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Abstract—In routing problems, the aim is to determine a least 

cost route for vehicles covering a specified set of locations, subject 

to some constraints. How the cost is calculated and minimized in 

these problems may include fuel consumption and other 

environmental criteria, such as pollution level. An example is 

determination of optimal routes for vehicles in solid waste 

collection in order to minimize the environmental impact caused by 

the vehicle itself. We address the problem in a broad level, known in 

literature as the General Routing Problem. 

Using a mathematical and computational model, in this paper 

we solve the problem of determining a least cost circuit which 

covers given subsets of arcs, edges and nodes of a mixed graph, 

subject to turn restrictions on nodes (restrictions that avoid bad 

turns of vehicles in real-life street networks). The well known 

problems, such as the Mixed Chinese Postman Problem and the 

Traveling Salesman Problem are particular cases of this general 

problem. Our solution is based on an efficient graph 

transformation that makes it possible to solve the resulting 

problem as a standard TSP. Computational results confirm the 

efficiency of the method in solving relatively large problems with 

good quality. 

Keywords—Environment, Chinese postman problem, Turn 

penalties, General routing 

Scope 
Arc routing problems (ARP) consist of finding least cost 

circuits that cover links (or a subset of links) of a graph, 
satisfying some conditions. One of the most important 
contributions in solving ARP was made by Edmond and 
Johnson [6] who solved in polynomial time the classical 
Chinese Postman Problem. Thereafter, many particular 
instances of ARP have been formulated, most of them shown 
to be NP-complete, but with little progress in their solution. 
However, in recent years some new approaches that deal with 
general cases of ARP have appeared. A few of them are 
mentioned below. 

Benavent et al. [1] have studied the Windy Rural Postman 
Problem – WRPP, which generalizes a great number of ARP 
formulations. They suggested an exact procedure, based on 
cutting planes, and some heuristics. An extensive 
computational experiment with graphs of up to 196 nodes and 
316 edges showed the effectiveness of the exact procedure. It 
was able to solve to optimality 185 out of 288 instances. All 
instances were solved when a branch-and-bound option was 
invoked. 
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WRPP was also studied by Benavent et al. [2], in which 
some heuristics inspired in heuristics of Benavent et al. [1] and 
a new scatter search algorithm are presented. The last 
algorithm was shown to have high potentialities. It was 
capable of solving the WRPP for relatively large problems, 
with deviation from the lower bound under 2%. 

Another outstanding recent paper is due to Corberán et al 
[4]. In this article another general formulation of ARP is 
studied: the Mixed Rural Postman Problem, considering the 
existence of inconvenient or forbidden turns on nodes. Two 
heuristics are presented: the first one transforms ARP to an 
Asymmetric Travelling Salesman Problem. The second one is 
a constructive method based on Tabu Search metaheuristic. 
The second approach was shown to be more efficient, 
achieving average deviation of 1% from optimality for 
problems of up to 200 nodes and 480 links. However, the 
transformation method was adequate only for instances with 
few edges. As authors have noticed, the results obtained in 
instances with more than 30 edges were very poor. This 
limitation has been shown also by Laporte [10] in a similar 
transformation approach. 

In this paper we present a new formulation for the ARP, 
which is more general than the problems listed above, and 
suggest an intuitive transformation method that makes it 
possible to solve a variety of arc and node routing problems 
subject to turn restrictions. Our approach is based on the same 
strategy line used by Laporte [10] and Corberán et al. [4]. 
However, we could successfully solve the problem for any 
graph configuration, including cases with a large number of 
edges. In fact, we could solve nearly to optimality mixed and 
undirected examples of up to 1000 edges. 

I. Introduction 
Let ),,( EANG   be a mixed graph in which N , A  

and E  are the sets of nodes, arcs and edges, respectively, and 

let NN  , AA   e EE   be the sets of required 

nodes, arcs and edges, i.e., the sets of links and nodes that 
need to be served. The problem is to construct a minimum cost 
circuit that contains all above required sets, subject to turn 
restrictions on nodes. We call this problem as General  
Routing Problem (GRP). 

