

296

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

Mining Infrequent Weighted Itemsets from Very

Large Data based on MapReduce Model

T Ramakrishnudu and R B V Subramanyam

Abstract— Mining frequent and infrequent itemsets from a

given dataset is the most significant area of data mining. When

we mine both frequent and infrequent itemsets simultaneously,

infrequent itemsets become very important because there are

many useful negative association rules in them. Infrequent

weighted Itemset mining is the process of mining infrequent items

from weighted dataset. Many of the weighted Itemset mining

algorithms scan the dataset many times. When the dataset size is

very large, both memory usage and computational cost of mining

algorithm is very expensive. In addition, single machine memory

and other resources are insufficient to handle very large weighted

datasets. Parallel and distributed computing is the alternative

solution for these types of problems. In this paper we proposed

infrequent weighted Itemset method on Hadoop-MapReduce

framework, which can handle huge datasets. Experiments are

performed on 8 node cluster with a synthetic dataset. The

experimental results show that the proposed method is very

efficient in handling very large datasets.

Keywords— data mining, association rule, frequent Itemset,

Infrequent Itemset, Weighted Itemset, Hadoop, MapReduce.

I. Introduction
Knowledge Discovery in Database (KDD) [13] is the

process of extracting interesting, previously unknown and
potentially useful patterns from the large repositories.
Frequent Itemset Mining (FIM) or Association Rule Mining
(ARM) is a data mining task [13]. Frequent Itemset is
actionable if its support count is greater than or equal to a
user-specified threshold, called a minimum support (ms),
whereas Infrequent Itemset support count is below the
minimum support (ms). Association Rule Mining discovers
associations among items in a transactional database [1].

Frequent Itemset Mining has been extensively studied in
the literature since Agrawal et al. first introduced it in [1], [2].
Abundant effort has been devoted and methods proposed for
efficiently discovering association rules [1],[2],[3],[4].
Association rules offer a useful and effective way to identify
and represent certain dependencies between items in a
database.

In recent years, there has been an increasing demand for
infrequent Itemset mining. For instance, in [7, 8, 9, 12]
algorithms for discovering infrequent itemsets have been
proposed. However, many of the frequent and infrequent
Itemset mining algorithms ignore the interest of an item in the

T Ramakrishnudu, R B V Subramanyam

Department of CSE, National Institute of Technology, Warangal

India

given dataset. Thus, the actual importance of an Itemset is not
possible to identify using the above approaches. By giving
different importance to different items in the same transaction,
few new models proposed in [11-17]. However, traditional
frequent and infrequent weighted Itemset mining algorithms
still suffering from the scalability, especially if the data size is
very large.

When the dataset size is very large, both memory usage and
computational cost of mining algorithm is very expensive. In
addition, single machine memory and other resources are
insufficient to handle very large weighted datasets.

Additionally, because of exponential growth of the data,
the organizations have to deal with continually growing
amount of data. As these data grow past hundreds of gigabytes
towards terabytes or more, it becomes nearly unimaginable to
mine them on a single machine. The solution for the above
problem is the distributed computing.

Parallel and distributed computing is the alternative
solution for these types of problems. Distributed data mining
algorithms attempts to decompose the mining problem into
sub- problems and solves the sub-problems using
homogeneous machines such that each node works
independently and concurrently. Although the distributed data
mining improve the performance, but raises quite a few issues
like dividing the input data, load balancing, communication
cost between the working nodes and identifying the failure of
nodes. To overcome the above problems Jeffery Dean et al
[18, 19] introduced a new programming paradigm called
MapReduce. MapReduce, as a simplified distributed
programming model developed by Google [18, 19], is more
appropriate for large data processing applications. It has been
widely used in the tasks of data mining, machine learning and
search engines etc.

In the MapReduce programming [18, 19], a distributed file
system initially divide the input file and the data represented
as <key, value> pairs. All computations are carried out by two
functions called Map and Reduce. Both the functions Map and
Reduce take <key, value> pair as an input and produce the
same pair as an output. The Map function accepts an input pair
and return intermediate <key, value> pair as an output. The
Reduce function accepts an intermediate key and the set of
values associated with that key as an input. It combines these
values to form a possible small set of values. The reduce
function write output to a distributed file in the Distributed
File System (DFS).

Some of the researchers made an effort towards Frequent
Itemset Mining (FIM) and the association rule mining (ARM)
using MapReduce programming model [20-25] on
transactional data. And few methods [26-27] deal with
different kind of data. All the existing methods focus on

297

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

frequent Itemsets mining. In this paper, we focused on mining
infrequent weighted Itemset from large weighted data using
MapReduce framework.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts and preliminary definitions. In
Section 3, the existing methods are reviewed. The proposed
method is presented in Section 4. Experimental results are
given in Section 5. The concluding remarks are finally made
in Section 6.

