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Abstract—In this study, a functional for the dynamic analysis 

of viscoelastic Kirchhoff plates is obtained through an efficient 

systematic procedure based on the Gâteaux Differential Method. 

For the solution of the derived functional, mixed finite element 

method in transformed Laplace-Carson space is used. In this 

functional, there exists four independent variables such as 

deflection (w), internal forces (Mx, My, Mxy) in addition to the 

dynamic and geometric boundary condition terms. For modeling 

the viscoelastic behavior, four parameter solid model is employed. 

For transformation of the solutions obtained in the Laplace-

Carson domain to the time domain, different numerical inverse 

transform techniques are employed. The developed solution 

technique is applied to several dynamic example problems for the 

verification of the suggested numerical procedure.  
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I. Introduction  
The dynamic behavior of viscoelastic plates is of 

primary importance in engineering applications. Adopting 
elastic theory to simplify the analysis proves to be 
inconsistent with reality since most engineering materials 
exhibit noticeable time effects due to internal friction. 
Therefore, viscoelastic constitutive relations should be 
employed instead of elastic constitutive relations to reflect 
the material behavior. There are many works in the literature 
on the theory of viscoelasticity [1-2]. For the problems that 
have complex geometries and constitutive relations, closed 
form solutions are often not possible and numerical solution 
methods should be employed. The application of Finite 
Element Method (FEM) to viscoelastic plate problems has 
been presented by number of authors [3-6]. When 
employing the conventional FEM, shear locking is an 
undesirable phenomenon. Considering suitable mixed finite 
element methods is a more general way for the prevention of 
shear locking phenomena. When formulating mixed type 
finite elements the Hellinger Reissner and the Hu-Washizu 
variational principles are more popular. However, in this 
study, the Gâteaux Differential Method, which is more 
powerful and efficient variational tool when compared to the 
Hellinger Reissner and the Hu-Washizu variational 
principles, is used to obtain a functional for the dynamic 
behaviour of viscoelastic Kirchhoff plates in Laplace-Carson 
space.  
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Based on the Gâteaux differential method, Aköz and his 
co-workers [7-11] analysed the quasi-static and dynamic 
behaviour of the viscoelastic beam and plate elements by 
employing the Kelvin and/or Three-parameter Kelvin 
model. In the solutions, the four parameter Kelvin solid 
model is employed. The performance of the method is 
presented by several dynamic example problems. 

II. Field Equations and 
Functional 

Classical thin plate theory neglects the transverse shear 
effects and field equations for viscoelastic Kirchhoff plates 
in Laplace-Carson space are given in (1). For more 
information, the reader is referred to the study of Aköz et al. 
[11]. 
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where q  represents the normal load distribution in the 

Laplace-Carson domain, xM , yM and xyM  represents the 

moment resultants in the same space. Positive directions of 

the stress resultants are shown in Fig. 1. In addition, w is 
the transverse displacement of the plate’s middle surface in 

the Laplace-Carson domain,  is the Poisson’s ratio and 
*D is the operator form of the flexural rigidity of the plate 

and it is related with the creep function *Y as follows: 
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where h is the thickness of the plate. 
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Figure 1.  Internal Forces 

The boundary conditions in the Laplace-Carson space 
can be written in symbolic form as below:  
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Equation (3) and (4) represent the dynamic and geometric 
boundary conditions, respectively.  

Field equations can be written in operator form as:  

 Q=L y - f 

where Q is a potential operator if the equality  
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is satisfied [12], where  ,d y yQ  and  d y , y *Q are 

the Gâteaux derivatives of the operator Q and the 

parenthesis indicate the inner products.  

The Gâteaux derivative of an operator is defined as:  
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where  is a scalar quantity. After satisfying the 
requirement, the functional is obtained as: 
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where s is a scalar quantity. The explicit form of the 
functional corresponding to the field equations of the 
viscoelastic Kirchhoff plates in the Laplace-Carson domain 
becomes: 
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Parentheses with the subscripts  and  represents the 
dynamic and geometric boundary conditions, respectively. 