The GRP has its own applications: consider any vehicle 
routing problem in which many points to be served are 
distributed along the streets (one-way and two-way streets), 
while other points stand in isolated locations, and yet there are 
traffic regulations on crossings that should be respected. GRP 
is a practical and useful generalization for many routing 
problems. However, many other formulations may be derived 
from this general problem.  

 If N ,  EA , the problem is reduced 

to the conventional TSP. 
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 A , EE  , Undirected Chinese Postman 

Problem (UCPP); 

 AA  , E , Directed Chinese Postman 

Problem (DCPP); 

 AA  , EE  , Mixed Chinese Postman Problem 
(MCPP); 

 A , EE  , Undirected Rural Postman 

Problem (URPP); 

 AA  , E , Directed Rural Postman Problem 

(DRPP); 

 AA  , EE  , Mixed Rural Postman Problem 
(MRPP); 

 AA  , E , E , Stacker Crane Problem 

(SCP). 

Other formulations are possible; among them, we can 
mention the Windy Postman Problem (WPP), which has the 

same structure as UCPP, except that for each edge Eeij   

the traverse cost ijc  may be different from the traverse cost in 

the opposite direction, jic . For a detailed discussion about the 

ARP and its variations, see Eiselt et al. [7] and Eiselt et al. [8]. 

Among all cases listed above, only the UCPP and DCPP 
are well solved and have exact polynomial solutions [6]. All 
other cases are shown to be NP-complete problems, of which 
the TSP has received more attention from researchers in recent 
years and has gained some good, newly developed, 
approximate solutions, which make it possible to solve 
medium, even large-scale problems [18], [14]. 

In the following sections we introduce an intuitive 
transformation method that makes it possible to solve GRP, 
including any particular form of the CPP or RPP, as a standard 
TSP. Furthermore, we show how the node restrictions 
(prohibited left-turns and U-turns), can be handled by this 
method. Although such prohibitions are considered as strong 
constraints in the real-life problems and could be associated 
with any of the above formulations, they are usually neglected 
in most theoretical approaches for solving routing problems. 

 

II. Transformation 
Some authors have suggested transforming the Arc 

Routing Problem into a Node Routing Problem (NRP), which 
is then solved as a TSP. Pearn [13] devises a method to 
transform the undirected case of an ARP with m  edges to an 

equivalent NRP with 13 m  nodes. He doesn't report any 

computational experience. Laporte [10] suggests a different 
and interesting approach for performing such a transformation, 
which transforms an ARP to an equivalent Generalized 
Traveling Salesman Problem, in the first step, and in the 
second, this problem to a standard TSP. As describedby the 
author, the method behaves well when the graph is directed or 

has only a few undirected edges. It fails when there are too 
many edges. Corberán et al. [4] suggest a similar approach for 
MRPP in which the ARP is directly transformed to an 
Asymmetric Traveling Salesman Problem (ATSP). 
Computational results reported by the authors also show 
deficiencies in solving problems with relatively more edges. 
Dror et al. [5] employ the Generalized TSP approach to solve 
a special case of DRPP, named as the Directed Clustered 
Rural Postman Problem. They have succeeded in solving 
problems with up to 81 nodes. 

In this section, we present a detailed description of the 

proposed graph transformation. Let ),,( EANG  be a 

strongly connected mixed graph, as defined in the previous 
section. Without loss of generality, we describe the 
construction of a transformed graph for the case of the MCPP. 

So, all arcs in A  and all edges in E  are required. Thus, in 

order to avoid complex notations, we will employ A  and E  

as required sets. The set N  is not required explicitly; 

however, any feasible solution for the MCPP will contain all 

nodes in N . The generalization of this procedure for GRP is 

discussed in a later section. 

Let Nn  , Ar   and Em   be the cardinality of 

the above sets, and let D  be a cost matrix associated to G . 

The procedure described below transforms G  into a graph 

with mr 2  nodes. 

Step 1 

Graph ),( 1111 EANG   is constructed from G , as 

follows; 

Initially let N1=, A1=, E1=. 

For any link EAji  ),(  of graph G , create the 

following components in 1G : 

 Two nodes in , jn  in 1N ; 

 One arc ),(  ji nn  in 1A , if   is an arc type link; or 

 Two arcs ),(  ji nn , ),(  ij nn  in 1E , if  is an 

edge type link in the original graph G . 