II. Concepts and Definitions

A. Basic Concepts
Let I= {i1, i2, i3...in} be a finite set of items and W= {w1, w2,

..., wn} be a set of weights, these weights are non-negative

numbers. The weighted item is defined as pair <X, w(X)>,

where X is an item and w(X) is the weight associated with

X.

Definition 1: A weighted transaction Tw is a set of weighted

items <X, w(X)>

Definition 2: A weighted transactional dataset Dw is a set of

weighted transactions Tw.
Dw={Tw1, Tw2, …, Twn}. (1)

Definition 3 Item weight [12]: Item weight is a value

associated with an item representing its significance. It is

denoted as w(item).

Definition 4 Weighting function [17]: Let Tw, be a weighted

transaction, Iw (Tw) be a Set of weighted items in Tw, TwDw,

the weighting function Wf(Iw)= aggregation of its item weights

in that transaction Tw.

Definition 5 IWI-Support: Let Iw be a weighted Itemset, Dw be

a weighted transactional dataset, Iw (Tw) be a set of items in Tw,

TwDw, Wf be a weighting function, and the IWI-Support [17]

is as shown below:





)(|

),(),(
TwISIwDwTw

TwIwWfDwIwSupportIWI (2)

Definition 6: A Weighted Frequent Itemset is one, its IWI-
Support is greater than or equal to the user specified weighted
minimum support (wms) value, then the item is called frequent
weighted Itemset otherwise infrequent weighted Itemset.

B. Hadoop Framework
Hadoop framework is allows the distributed processing of

large datasets across cluster of machines using simple

programming models [28]. Hadoop is the parallel

programming platform built on Hadoop Distributed File

Systems (HDFS) for MapReduce computation. The HDFS is

the distributed file system designed to run on commodity

hardware. HDFS is highly fault-tolerant and is designed to be

deployed on low-cost hardware. HDFS provides high

throughput access to application data and is suitable for

applications that have large datasets. HDFS was originally

built as infrastructure for the Apache web search engine

project. HDFS is a part of Apache Hadoop main project [28].

C. MapReduce
MapReduce is a programming model and an associated

implementation for processing and generating large datasets.
Users specify a map and reduce functions, they takes <key,
value> pair as an input and generates intermediate <key,
value> pairs and merges all intermediate values associated
with the same intermediate key respectively. Programs written
in this paradigm are automatically parallelized and executed
on a large cluster of commodity machines [18][191].

III. Related Work
Several methods have been proposed for mining frequent

Itemsets based on MapReduce framework. But no method
have been proposed for mining weighted frequent and
weighted infrequent Itemsets based on MapReduce
framework. Few existing methods which are used to mine
frequent Itemsets using MapReduce framework are listed
below.

In [20] the authors are proposed a one pass method. The
algorithm needs only one scan (MapReduce job) to find all
frequent k-itemsets. Initially, splitting will take place and after
that each mapper will apply Apriori on that split and it will
generate all length Itemsets. It produces output as Itemsets as
<key, 1>. The reduce will take output of mapper and sum all
values for particular keys, then prune infrequent Itemsets and
finally generate all frequent Itemsets.

In k-phase algorithms [21-23] k scans (MapReduce jobs)

are needed to find k-frequent (k length) items. These methods

uses two different map functions: one for the first phase and

one for rest of the phases. In the first phase the mapper

function outputs <item, 1> pair’s for each item contained in

the transaction. The reducer collects all the support counts of

an item and outputs the <item, count> pairs as a frequent 1-

Itemset to the L1, when the count is greater than the minimum

support count. Next the k-Itemsets are passed as an input to the

mapper function and the mapper outputs <item, 1>, then the

reducer collects all the support counts of an item and outputs

the <item, count> pairs as a frequent k-Itemset to the Lk.

Othman Yahya et al [25], proposed a two-phase algorithm

on Hadoop-MapReduce, which is more efficient than the

previous one-phase and k-phase methods. It takes only two

MapReduce phases to find all frequent k-Itemsets. In phase1,

each input split is assigned a map task (executed by map

worker) that calls a map function to process this split. The

mapper function uses Apriori with the partial minimum

support count; which is equal to the number of transactions in

the split multiply by the minimum support threshold.

