

374

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

1 Abstract—In this paper, we investigate several machine

learning algorithms for automatic classification of Turkish

news into predetermined categories like economy, life, health

etc. We use Apache Big Data technologies such as Hadoop,

HDFS, Spark and Mahout, and distributed machine learning

frameworks.

 Index Terms— News classification, distributed machine

learning, Big Data

I. INTRODUCTION

Since the number of digital documents grows

dramatically, the need for automatically categorizing them

arises in many areas of online world. By using machine

learning algorithms, documents can be assigned into

different categories, titles, languages or even emotional

conditions. In this study we describe our work on creating a

distributed classification system for collecting the online

news and automatically assigning them to related groups

using machine-learning algorithms.

II. BACKGROUND

A. Document Classification Steps

Reference [1] explains the text classification as follows:

 is a member of a document collection D and is a

member of possible categories like , then

text classification is the operation of matching each with

a . In this study the classification is done on maximum of

five categories. The categories are economy, sports, culture,

politics, and world.

 Typical steps for applying a machine learning

algorithms on text based data are shown in Fig. 1.

Fig. 1. Text classification steps [1]

We followed the same steps in our classification application.

B. Collecting The News and Processing the Documents

We have developed a Java based application for

harvesting the news from several Turkish daily newspapers

called “The News Harvester”. The Harvester takes the URL

of a newspaper RSS feed and uses XML parsers to identify

individual news items. Then extracts the URL address of

each news page, downloads the page and extracts the actual

news content. The application runs in multiple threads and

can download several news contents simultaneously. The

Harvester then creates an XML document for each news

item, which in turn is saved in a file. Following is the news

XML document format:

<item>

<date> date: time </date>

 <category> economy </category>

 <text> the news </text>

</item>

The Harvester can be told to run for specific date ranges,

categories or news count etc The reason for using the XML

is its usefulness in labelling the documents in the training

process and gathering the test results.

As shown in the Fig. 1, the first step is reading the

documents, which are the XML files created by the News

Harvester. The second and third steps (Text tokenization and

stemming) require the use of an NLP (Natural Language

Processing) toolkit. In our actual implementation the

tokenization and stemming processes are done before the

document is saved to the disk. Although this was not done in

parallel, it still saved a lot of time because we didn’t need to

re-access the documents later in the training process.

 We used a Java based Turkish NLP library called

Zemberek [1]. Zemberek is an open source project

developed specifically for Turkic languages, especially

Turkish. The news contents were divided into sentences and

were cleaned from unnecessary words such as stopwords

other unnecessary parts. In Turkish language words like

“ve”, “ile”, “de”, “da” has no meaning alone like “the”,

“and”, “with” words in English. After the tokenization step,

we find the root of each word in the stemming step. We only

take the word roots into account so that same words are not

repeated in the training dictionary.

Document Classification

Using Distributed Machine Learning

Galip AYDIN
1
, İbrahim Riza HALLAC

2

1,2
Firat University, Computer Engineering Department

23100, Elazig, Turkey

375

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015
 C. Data Processing Platform

Unprecedentent growth in the size, variety and velocity of

data is considered as the Big Data revolution. Google’s

MapReduce [3] has started a new trend for big data

applications. This programming model is not all new but

storing and analysing large amounts of data on commodity

hardware is gaining a lot of popularity.

Perhaps the most well known big data framework is

Apache’s open source distributed and parallel processing

framework Hadoop [REF]. Hadoop Related projects and

solutions keep on coming out really fast.

Another Apache Big Data framework is Spark, which

performs 100 times faster than Hadoop [4]. Spark offers an

in-memory data processing environment which becomes

very useful in iterative computing of big data.

In this study an Apache Spark cluster was set up in

Standalone Deploy Mode. Spark version 1.0 was installed

on virtual machines. Vector representation of the

documents, training and testing was done in parallel on

these machines.

III. CLASSIFICATION

After the pre-processing of the data we need a method to

represent the textual data as an algebraic model. Text

documents can be considered as arrays of words. They are

usually represented as vectors with a weighting factor. This

is called as vector space model. In this model there is a

dictionary, which consists of all the words of all the

documents; the positions of the words are insignificant. The

parameters taken into consideration in the weighting of the

vector space model are existence of the word, number of

each word, total number of the words in the same document

and number of the word among all the words in all of the

documents. In this work we used the TF-IDF (term

frequency - inverse document frequency) model. The

formulation of the TF-IDF method is as follows:

 (1)

 (2)

Here refers to number of term in document .

refers to the total number of documents. refers to

number of documents contain term .

Input:

Documents
Output:

Weight

Vectors

Map:

Document

Frequency

Reduce:

Document

Frequency

Map:

Term

Frequency

Join:

Document F.

 with Term F.

Reduce:

Weight Vector

per Document

Task 1

Task 4 and 5

Task 2

Task 3

 Fig. 2 Distributed TF-IDF calculation [5]

Here we calculated the TF-IDF scores in parallel. This

process is shown in Fig. 2.

Naive Bayes is a statistical method based on Bayes

theory. The possibility of a document for belonging to the

class can be formulated as:

 (3)

One of the pros of the Naive Bayes Classification

algorithm is its high success rate even with small training set

sizes.

IV. EXPERIMENT RESULTS

A. Classification Results

We implemented different training scenarios to measure

the success rate of Naive Bayes Algorithm on news

classification.

Our experiment data consists of news from five different

categories. We tested the success of classification results for

different number of input categories. For each test different

number of training data were used. Each training data has to

contain at least 20 words. Otherwise the document was

ignored.