In any case, the cost associated to any arc ),(  ji nn 

11 EA   will be same as the cost in the original link  . 

Now, 1G  is a directed graph with mr   disconnected 

components, in which any node Ni  has k  copies in 1N , 

where k  is the number of links incident to i  in G . Let 1D  

bethe cost matrix associated to 1G . 
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Mixed Graph  Transformed Graph  

 

Final Transformed Graph  

Step 2 

Now, we proceed to construct ),( 11112 BEANG   

from 1G . Let },...,,{ ki iiiP 21  be the set of copies of node 

Ni  in 1N , and initially let 1B . For each node 

Ni  scan the set iP  as follows: for every pair of nodes 

its Pii , , create the arc ),( ts ii  in 1B , if, and only if, si  is a 

terminal node of any arc in 11 EA   and ti  is an initial node 

of any arc in 11 EA  . Now 2G  is a strongly connected 

directed graph. We call the arcs in 1B  as connecting arcs, 

which can be interpreted as passages on the nodes of the 
original graph, from one link to another. Therefore, the 
penalties due to the bad turns may be applied at this moment, 

as appropriate traverse costs applied to the arcs in 1B . 

Implementation of node restrictions is discussed in a following 
section. If there are no penalties, such costs will be zero. Let 

2D  be the actual cost matrix, associated with 2G . 

Step 3 

We form the complete graph ),( 11113 SEANG  , 

where 1S  represents the set of shortest paths between all pairs 

of nodes 1Nji , , in 2G , so that the arc 11 EAji ),( . 

Note that all connecting arcs in 1B  are now included in S1. 

However, their costs may be reduced by means of the shortest 

distances. Consider 3D  as such a full cost matrix. 

Step 4 

We now deduce the final transformed graph

),( 2124 SENG  , as described below: eliminate all arcs 

in 3G  that belong to 1A , unifying their initial and final nodes. 

This should be done as follows: for each arc 1Aji ),( , 

exclude the node j , exclude all arcs 1Sjv ),( , exclude all 

arcs 1Svi ),( , and exclude the arc ),( ji  itself. All arcs 

1Svj ),(  come to be ),( vi , with no alteration in their 

costs. These modifications reduce the set of nodes 1N  to 2N , 

and the set of shortest paths 1S  to 2S . Note that each original 

arc in G is now represented by a single node in 4G . 

Furthermore, the cost of any arc in 1E  is changed to M , 

where M  is a big positive number. 

Figure 1 shows an illustrative example, in which the 

transformation is done on a graph G , for solving a MCPP. 

Graph 2G  represents the transformed graph after step 2, and 

4G  is the complete final transformed graph. 

 

 

 

Figure 1.  An example for the graph transformation 

 

III. The TSP Solution 
Whenever the transformation is done, the next step is to 

solve a Traveling Salesman Problem on the transformed 
graph. First we show the correspondence between a postman 

tour in G  and a Hamiltonian Circuit in 4G . 

As we saw, the graph ),,( EANG  is transformed to 

the ),( 2124 SENG  . Every edge in G  is represented 

by a pair of opposite arcs in 4G . 1E  is the set of such pairs. 

Moreover, every arc in G  is represented by a single node in 

4G . Let 2NNa  , be the set of such nodes, and 2eN N  

be the set of terminal nodes of all arcs in 1E . Obviously, 

a eN N   and 2a eN N N  . 

Consider now the circuit CC  as a feasible postman tour in 

G ; which covers all its arcs and edges (and possibly 

containing some extra copies of them). If we trace the tour on 

the transformed graph 4G , we will obtain a circuit HC , 

which contains at least one arc of every pair of arcs in 1E , and 

all nodes in aN . As HC  contains one arc of each pair of arcs 

in 1E , then it contains all nodes in eN . Thus, HC  contains 

all nodes in 2a eN N N  ; therefore it is a Hamiltonian 

Circuit in 4G . It is important to note that the extra copies of 
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(a)  

 

(b)  

 

(c)  

 

links in an optimal postman tour in G  form shortest paths 

between some pairs of nodes. In 4G , such paths are 

represented by traverses through arcs in 2S , without any 

additional passage on nodes in 2N . 