The mappers output is a list of intermediate <key, value>

pairs grouped by the key via combiner, and stored in the map

298

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

worker where the key is an element of partial frequent k-

Itemsets and the value is its partial count. When all map tasks

are finished, the reduce task is started. The mappers output are

shuffled to the reduce worker that calls a reduce function. The

output of reduce function is a list (Lp) of <key, value> pairs,

where the key is an element of partial frequent k-Itemsets and

the value equal one, stored in HDFS.
In phase two, one extra input is added to the data flow of

the previous phase, which is a file that contains all partial
frequent k-Itemsets. The map function of this phase counts
occurrence of each element of partial frequent k-Itemset in the
split and outputs a list of <key, value> pairs, where the key is
an element of partial frequent k-Itemset and the value is the
total occurrence of this key in the split. The reduce function
outputs a list (Lg) of <key,value> pairs, where the key is an
element of global frequent k-itemsets and the value is its
occurrence in the whole dataset. The main drawback of this
method is the large number of partial frequent itemsets may
overload the map functions of the phase-II.

Zahara Farzanaryar et al [26] proposed a method based on
insignificant Itemset property, and it deals with social network
data. It improves the method proposed in [25].

In [27] authors proposed a scalable and distributable
binomial method, it deals with different type of data. It
converts the input data into binomial format to take benefit of
MapReduce method structures, and then mine association
rules from that data. In this a layered approach is used to mine
frequent Itemsets from the binomial data.

IV. Problem Description and
Proposed Method

Most of the algorithms proposed for mining frequent
Itemsets using Hadoop MapReduce, but no algorithm was
proposed for mining infrequent Itemsets using Hadoop
MapReduce. Infrequent itemsets become very important
because there are many useful negative association rules in
them. As mentioned in section I, many of the existing methods
are suffering from scalability and complexity. Hence, in this
paper we designed a method to mine weighted infrequent
Itemsets from large data using Hadoop MapReduce
framework.

Problem Statement: Given a weighted transactional
database Dw and user-defined weighted minimum support
(wms) value, the problem is to find infrequent weighted
Itemsets using Hadoop MapReduce framework.

The proposed method based on MapReduce model to find
infrequent weighted Itemsets is given below.

Method:

Step1: Scan the input dataset and Divide the input dataset into

number of chunks and assign one chunk to each node.

Step2: The Map functions at each node:

a. Scans each transaction of the input data subset and

generate local candidate Itemsets (all possible subsets of

the transaction).

b. Calculate IWI-Support for all local candidate Itemsets.

And generate and output intermediate <Key, Value>,

defined as <Itemset, IWI-Support>.

Step3: The Reducer functions accept <Itemset, IWI-Support>

as input:

a. Calculate IWI-support of the global candidate Itemset.

b. if IWI-Support(I) < User defined minimum threshold

value, then assign to output list L.

else discard I.

c. Output the <I, IWI-Support>.

The detailed flow diagram of the method is shown in

Figure.1. The pseudo code of the mapper and reducer are
shown in the Figure.2 and Figure.3.

The mapper function accepts one input called input split,
and the reducer function accepts two different inputs called
intermediate values and weighted minimum support given by
the user.

Map()

Input: Split-Si;

Output: <key1, value1>; key: infrequent weighted k-Itemset of

the split Si; value: local IWI-support.

Begin

1. For each weighted transaction Tw in Si.

2. For each weighted Itemset Iw in tw. /* Iw is all possible

subsets of tw.*/

3. wsupp=Cal_IWI-support(Iw) /* Calculate IWI-Support

of Iw in the transaction (Tw) */

4. output(Iw,wsupp)

5. End for

6. End for

End;

Algorithm for Map

Reduce()

Input: <key1, value1>; key1: local weighted candidate Itemset

of the split Si; value: local IWI-Support, weighted minimum

support (wms).

Output: <key2, value2>; key2 is infrequent weighted Itemsets;

value2 is global IWI-Support.

Begin

1. Foreach Iw in key1 do

2. val2= Cal_global IWI-support(Iw) /* Calculate IWI-

Support of Iw in the entire dataset */

3. If(val2< wms)then

4. output(Iw , val2)

5. End if

6. End for

End

Algorithm for Reduce

299

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

V. Experimental Results
In this section we evaluate the performance of the

proposed method running on cluster of nodes. To evaluate the
performance of our method we formed few clusters with
different size. All the experiments were conducted in a
Hadoop 2.2.0 cluster where each node contains 2.20 GHz
processors with 4 GB RAM, and a 500 GB hard disk and 2 a
gigabyte Ethernet link.