In order to derive the finite element formulation, first the 
interpolation function must be chosen. Rectangular master 
element as illustrated in Fig. 2 is used in the formulation. 
The shape functions for rectangular master element are: 

 

Figure 2.  Rectangular master element 
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The four variables of the functional given in (9) are 
expressed by the shape functions and inserted into (9). After 
simplifying with respect to nodal variables, the element 
matrix is derived. The numerical  solutions obtained in the 
Laplace-Carson space are transformed to the time space 
using different numerical inverse Laplace transform 
techniques such as MDOP, Dubner & Abate’s and Durbin’s 
methods. Papers for discussion of Laplace inversion 
techniques, see [13-16].  

III. Numerical Examples 
The plate structure is considered as a four-parameter 

solid model. Due to the symmetry, the computations are 
carried out for a quarter of the plate structure. 

The material properties are assumed to be Four-
parameter solid model (as illustrated in Fig. 3): 

E1= 98 MPa,  

1= 98 MPa.s,  

E2= 274.4 MPa,  

2= 274.4 MPa.s,  

=0.3 
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Figure 3.  Four-Parameter Solid Model 

Hence, the relaxation modulus will be 
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Considering a simply-supported plate whose thickness 
h=0.1m, length a=4m and width b=4m, the dynamic 
behavior viscoelastic thin plate is analyzed for different 
time-dependent loadings. For the analysis, 4x4 mesh size is 
used. For more information about the most suitable mesh 
scheme, the reader is referred to the study presented by 
Aköz et al. [11].  In order to transform solutions from the 
Laplace-Carson domain to the time domain, the MDOP, 
Dubner & Abate and Durbin inverse Laplace transform 
methods are employed for aT=5, N=100 and T=20 s. The 
most suitable values for the effective parameters of the 
inverse transform methods that decreasing the fluctuation in 
the solutions, see [11]. 

The geometry and boundary conditions of the plate 
structure are shown in Fig. 4. The time histories of loads in 
numerical examples are illustrated in Fig. 5. 

 

Figure 4.  Geometrical properties of the simply supported plate 

 

Figure 5.  Time histories of applied loads 

 

Example 1: 

In this example, a simply-supported viscoelastic plate 
subjected to rectangular impulsive load for t1= 10 s (Type I) 
is considered. For the numerical inversion, MDOP, Dubner 
& Abate’s and Durbin’s methods are employed. The 
material density ρ is assumed to be 200 kg/m

3 
for the 

dynamic response. The central displacement and bending 
moment-time variations are presented in Fig. 6 for Dubner 
& Abate’s and Durbin’s methods. Fluctuation is observed in 
the MDOP inverse transform method for the time-dependent 
bending moment values at the center of the plate as time 
increases. In addition, the dynamic behavior of the 
viscoelastic plate will eventually disappear with time as 
expected. 

 

 

 

 

Figure 6.  Displacement and Bending Moment-Time variation 

Example 2: 

In this example, the effect of the damping ratio (E/) in 
the dynamic behavior of a simply-supported viscoelastic 
thin plate is considered. The material density ρ is assumed to 
be 200 kg/m

3 
for the dynamic response. Durbin’s inverse 

transform method’ results are presented in Fig. 7 for 
triangular impulsive load (Type II) for t1= 10 s. As expected, 
the vibration behavior of the viscoelastic plate resembles the 
vibration of an elastic plate for small values of viscosity 
coefficient.  
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Figure 7.  Effect of viscosity coefficient on the amplitude of displacement 

IV. Conclusion 
The dynamic behavior of viscoelastic thin plates is 

analyzed via the mixed finite element formulation in the 
Laplace-Carson space. The four-parameter solid model is 
employed in viscoelastic modeling. The functional obtained 
for the dynamic analysis of viscoelastic thin plates through a 
systematic procedure based on the Gâteaux differential has 
four independent variables such as displacement, bending 
moments and twisting moment in addition to boundary 
condition terms. For transformation of the solutions obtained 
in the Laplace-Carson space to the real time space, different 
numerical inverse Laplace transform techniques such as 
MDOP, Dubner & Abate and Durbin are employed. The 
performance of the developed mixed finite element 
formulation is tested through several dynamic example 
problems.  
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