Reciprocally, we show that a hamiltonian circuit in 4G  

corresponds to a postman tour in G . Any optimum, or near 

optimum TSP solution in 4G  provides a circuit that fulfills 

the following characteristics: contains one arc from any pair of 

arcs in 1E , and all nodes in aN . In fact, as 4G  is a complete 

graph, there exists a hamiltonian circuit that contains all nodes 

of 2N  exactly once (including aN ). And if such a circuit is 

an optimum, or near optimum TSP solution, it contains one arc 

of each pair of arcs in 1E , just because their costs are big 

negative numbers. It means that the corresponding circuit in 

G  should contain all edges in E and all arcs in A. 

Therefore, there exists a one-to-one relation between a 

TSP solution in 4G  and a postman tour on the mixed graph G. 

A discussion about the solution techniques for the TSP is 
outside the scope of this paper. Any method to solve the 
asymmetric case of TSP may be employed. However, our 
approach is motivated by the recent improvements in this 
field. Johnson et al. [9] and Voudouris et al. [18] have 
suggested approximate solutions that have been applied 
successfully to large scale Traveling Salesman Problems. In 
our computational tests, we adopted the Guided Local Search 
metaheuristic, developed by the latter author. Rodrigues [14] 
presents computational tests for this method, using medium 
and large sized test graphs, up to 14.000 nodes, with known 
optimal solutions. Near optimum solutions have been obtained 
in a relatively short time. 

IV. Turn Restrictions 
In contrast to the present approach, and that employed by 

Corberán et al. [4], most other techniques solve the arc routing 
problems in two distinct stages (see [7]): the first is to 
determine a minimum cost augmentation of the graph; and the 
second, to construct a tour which covers the required 
components of the graph. With turn restrictions, the second 
stage becomes a relevant problem. The augmented graph 
obtained in the first stage may require new augmentation in 
order to comply with the turn prohibitions, as we can see in 
the following case. 

Suppose that in the mixed graph shown in figure 2(a), the 
U-turns in nodes 1 and 2 are prohibited. Figure 2(b) represents 
an optimal augmentation for the MCPP, obtained by any 
method. However, there is no feasible postman tour in this 
graph, initiating for example at node 1; any attempt results in a 
U-turn, for example, the sequence (c, f, g, e, b, d, d’, a). In 
fact, any feasible solution requires additional augmentation, 
for example, that shown in figure 2(c). In this latest, the tour 
may be: (c, f, g, e, b, d, g’, e’, b’, a). 

Figure 2.  Ilustrating example for implication of node restrictions 

In our approach, the cost matrix 4D  may be structured, 

not only by link costs, but also by node traverse penalties. 
Therefore, the TSP solution provides a complete feasible 
solution to the arc routing problem, which minimizes the 
whole cost: link distances and bad-turn penalties. This is one 
of the main advantages of the method presented here. 

Now, we consider the implementation of turn restrictions, 
using a typical situation as shown in the figure 3(a). The 

example may be viewed as a part of a bigger graph G . 

Suppose that in this graph the U-turns and left-turns described 

by the sequences )bc,1,( , )aa,1,(  and )cc,1,(  should be 

avoided. Figure 3(b) represents the transformed graph 2G , 

obtained at the end of second step of transformation 
procedure. Considering that the connecting arcs (such as 

)1c,1b( ) represent the passage on nodes from one link to 

another, a natural way for managing bad turns is to apply 

appropriate costs to such connecting arcs.  In 2G , however, 

there are noconnecting arcs referring to U-turns, nor the left 
turn may be prohibited, suppressing (or penalizing) only the 

connecting arc )1c,1b( . It is important to note that such an 

action does not inhibit the possibility of a “round connection”, 

such as )b,c,1c,1a,1b( , which may be encountered in the 

third step of the algorithm, when the shortest paths are 
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calculated. Such a roundconnection is an infeasible solution 
that may substitute the left turn. 

