

145

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

Android Based Autonomous Arduino Bot
Aninda Saha, Shuvo Kumar Paul, Mahady Hasan

and Md. Ashraful Amin

Abstract— This work reports the design, construction and

control of a two-wheel object tracking robot. The Android

controlled Arduino bot is a robot armed with a brain to

recognize and track objects persuasively. Object recognition and

tracking were achieved through extracting distinctive invariant

features from images that can be used to perform reliable

matching between different views of an object. However, we have

also demonstrated tracking through offline data because of the

limitations of the processing power of the cellular devices.

Keywords—Detection, Tracking, Arduino bot

I. Introduction
In the past decade, mobile robots have contributed its

splendour in the military and industrial settings, as well as

stepped into civilian and personal spaces such as hospitals,

schools and homes. Having variety of purposes, robots are

built to chip-in almost all spaces. In this paper a robot model

on wheeled platform is designed which is capable of object

recognition and tracking. The challenges in tracking evolves

when the target objects change their appearance and shading

conditions. The tracking methods used here are intended to

overcome these main challenges.

To manage the robot system the following equipment was

selected: microcontroller Arduino, to control the actuators of

robot having acted like the brain of the system; motor shield

driver, to control the DC motors; power module which reads

the control signals from the microcontroller and turns on the

appropriate motors power; wireless module, which is used for

communication with the mobile terminal and an Android

device to process frames for recognition and tracking.

In moving Target Classification and tracking from Real-

Time Video [1], object-tracking algorithm combining the

temporal differencing and template matching were used

whose main drawback was misclassification can occur if

multiple targets are close together and that small human

targets are often not recognized as temporally stable objects.

The W4 algorithm [2] can analyse motion and track

through occlusions, however the algorithm fails under drastic

scene illuminations since its algorithm in separating

foreground from the background is an intensity-based method.

Besides, Real-Time Human Motion Analysis by Image

Skeletonization [3] presents a way to classify the motion of

human target in a video sequence. Moving targets are detected

and their boundaries extracted. But the weakness lies that the

object of interest must move in a straight line and in a

consistent direction, otherwise it’ll be rejected as background.

A different number of tracking algorithms were reviewed in

the literatures. The trackers demonstrated in this work are

kernel-based that have been quite illustrious due to its

simplicity and robustness to track variety of objects.

A. Saha, S. K. Paul, M. Hasan, and M. A. Amin

Computer Vision and Cybernetics Group

Department of Computer Science and Engineering

Independent University, Bangladesh (IUB)

Dhaka-1229, Bangladesh

www.cvcrbd.org

II. Implementation
The main aim of our work is to build a Arduino-based bot

integrating with Android device that would be responsible for

detection and recognition of an object that is being learned.

The Android would pass processed command to the Arduino

to make the bot move and track in accordance with the

position of the object.

Constructing the bot is what comes first in the pipeline of

our project which would eventually be tracking objects. For

our work, we needed to control two motors, the distance

sensor and react to remote commands coming over Bluetooth

all at the same time. In future this could also be extended to

add more functionality since the possibilities are endless. The

initial workflow is as follows:

Figure 1. Project workflow

A. Construction
We have used ATmega328 based single-board

microcontroller Arduino Uno R3 as the brain of our bot which

would be making decisions in controlling the wheels for the

purpose of tracking/following. The board is power sourced

with a 9V battery and we have made use of its digital I/O pins

for integrating the remaining components.

The Arduino board cannot directly control the motors of the

bot, as it involves selectively running forward or backward

that requires swapping power and ground inputs. A

specialized circuit called an H-Bridge is required to make this

happen and we have assigned this task to a motor driver that is

basically a current amplifier which takes a low-current signal

from the microcontroller and gives out a proportionally higher

current signal which can control and drive a motor. A L293D

chipset which includes 4 dual H-bridges having 0.6A per

bridge (1.2A peak) is used to control our 2 bi-directional DC

motors and is fed with 8V power source.

Ultrasonic signal based distance sensor is used to avoid

obstacles and our HC-SR04 component is capable of

providing 2cm - 400cm non-contact measurement function

with an operating voltage of 5V.

For the wireless connectivity with the android device, a

Bluetooth serial interface is needed to implement the

command. Here the android device acts like a master and the

Bluetooth transceiver is the slave. BT JY-MCU is the version

Construction Assembling

Tracking
Control

Mechanism

146

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

of Bluetooth we used with a baud rate of 9600bps and is

tolerant at 5V.