We used a synthetic dataset in our experiments. It is a
weighted transactional dataset. It consists 200 distinct items
and the average size of the transaction is 100. The weights of
items are assigned randomly from 0 to 100. Example weighted
transactional dataset is shown in Table 1.

TABLE I. WEIGHTED TRANSACTIONA DATASET

Transaction ID Weighted Items

Tid1 (i1,45) (i2,60) (i3,5) (i4,20)

Tid2 (i1,30) (i2,10) (i3,1) (i4,100) (i5,90)

Tid3 (i3,40) (i4,70)

Tid4 (i1,5) (i2,40) (i3,80)

Tid5 (i2,20) (i3,0)

We test our approach to find weighted infrequent Itemsets.
A set of experiments conducted to show the behaviour of our
approach at different weighted minimum support and dataset
size in one cluster and different cluster size for fixed weighted
minimum support. For better values each case is executed
three times and the average values are taken.

“Fig.1” shows performance of the algorithm; the execution
time of the algorithm is observed for different dataset size with
a fixed weighted minimum support on 8 nodes cluster. The
results show that the algorithm takes less time even for larger
datasets.

“Fig. 2” depicts the performance of the algorithm; in this
the execution time of the approach is observed for different
weighted minimum support values for two different dataset
sizes of 1GB and 10GB. The results show that there is no
much difference in execution time when the weighted
minimum support is changed.

Figure 1 Execution time for different dataset size

Then we fix the weighted minimum support at 50 and
analysed the behaviour of the proposed approach at different
cluster size for two different data sizes of 1GB and 10GB.
“Fig. 3” shows results of these experiments. The results show
that there is a much difference in the execution time if the
cluster size is less, but there is no much difference in case of
number of nodes are increased in the cluster. Also we
observed that the impact of MapReduce framework is very
less when the cluster size small.

VI. Conclusion and Future Work
Finding infrequent weighted Itemset is one of the

important frequent Itemset mining problems. The task of
finding weighted infrequent items from very large data needs a
lot of computational and memory power.

In this paper we have proposed a method to mine weighted
infrequent Itemsets from very large data based on MapReduce
model. The results show that the proposed approach in this
paper is very efficient in finding weighted infrequent items
from very large datasets. Also the experimental results show
that the proposed method is more efficient as the data size is
increased.

Our future research works include design of better
weighting functions, which are more suitable for parallel or
distributed data mining environment. Performance of the
proposed method is depending on how the weights are
calculated during map and reduce phases.

Figure 2 Execution time for different minimum support

Figure 3 Execution time for different cluster size

300

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

References
[1] R. Agrawal, T. Imielinski, A. Swami, “Mining association rules between

sets of items in large databases”, In Proceedings of ACM SIGOM

International Conference on Management of Data, New York, May
1993, pp. 207–216.

[2] R.Agrawal and R.Srikant, “Fast algorithms for mining association

rules”, In Proceedings of 20th International Conference on VLDB, Chile,
May 1994, pp. 207–216.

[3] J.Han and Y.Fu, “Mining multiple-level association rules in large

databases”, IEEE Trans. on Knowledge and Data Engineering, Vol. 11,
No 5, September 1999, pp. 798-805.

[4] XXXX

[5] Jiawei Han and Micheline Kamber, “Data mining: concepts and
techniques”, Morgan Kaufman, 2001.

[6] X. Wu, C. Zhang and S. Zhang,”Efficient mining of both positive and

negative association rules”, ACM Trans. on Information Systems, vol.22
(3), 2004, pp 381–405.

[7] Junfeng Ding, Stephen S.T. Yau, “TCOM, an innovative data structure

for mining association rules among infrequent items”, Computers and
Mathematics with Applications, Vol. 57, No. 2, January 2009, pp. 290-

301.
[8] Ling Zhou, Stephen Yau, “Efficient association rule mining among both

frequent and infrequent items”, Computers and Mathematics with

Applications, Vol. 54, No.6, September 2007, pp. 737–749.
[9] Yuefeng Li, Abdulmohsen A, and Ning Z, “Mining positive and

negative patterns for relevance feature discovery”, Proceedings in the 6th

ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, USA, July 2010, pp.753-762.

[10] Antonella G, Luigi M, Domenico S and Edoardo S,”Solving inverse

frequent Itemset mining with infrequency constraints via large-scale
linear programs”, ACM Transactions on Knowledge Discovery from

Data, Vol.7 No.4, November 2013, article 18.

[11] Wei W and Jiong Y, “Efficient mining of weighted association rules”, in

the 6th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, USA, August 2000, pp.270-274.