To solve this problem, we apply a new expansion on 2G  

as follows: for all pairs of arcs in 1E , we split each terminal 

node into two nodes, so that every arc of the pair has its 
distinct terminal nodes. Figure 3(c) shows the expanded graph 

2G . Now, it is possible to put appropriate penalties for all 

connecting arcs, including )a1a,1(  , )c1c,1(   and )1c,1b(  

which represent the prohibited U-turns and left turn. In the 
third step of the above algorithm, the shortest paths procedure 

should be applied to the expanded graph 2G . Now, the 

shortest paths calculated from nodes 1a , 1c  and 1d to all 

other nodes will find feasible turns for each case, which may 
be formed by a longer path than a simple connecting arc. In 
the forth step, the expanded graph will be reduced to a graph 

with identical dimensions as 4G  in the previous algorithm. 

These operations are detailed in the following section for the 
case of General Routing Problem. 

Figure 3.  Additional transformation to handle turn restrictions 

V. The General Routing Problem 
In this section, the transformation procedure, previously 

described for MCPP, is generalized for GRP. 

Given a strongly connected mixed graph ),,( EANG  , 

with N  , A  and E  as required sets, as defined earlier. Let 

NNT   be the set of nodes that appear as terminal node of 

any link in EA  . This implies that all nodes in TN  are 

implicitly required. Let NNX   be the set of all required 

nodes, which are not covered by any link in EA  . 

Therefore we have a larger set of required nodes 

TXR NNN  . 

The proposed procedure initially transforms the graph G 

with n nodes to another with 2 4r m  nodes, where Nn 

, Ar   and Em  . However, the final transformed graph 

will be reduced to one with ´ 2 ´xn r m   nodes, where 

x Xn N , ´ ´r A  e ´ ´m E . The general transformation 

procedure is summarized as follows: 

Step 1 

First, construct the graph ),( 1111 EANG   from G . 

Let initially N1=, A1=, and E1=. 

For every arc ( , )a i j A  , create the following 

components in 1G : 

 two nodes ian , jan  in ; 

 one arc ( , )ia jan n  in 1A . 

For every edge ( , )e i j E  , create the following 

components in 1G : 

 four nodes ieun , ievn , jeun , e jevn  in ; 

 two arcs ( , )ieu jeun n , ( , )jev ievn n  in 1E . 

The cost associates with any created arc in 11 EA   will 

be the same original link cost in A E . Let 1D  be the cost 

matrix associated with 1G . Now, 1G  is a disconnected and 

directed graph with 2r m  components. 

Note that 1G  is constructed not only by required links, but 

also by non-required links. The reason for transforming the 
entire graph is to permit application of turn penalties to all 
nodes, including those which are not required, since they may 
appear in the final route. 

Let },...,,{ ki iiiP 21  be the set of copies of node Ni  

in , as created in step 1. We call iP   an image of node 

Ni  on  . Then, for every set iP ,  XNi , choose a 

unique node for representing the respective required node i in 

the transformed graph 1G . Let N1X   be the set of nodes 

chosen in this manner. All nodes in N1X  will remain in the 
final transformed graph for appearing in the TSP tour. The 

question that which node in every set iP  should be chosen, in 

real life logistic problems may be responded taking in account 
the exact location of the point to be served. For example, in 
figure 3 (c) node 1 is represented by six copies. However, each 

1N

1N

1N 1N

1N

1N
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copy has a distinct position in the original network. For 

instance, visiting node 1 at 1c  position is different than 

visiting it at 1 ´c  position. 

More precisely, the set of nodes  may be classified in 

four subsets: 

1 1AN N  is the set of nodes associated with required 

arcs A ; 

1 1EN N  is the set of nodes associated with required 

edges E ; 

1 1XN N  is the set of nodes associated with required 

nodes NNX  , and 

1 1DN N  is the set of nodes which are not in any of sets 

N1A, N1E, e N1X. 

Denote N1R = N1A N1E N1X as the image of implicit or 

explicitly required nodes in 1G , and let RA1  and RE1  be the 

sets of arcs in 1G , associated respectively to the required sets 

A  and E . 

Step 2 

Construct the graph ),( 11112 BEANG   from 1G , 

as described below: 

Let 1B  be the set of connecting arcs, initially 1B . 