The experiments contain two steps; first the training is

done using a predetermined number of documents for each

category, then in the second step 1000 documents are

classified using the trained model. The classified documents

are not used in the training step.

First we applied the algorithm on economy and sports

news. We train the system using various numbers of

documents starting from 10 and increasing in each

experiment up to 21000. After each training step

classification on 1000 documents is done. Then we applied

the algorithm on three, four and five categories.

TABLE I. CLASSIFYING TWO CATEGORIES OF NEWS

Number of training

documents per category

Economy

Success (%)

Sport

Success (%)

10 79,2 88,6

50 96,4 94,1

100 96,3 97

250 98,4 91,6

500 98,8 89,4

1000 98,2 88,2

2000 97,8 87,2

4000 97,6 89,1

8000 95,8 90,2

9000 96,6 90,7

10000 96,7 91,2

18000 96,5 91,4

21000 95,3 92,7

376

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

Fig. 3. Classifying two categories of news

TABLE II. CLASSIFYING FIVE CATEGORIES OF NEWS

Number

of training

documents

per

category

Economy

Sport

Culture

Politics

World

Success

(%)

Success

(%)

Success

(%)

Success

(%)

Success

(%)

10 46,4 85,3 82,9 55 53,2

50 88,1 89,1 92,1 58,1 85

100 84,2 91,6 94,1 67,8 85,6

500 77,2 86,9 87,7 78,5 84,7

1000 78,3 82,3 86,9 79,3 86,5

3000 78,3 80,5 83,3 81,1 84

5000 77,6 76,6 82 79,8 80,9

8000 77,4 78,1 79,2 77,4 77,8

10000 78,2 77,5 78,6 80,7 79,6

Fig. 4. Classifying five categories of news

B. Performance Tests

We deployed a private cloud using OpenStack [6] for

running the experiments. Spark version 1.0 was installed on

virtual machines. Apache Spark provides different cluster

manager options. We run the Standalone cluster mode,

which is appropriate for quick setup and experimental uses.

We used Fabric [7] for managing our cluster. For setting up

and running a big data test environment there are some

routine tasks for administrating a cluster of nodes and we

found Fabric very handy for performing these tasks.

We also measure the effect of the cluster size on

distributed classification. To achieve this goal we performed

training tests on a single node, two-node and four-node

Spark clusters. We change the size of the training set in each

step and measure the time. Here training documents consist

of same number of labelled documents from four different

categories (economy, sports, culture and politics).

Table III shows the running time of training tests on a

single node, two-node and four-node clusters for different

number of training documents. Each node has 8 GB of

RAM. The results show that there is a limit on the number

of documents to use for each cluster configuration. The limit

is directly related to the amount of RAM available for use

by Spark. In single-node configuration the system can not

process 32k documents while the two-node cluster can

process up to 48k documents. The four-node cluster can

successfully process 60k documents in parallel without

throwing “out of memory” exception.

We also observed that the number of I/O accesses decrease

the performance. In other words using thousands of files as

input results in higher processing times. To solve this

problem we concatenate hundreds or even a few thousand

files into a larger file which increases the overall processing

performance.

 TABLE III. PERFORMANCE OF THE TESTBED

Number of

training

documents

Single node
2

nodes
4 nodes

Time(sn) Time(sn) Time(sn)

40 11 11 15

200 13 13 16

400 13 13 16

2000 17 17 24

4000 21 20 29

8000 31 27 42

16000 48 39 55

24000 65 56 69

32000 outOfMem 74 97

40000 outOfMem 88 106

48000 outOfMem outOfMem 135

60000 outOfMem outOfMem 187

Fig. 5. Performance test graphic

70

75

80

85

90

95

100

1
0

5
0

1
0

0

2
5

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

9
0

0
0

1
0

0
0

0

1
8

0
0

0

2
1

0
0

0

Economy Sport

45

55

65

75

85

95

10 50 100 500 1000 3000 5000 8000 10000

Economy Sport Culture

Politics World

10

20

30

40

50

60

70

40 200 400 2000 4000 8000 16000 24000

Single machine 2 4 machines

377

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

V. CONCLUSIONS

 In this study we classified Turkish news using Naive

Bayes supervised machine learning algorithm. The

algorithm was tested with two, three, four and five different

categories using up to 50.000 different training documents.

 We observed that Naive Bayes performs well even

when there is a small number of training documents and it

performs better when the training set data grows. When

there is large number of documents at hand, it becomes very

hard to process all of them in a short time using standard

computers. For such situations Big Data technologies may

help. We show that using open source cloud computing

technologies along with distributed computing frameworks

we can process very large number of documents in parallel

in very short times.

REFERENCES

[1] Ikonomakis, M., Kotsiantis, S., and Tampakas, V. Text classification
using machine learning techniques. WSEAS Transactions on

Computers, 2005. 4(8): p. 966-974.

[2] Zemberek. [cited 02.01.2015]; Available:
https://code.google.com/p/zemberek/.

[3] Dean, Jeffrey, and Sanjay Ghemawat. MapReduce: simplified data

processing on large clusters. Communications of the ACM 51.1
(2008): 107-113.

[4] ZAHARIA, Matei, et al. Spark: cluster computing with working sets.

In: Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing. 2010. p. 10-10.

[5] Apache Spark Docs. [cited 02.01.2015]; Available:

http://spark.apache.org/docs
[6] OpenStack. [cited 02.01.2015]; Available: http://www.openstack.org/

[7] Fabric. [cited 02.01.2015]; Available: http://www.fabfile.org/

