS, the % weight loss due to decomposition of 

both C-S-H and CH, and one neuron in the output layer, 

which represents the capillary porosity. 

 

The optimal number of hidden layers was determined by 

considering the trade off between generalization and 

mapping capabilities of the neural network. Basically, the 

choice is limited to one or two hidden layers because of the 

ability of these networks to approximate any nonlinear 

function and map any unknown relationships between the 

input and output variables [17]. Four-layer ANN’s (i.e. two 

hidden layers) have superior fitting capabilities over three-

layer ANN’s (i.e. one hidden layer), however, three-layer 

ANN’s are computationally faster and have better 

generalization capabilities [18]. Also, it was reported that 

95% of the working applications were based on three-layer 

networks with only few exceptions [19]. That is why a 

three-layer ANN was selected for the present application. 

 

For the network settings, activation functions are applied to 

bind the network input and output of the different layers to a 

specific range that the network can efficiently handle. This 

range is usually scaled between 0 and 1 or −1 and 1. 

Different activation functions are provided by the used 

simulator, such as sigmoid, threshold, step, linear, and 

Gaussian functions. The selection of the most appropriate 

function is also a matter of trial-and-error. A scaling range 

between 0 and 1 with the logistic sigmoid activation 

function were found to be the best settings for the present 

application. The learning rate, which identifies the amount 

of adjustments to connection weights during training, was 

determined based on the network performance. 

The learning rate was set to change from 1.0 to 0.1 

according to the percentage of correct predictions (from 

100% to 0%) in each training cycle. This set up is efficient 

since it results in high learning rates in the early training 

cycles, and low learning rates in advanced training cycles, 

which is required to fine tune network weights and achieve 

network stability. 

 

RESULTS AND DISCUSSION 

 

HYDRATION OF SLAG-BLENDED 

CEMENT 
  

The results obtained from both ANN and thermo-

gravimetric analysis for the different hardened OPC pastes 

made with various WCS contents are shown in Figs. 1 and 

2. It is obvious from the results shown in Fig. 1 that the 

amount of C-S-H of all WCS mixes was reasonably higher 

compared to that of the OPC control mix. The amount of 

increase in the % decomposition of CSH reaches about 14, 

21, and 29%, when 15, 20, and 25% WCS replacement 

levels were adopted. While, as seen in Fig. 2, the amount of 

CH of all WCS mixes was reasonably lower compared to 

that of the pure OPC control mix. The amount of decrease in 

the % decomposition of CH reaches about 17, 33, and 50%, 

when 15, 20, and 25% WCS replacement levels were 

adopted The increase in of CSH and the reduce of CH may 

be due to the pozzolanic reaction of WCS which combines 

with CH resulted from the hydration of OPC, to form a fine 

CSH [20].  

Fig. 1 % Decomposition of C-S-H of OPC/WCS pastes with constant WCS 

fineness (0.4 m2/g) 
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Fig. 2 % Decomposition of CH of OPC/WCS pastes with constant WCS 

fineness (0.4 m2/g) 

 

Fig. 3 % Decomposition of C-S-H of OPC/WCS pastes with 

constant WCS content (15%, by mass of OPC) 

 

Fig. 4 % Decomposition of CH of OPC/WCS pastes with constant WCS 

content (15%, by mass of OPC) 

 

The results obtained from both ANN and thermo-

gravimetric analysis for the different hardened OPC pastes 

made with various WCS finenesses (0.4, 1.8, 3, and 4 m
2
/g) 

are shown in Figs. 3 and 4. As seen in Fig. 3, the amount of  

CSH is significantly increased with increasing fineness of 

WCS. The amount of increase in the % decomposition of 

CSH reaches about 14, 29, 50, and 71%, when 0.4, 1.8, 3, 

and 4 m
2
/g finenesses were adopted, respectively. While, as 

seen in Fig. 4, the amount of CH is significantly decreased 

with increasing WCS fineness. The amount of decrease in 

the % decomposition of CH reaches about 17, 33, 50, and 

67%, when 0.4, 1.8, 3, and 4 m
2
/g finenesses were adopted, 

respectively.  

 

Moreover, there is a significant agreement between the 

results obtained from experiments and those predicted by 

ANN when the microstructures of 15, 20, and 25 % slag 

mixes regarded. 

 

POROSITY OF SLAG-BLENDED 

CEMENT 
 

The results of capillary porosity obtained from the De-

sorption test and those predicted by the ANN model for the 

different hardened OPC pastes made with different contents 

of WCS (0, 15, 20, and 25%, by mass of OPC), various 

WCS finenesses (0.4, 1.8, 3, and 4 m
2
/g) and constant w/b of 

0.5 are illustrated in Figs. (5-9). It is generally apparent from 

the results obtained from both ANN model and experimental 

data that the capillary porosity is reduced with increasing 

both the content and fineness of WCS. The amount of 

decrease in capillary porosity of the different OPC / WCS 

pastes compared to the control OPC mix is listed in Table 2. 

 

Fig. 5 Capillary porosity of OPC/WCS pastes with constant WCS fineness 
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Table 2 Amount of decrease in both CH and capillary porosity and increase 

in C-S-H of different OPC / WCS pastes. 

 

Fig. 6 Capillary porosity of OPC/WCS pastes with constant 

WCS fineness (1.8 m
2
/g) 

 

Fig. 8 Capillary porosity of OPC/WCS pastes with constant WCS fineness 

(4.0 m2/g) 

 

 

Fig. 7 Capillary porosity of OPC/WCS pastes with constant WCS fineness 

(3.0 m2/g) 

 

Fig. 9 Capillary porosity of OPC/WCS pastes with constant content of 

WCS (15%, by mass of OPC) 

The decrease in the capillary porosity as a result of 

increasing WCS content is attributed to the increasing of C-

S-H phase and the decreasing of CH phase, see Figs (10-11). 

Moreover, the decrease in the capillary porosity as a result 
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of increasing WCS fineness is attributed to the surface area 

of the slag particles exposed for the pozzolanic reaction, 

where, the finer the slag particles, the larger the surface area 

available for the calcium hydroxide to react with and hence 

the more pozzolanic reaction may be occurred. 

Consequently, a higher amount of CSH can be produced, 

which in turn would fill the unoccupied spaces within the 

paste matrix and then reduces the amount of continuous 

pores (capillary pores) [21]. 

 

CONCLUSIONS 
 

The main conclusions of this study can be summarized as 

follows:  

 

1. The research results obtained from both ANN model 

and experimental program demonstrate that both CH 

and capillary porosity of different hardened OPC 

pastes made with WCS decreases with increasing both 

fineness and content of WCS. 

2. Comparison between experimental data and ANN 

model predictions has proven that there was a high 

correlation between the capillary porosity obtained 

from the de-sorption test and that predicted by ANN 

model, where, the prediction ANN model gives very 

close estimates of capillary porosity of OPC/WCS 

pastes. Therefore, the developed ANN model can be 

used as an alternative approach to evaluate the 

capillary porosity.  

3. The results indicated that the methodology described 

using Backpropagation Artificial Network is a useful, 

powerful tool not only for accurately predicting 

capillary porosity, but also to identifying correlations 

between output and inputs.  

4. Three-layer ANN’s have the ability to approximate 

any nonlinear function and map any unknown 

relationships between the input and output variables. 
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