For each node Ni  scan the set },...,,{ ki iiiP 21  (image 

of  node i in ) as follows: For each pair of nodes its Pii ,

, create an arc ),( ts ii  in 1B , if, and only if, si  is a final node 

of any arc in 11 EA   and ti  is an initial node of any arc in 

11 EA  . 

Now, 2G  is a directed and strongly connected graph. The 

set 1B  is formed by connecting arcs which represent passages 

on nodes, from one link to another. These arcs may be 
penalized with appropriate costs, according to inconvenience 
of each turn. Among them, there are connecting arcs which 

represent U-turns. Let U1RB1 be the subset of connecting arcs 

which refer to U-turns on required nodes 1RN . 2D  is the 

actual cost matrix, associated to 2G . 

Step 3 

Form the complete graph ),( 11113 SEANG RRR  , 

where N1R represents the image of required nodes in 2G , and 

1 1S B  represents set of shortest paths between all pairs of 

nodes RNji 1, , calculated in 2G , so that 

RR EAji 11),(  .  

The connecting arcs in 1B  are now included in S1. 

However, their costs may have been reduced by means of 

shortest distances. Consider 3D  as distance matrix associated 

with the complete graph G3. It is structured, not only with arc 
costs, but also with all bad turn penalties attributed to nodes. 

Step 4 

Construct the final transformed graph 

 4 2 2 2,R RG N E S  , by removing all arcs in RA1  and 

all connecting arcs in 1RU  from 3G . This is done by unifying 

the initial and final nodes, as described below: 

For each arc 1( , ) Ri j A , identify all arcs 1Svi ),(  

attributing to them the cost of the correspondent arc 

1Svj ),( . Then eliminate node j  and all arcs incident to it.  

For each arc 1( , ) Ri j U , identify all arcs 1( , )v i S  

attributing them the cost of  the correspondent arc 1( , )v j S

. Then eliminate node j  and all arcs incident to it. The pairs 

of arcs 1( , ), ( , ) Ri j k l E , which represent required edges in 

graph G, will continue to exist, but their initial nodes should 

have been changed,  becoming 2( , ), ( , ) Rl j j l E . 

These modifications reduce the node set 1RN  to 2RN , 

pairs of arcs 1RE  to 2RE  and the shortest path set 1S  to 2S . 

Note that any required arc in A  and any required node in 

XN  are now represented by a single node, and every required 

edge in ´E  by two nodes mutually connected by a pair of 

opposite arcs in 4G . 

In order to complete the transformation, change the cost of 

all arcs in 2RE  to M , where M  is a big positive number. 

The algorithm described above, transforms the General 
Routing Problem, defined on the mixed graph G, to a pure 

node routing problem, defined on the directed graph 4G . The 

correspondence between these two problems may be verified 
in a way similar to thatshown for the MCPP version of the 
algorithm, considering that each required node in the original 
graph is represented by a single node in the transformed graph, 
each required arc also by a single node, and each required 
edge by two nodes interconnected by a pair of arcs with highly 
negative costs.  

The computational complexity of the algorithm is bounded 

by   3

2 4O A E , due to the shortest paths calculations 

in its 3
rd

 Step. Therefore, the transformation phase of solution 
method is an efficient procedure. However, the global 

1N

1N
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efficiency depends on method to be used for the second phase 
(TSP solution). 

VI. Computational Results 
The procedure described above was implemented on a 

personal computer equipped with Pentium IV 2.0 GHz 
Processor. In order to compare computational results with 
other recent expressive works, we oriented the tests towards 
solving the Mixed Chinese Postman Problem and the Mixed 
Rural Postman Problem with Turn Penalties - MRPPTP. 

For MCPP the tests were done on randomly generated 
pseudo-manhattan graphs. These were constructed on a grid of 

n = pX q nodes, in which any node may be connected to no 
more than eight other nodes, except the frontier and the corner 
nodes, which may be connected at most to five and three 
nodes, respectively. A predefined number of arcs and edges 
are randomly distributed among the nodes, assuring the 
connectivity condition for the graph. The graph is of pseudo-
manhattan type, therefore crossing diagonal links are allowed. 
For each value of n (node number), five graphs with 
increasing percentage of directed links were generated: with 
0%, 25%, 50%, 75% and 100% of directed links. So, not only 
the mixed case was handled, but also the two extreme cases, 
totally directed and totally undirected cases were included in 
the tests. Such graphs were passed through the transformation 
steps and then solved by a TSP code based on a Guided Local 
Search approach [14]. 