All these components were assembled in a hand-crafted

chassis with prototyping board and cables; the circuit layout is

shown in Fig. 2.

Figure 2. Pin-out sketch of the bot

B. Assembling
Before starting the main programming, we tested each of

our components connecting with Arduino with sample

sketches to verify everything works right. For the mobility of

the robot, a device driver which is simply an abstraction for

the intended device is programmed.

We also need a firmware for the distance sensor driver

which is actually nothing more than a class that implements

the generic interface that is defined for the devices of this

class. We used an open source library called arduino-new-

ping which works perfectly with our device module.

As a first integration we designed an obstacle avoidance bot

so that it can avoid the object and make its own path. Loading

our sketch, we encountered unusual responses from the bot

and had to deal with this through debugging this embedded

system. Checking consequently the logging data through the

serial port, at one instance the distance recorded were: 86 cm,

73 cm, and 7 cm. Presumably the 63 and 74cm numbers were

about right for the distance to the wall, but the 5cm came out

of the blue, without nothing being that close to the bot all of a

sudden.

The failures/faulty readings came possibly because of the

ultrasonic sensor which estimates the maximum distance

ahead from the bounced wave and this process may make

errors for handful of reasons. To address our problem, we

used averaging to improve the accuracy and not to react to a

single reading. To ensure the optimal performance of our bot

with minimum amount of delay possible to make decision, we

implemented the moving average algorithm. This algorithm

works incrementally. We decided to use an average of three

readings. Each time we needed to obtain data from the sensor,

we take a single reading but don’t use it. Instead, we compute

and average between that reading and the previous two. The

next time and new sensor reading comes, we drop the oldest

of the last three readings and average the last two with the

new one.

Figure 3. Front, Top and Rear view of the bot respectively

C. Control Mechanism
We wanted the android to act as a wireless source for

remote command and hence we needed to design a driver that

can abstract the main sketch from having to deal directly with

the hardware. In this case, we have two separate pieces to

abstract- the most important being the communication method,

where our bit use Bluetooth mechanism as a medium. The

next is the remote protocol that interprets command codes to

implement the actions. Our android controller comes with five

directional commands that accepts characters and comes with

two sliders, each controlling one side of the vehicle. This

directly translates into speeds for the motors we used, so the

application can simply send the data from the remote control

into the motors.

Our communication protocol driver is embedded inside the

communication channel (Bluetooth) acting as an interface to

read remote commands. Thus it enables the bot to always

react to our native android application.

Figure 4. Work-flow for remote command

D. Tracking
Real-time detection and tracking on android platform is

achieved through the building blocks of the open-source,

cross-platform library called OpenCV. There are four major

steps to be incrementally implemented to achieve our target:

finding features in the reference image and scene, finding

descriptors for each set of features, finding matches between

the two sets of descriptors and finding the homography

between a reference image and a matching image in the scene.

Putting through each of these features, we used FREAK as

DescriptorExtractor, FAST as FeatureDetector and

BRUTEFORCE_HAMMING as DescriptorMatcher. We have

chosen this combination since it is relatively fast and robust; it

Wait for remote

command

 Command

received?

 Auto mode

command?
Execute remote

command

No
Yes

No

Yes

Auto mode

 Auto mode
command?

Stop Auto mode

Yes No

147

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

is scale-invariant and rotation-invariant, meaning that the

target can be tracked from various distances and perspectives.

Fast Retina Keypoint (FREAK) defines the visual

correspondence, object matching relying on representing

images with sparse number of keypoints. A cascade of binary

strings is computed by efficiently comparing pairs of image

intensities over a retinal sampling pattern. The binary

descriptor has been constructed by thresholding the difference

between the pairs of receptive fields with their corresponding

Gaussian kernel,

 (1)

where is the smoothed intensity of the first receptive

field of the pair .

 Many sampling grids are possible to compare pairs of pixel

intensities. In this case, the retinal sampling grid is circular

with the difference of having higher density op points near the

centre. The density of points drops exponentially as can be

seen in Fig. 5.

Figure 5. Illustration of the distribution of ganglion cells over the retina. The
density is clustered into four areas: the foveola, fovea, parafoveal and

perifoveal. [7]

The binary descriptor F has been constructed by

thresholding the difference between the pairs of receptive

fields with their corresponding Gaussian kernel. In other

words, F is a binary string formed by a sequence of one-bit

Difference of Gaussians (DoG):

 (2)

where is a pair of receptive fields and N is the desired

size of the descriptor.