[12] Feng T, Fionn M and Mohsen F, “Weighted association rule mining
using weighted support and significance framework”, in the 9th ACM

SIGKDD International Coference on Knowledge Discovery and Data

Mining, USA, August 2003,pp.661-666.
[13] Yuanyuan Z, He J, Runian G and Xiangjun D, “Mining weighted

negative association rules based on correlation from infrequent items”,

in International Conference on Advanced Computer Control, Singapore,
January 2009, pp.270-273.

[14] Li Z, Zhang F, Lin X and Li K, “A fuzz weighted algorithm for mining

infrequent association rules”, in the 2nd International Conference on
Information Management and Engineering, China, April 2010, pp.94-97.

[15] He J and Xiumei L, “Mining weighted negative association rules from

infrequent itemsets based on multiple supports”, in international
Conference on Industrial Control and Electronics Engineering, Cina,

August 2012, pp.89-92.

[16] Guo-Cheng L, Tzung-Pei H, Hong Yu L, Shyue-Liang W and Chun-Wei
T, “Enhancing the efficiency in mining weighted frequent itemsets”, in

the IEEE International Conference on Systems, Man and Cybernetics

Society, UK, October 2013, pp.1104-1108.
[17] Luca Cagliero and Paolo Garza “Infrequent weighted itemset mining

using frequent pattern growth ” IEEE Transactions on Knowledge and

Data Engineering, Vol. 26, No. 4, April 2014, pp. 903-915.
[18] Jeffery Dean and Sanjay Ghemawat “MapReduce: simplified data

processing on large clusters”, 6th Symposium on Operating Systems

Design and Implementation, October 2004, pp.107-113.
[19] Jeffery Dean and Sanjay Ghemawat “MapReduce: simplified data

processing on large clusters”, Communications of the ACM, Vol. 51,

No.1, 2008, pp. 107-113.
[20] Lingiuan L and Min Z, “The strategy of mining association rule

[21] based on cloud computing”, in International Conference on Business

Computing Global Informatization, China, July 2011, pp.475-478.

[22] Ning Li, Li Z, Qing H and Zhongzhi S, “Parallel implementation of

apriori algorithm based on MapReduce”, 13th International Conference

on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, Japan, August 2012, pp. 236-241.

[23] Ming-Yen Li, Pei-Yu L and Sue-Chen H, “Apriori-based frequent

Itemset mining algorithms on MapReduce”, The 6th International

Conference on Ubiquitous Information Management and

Communication, Malaysia, February 2012, pp.257-264.

[24] Xin Yue Y, Zhen L and YanFu, ”Mapreduce as a programming model
for association rules algorithm on hadoop”, in 3rd International

Conference on Information Sciences and Interaction Sciences, China,

June 2010, pp. 99-102.
[25] Othman Y, Osman H and Ehab E, “An efficient implementation of

apriori algorithm based on hadoop-MapReduce model”, International

Journal of Reviews in Computing, Vol. 12, December 2012, pp.57-67.
[26] Su-Qi W, Yu-Bin Y, Guang-Peng C, Yang G and Yao Z, “MapReduce-

based closed frequent Itemset mining with efficient redundancy

filtering”, 12th International Conference on Data Mining Workshops,
Belgium, December 2012, pp. 449-453.

[27] Zahara Farzanaryar, Nick Cercone, “Efficient mining of frequent
itemsets in social network data based on MapReduce framework”, in

proceedings of the IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining, Canada, August 2013, pp.1183-
1188.

[28] Mohammadhossein B and Madhi Niamanesh, “ScaniBino: An effective

MapReduce-based association rule mining method”, in proceedings of
the the sixteenth International Conference on Electronic commerce,

USA, August 2014, pp.1-8.

[29] Apache Hadoop Project, http://hadoop:apache.org/. accessed at

201408251930.

 T Ramakrishnudu currently working

as an Assistant Professor in the department

of Computer Science and Engineering in

National Institute of Technology Warangal,

India. His research interests include Data

Mining, Distributed Data Mining, Web

Technologies and Big Data Analytics. He is

a member in IEEE, ACM and Computer Society of India

(CSI).

R B V Subramanyam currently

working as Associate Professor in National

Institute of Technology Warangal, India. He

has published many journal and conference

papers in the areas of Data Mining. Some of

his research interests include Data Mining,

Distributed Data Mining, Fuzzy Data Mining,

Distributed Data Mining and Big Data Analytics. He is one of

the reviewers for IEEE Transactions on Fuzzy Systems and

also for Journal of Information and Knowledge Management.

He is member in IEEE and The Institution of Engineers (India).