Table 1 shows detailed information about these 
computational tests. In each case a lower bound on the MCPP 
circuit distance is provided, which is calculated by solving the 
CPP over the undirected network, derived from the original 
one by ignoring all arc directions. Also, for each tested graph a 
good known solution is reported, obtained from a special 
routine included in the random graph generator, which permits 
constructing the network together with a good feasible 
solution for the MCPP. This solution stands very close to the 
optimal solution.  

As we can see, the solutions obtained have a maximum 
deviation of 7.9%, in relation to the corresponding lower 
bounds, considering all mixed cases. It is worth noting that for 
the totally undirected problems, the lower bound is also the 
optimal solution; however, for totally directed cases, the lower 
bound may be much lower than the optimal MCPP solution. 

Our solutions outperform or are equal to the good known 
solutions, in almost all cases.  In only three cases did we 
observe deviations, all of which were under 0.9%. 

Since the Guided Local Search used for the second phase 
of the proposed method is an iterative procedure it is possible 
to obtain less approximate solutions in shorter times. For 
example, solving the graph Mix500A25 (with 500 nodes, 250 
arcs and 750 edges), at the execution time t2 = 60 seconds, we 
could register a solution that stands 7.2% above the Lower 
Bound. 

The time consumed by transformation procedure is 
significantly smaller than the time used by the TSP procedure. 
For example, for graphs with 500 nodes and 1000 links, the 

average transformation time is 21.5 seconds, while the average 
time used by TSP routine is 161.8 seconds. 

TABLE I.  COMPUTATIONAL TESTS FOR MCPP 

Graph Name 
 

Node 
Number 

Link 
Number 

% 
Arcs 

 

Best 
Known 

Solution 

Obtained  
Solution 

Mix100A00 100 200 0 21410 21410 

Mix100A25 100 200 25 21537 21537 

Mix100A50 100 200 50 22138 22103 

Mix100A75 100 200 75 22203 22174 

Mix100A100 

 

100 200 100 24205 24205 

Mix200A00 200 400 0 42976 42976 

Mix200A25 200 399 25 44144 43945 

Mix200A50 200 400 50 44405 44261 

Mix200A75 200 400 75 46191 46097 

Mix200A100 

 

200 400 100 47193 47193 

Mix300A00 300 600 0 64612 64612 

Mix300A25 300 599 25 65006 64734 

Mix300A50 300 600 50 66517 66502 

Mix300A75 300 600 75 68190 68080 

Mix300A100 

 

300 600 100 72673 72673 

Mix400A00 400 800 0 86208 86208 

Mix400A25 400 798 25 86214 86394 

Mix400A50 400 800 50 89079 89014 

Mix400A75 400 800 75 91592 91494 

Mix400A100 

 

400 799 100 96517 96326 

Mix500A00 500 999 0 107470 108435 

Mix500A25 500 1000 25 108370 108649 

Mix500A50 500 1000 50 110640 110598 

Mix500A75 500 1000 75 114268 114268 

Mix500A100 500 1000 100 122080 122080 

 

The largest MCPP that we attempted to solve was one with 
1000 nodes and 2000 links, of which 50% were directed. We 
obtained a 9.7% above lower bound solution, in a total time of  
t3=473 seconds.  

For solving the Mixed Rural Postman Problem with Turn 
Penalties the tests were done on the same set of test graphs 
used by Corberán et al. [4]. In this paper, the authors present 
two heuristic procedures for MRPPTP, named as Heuristic 1 
and Heuristic 2. They provided computational tests with 
randomly generated graphs, and compared them with exact 
solutions, whenever available. 

The above test problems consist of 216 mixed, randomly 

generated, general graphs, with  40,200N  , 

 90,440A  , and  10,40E  . In each instance, all 

edges are considered as required, but RA  arcs are randomly 
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selected to be required. These test problems were classified in 
24 sets, according to the number of required links. Finally, 
were assigned the following turn penalties: 0 for going straight 
ahead, 1 for turning right, 3 for turning left, and all U-turn 
were considered forbidden. 

TABLE II.  COMPUTATIONAL TESTS FOR MIXED RURAL POSTMAN 

PROBLEM WITH TURN PENALTIES 

Set 

(1) 

|AR| 

(2) 

|ER| 

(3) 

|NT| 
(4) 

C/C1 

(9) 

C/C2 

(10) 

D11 [36,  98) 10 [56,  118) 0,9517 0,9844 

D12  20 [76,  138) 0,9252 0,9830 

D13  30 [96,  158) 0,8945 0,9861 

D14  40 [116,  178) 0,8847 0,9843 

D21 [98,  140) 10 [118,  160) 0,9582 0,9840 

D22  20 [138,  180) 0,9250 0,9826 

D23  30 [158,  200) 0,9021 0,9840 

D24  40 [178,  220) 0,8918 0,9887 

D31 [140,  182) 10 [160,  202) 0,9670 0,9831 

D32  20 [180,  222) 0,9403 0,9771 

D33  30 [200,  242) 0,9187 0,9829 

D34  40 [220,  262) 0,9062 0,9845 

D41 [182, 260) 10 [202, 280) 0,9724 0,9966 

D42  20 [222, 300) 0,9491 0,9953 

D43  30 [242, 320) 0,9377 0,9939 

D44  40 [262, 340) 0,9110 0,9942 

D51 [260,  330) 10 [280,  350) 0,9752 0,9962 

D52  20 [300,  370) 0,9546 0,9961 

D53  30 [320,  390) 0,9390 0,9979 

D54  40 [340,  410) 0,9306 0,9954 

D61 [330,  440] 10 [350,  460] 0,9778 0,9994 

D62  20 [370,  480] 0,9490 0,9987 

D63  30 [390,  500] 0,9497 0,9965 

D64 

 

 40 [410,  520] 0,9355 0,9980 

Average    0,9336 0,9894 

 

Ser:   set of randomly generated test graphs 

AR:  range of required arcs of the set;                        

ER   number of required edges of the set; 

N
T
:  range of node number of transformed graph (dimension 

of final distance matrix) of the set; 

C/C1: average ratio between the calculated circuit costs and 

solutions obtained by Heuristic 1 of Corberán et al. [4]; 

C/C2: average ratio between the calculated circuit costs and 

solutions obtained by Heuristic 2 of Corberán et al. [4]; 
 

Table 2 shows statistical results of computational tests 
using the proposed method, compared with two Heuristics of 
Corberán et al. [4], and the exact solution, whenever existing. 
Average deviation between obtained solutions and optimal 
solution is 0,15%. Among all 216 instances, the worst 
deviation from a known optimal solution stands on 0,99%. If 
compared with heuristics of Corberán et al. [4], the proposed 
method in average outperforms Heuristic 1 and Heuristic 2 by 
6,64% and 1,06%, respectively. However, the computational 
time for our method is significantly greater than time 
consumed by either heuristics. 

VII. Conclusions 
Transportation and logistics have a considerable impact on 

environment, but optimization tools may minimize its 
effects.In this paper, we defined and presented a solution 
method for the General Routing Problem, which consists of 
determining a least cost circuit that covers given subsets of 
arcs, edges and nodes of a mixed graph, subject to turn 
restrictions on nodes. The Mixed Chinese Postman Problem, 
the Rural Postman Problem and their variations are particular 
cases that can be handled by this method. Our solution is 
based on an efficient graph transformation that makes it 
possible to solve the resulting problem as a standard TSP. 

Computational results for MCPP and MRPPTP confirm 
the efficiency of the method for solving large number of 
random instances. For MCPP case, near optimum problems of 
up to 500 nodes and 1000 links were solved. For MRPPTP 
case, 216 test problems used by Corberán et al. [4] were 
solved, for all of which the average deviation from the optimal 
solution stood around 0,15%, with a worst deviation of 0,99%. 
The proposed GRP method outperforms in solution quality 
both heuristics presented by latest authors. 

The proposed method solves one of the most general 
formulations of the routing problems, without loss of quality 
and performance when applied to particular cases. Moreover, 
it admits node restrictions (prohibited left-turns and U-turns), 
which are considered as strong constraints in the real-life 
problems and may be associated with any routing formulation, 
although neglected in most theoretical approaches. 
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