Figure 6. Illustration of the coarse-to-fine analysis. The first cluster involves

mainly perifoveal receptive fields and the last ones fovea [7]

Features from Accelerated Segment Test (FAST) is the

algorithm we used for identifying interest points in an image.

Figure 7. Image showing the interest point under test and the 16 pixel on the

circle. [8]

 An interest point in an image is a pixel which has a well-

defined position and can be robustly detected. The reason

behind the use of the FAST algorithm was to develop an

interest point detector for use in real time frame rate

application on a mobile robot, which have limited

computational resources [8].

Based on these algorithms, our application was

incrementally developed and its core components include:

1) Video Processing Library and Frame Processor: This is

an Android library for processing frames from the device’s

camera and passing the frame data to the frame processor. The

frame processor attempts to detect where the object is located

in the frame and then invokes a method in the android

application, passing the information obtained from processing

the camera frame.

2) Android Application & Robot Controller Library: The

application is responsible for initializing the video processing

library with a particular frame processor. The robot controller

library along with the Arduino sketch provides the object

oriented interface for controlling the robot having received

command from the Android application.

3) Tracking: This method accepts a rectangle as an

argument and is called for each frame. The rectangle

represents the co-ordinates of the object being tracked in the

processed frame. It works by analysing the rectangle passed in

and comparing it to the centre of the frame and to an original

object rectangle. By comparing the rectangle to the original

object rectangle, the robot can determine if the object is

getting bigger or smaller, (i.e. if the objects is moving closer

or further away).

E. Results and Analysis

Figure 8. Sequence of tracking frames

This tracking method was implemented in an android

device (single core 1GHz processor, 1GB DDR3 RAM) with a

robot. The robot can track almost perfectly if the objects move

slowly, but it loses the tracked object sometimes if it moves

fast. The reason is that this algorithm demands more powerful

processor to do real-time processing. Figure 3 shows a

sequence of frames of the tracker bot.

III. Tracking Through Pc
Tracking application indigenous to the android platform is

what we planned to achieve which would be passing remote

148

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

commands wirelessly to the arduino for the bot to act.

However, we’ve faced certain affiliated straight-out

constraints in establishing connection with the arduino

through wireless communication protocol to the android

tracker application.

Besides, real-time tracking with android platform is too a

tedious task because of the limitations of the mobile’s

processor/processing power. The tracker often fail due to

continuous appearance changes, distractive objects, or

background clutter because of the mobile’s lag in processing

real-time video. By contrast, many tracking applications are

offline since all video frames are available in advance.

Our goal in this part is to perform automatic detection and

motion-based tracking of moving objects in a video from a

stationary camera. The problems associated with motion-

based object tracking can be divided into two parts: detecting

moving objects in each frame and associating the detections

corresponding to the same objects over time. While our main

bot was on the go, we recorded its movement for local data

sample, which was then processed in the computer for tracked

results.

A. Methodology

Figure 9. Algorithm flowchart

The detection of moving objects uses a background

subtraction algorithm based on Gaussian mixture models.

Morphological operations applied to the resulting foreground

mask to eliminate noise. Finally, blob analysis [5] detects

groups of connected pixels, which are likely to correspond to

moving objects.

The association of detections to the same objects is based

solely on motion. The motion of each track is estimated by a

Kalman filter [6]. The filter is used to predict the track’s

location in each frame, and determine the likelihood of each

detection being assigned to each track.

Track maintenance becomes an important aspect of this

task. In any given frame, some detections may be assigned to

tracks, while other detections and tracks may remain

unassigned. The assigned tracks are updated using the

corresponding detection. The unassigned tracks are marked

invisible. An unassigned detection begins a new track.

Each track keeps count of the number of consecutive

frames, where it remains unassigned. If the count exceeds a

specified threshold, the tracker assumes that the objects left

the field of view and it deletes the track.

Figure 10. Adaptation of blob sizes. For a fixed camera set-up, blob size

of a vehicle is approximated using its distance from the camera position.

B. Experiment Results and Analysis
In our application, our approach seemed to perform better

which is mainly due to its ability to manipulate the variation

to ease the segmentation of the foreground from the

background. Moreover, this is based on the minimum

reconstruction error over the data needed to be estimated

which contribute for the better segmentation.

The tracking experimental results were arranged to track a

moving object. The tracking algorithm performed by

extracting the moving object from background in each video

frame, and then we predict the next position candidates in the

next frame. Sequentially the tracking results were based on the

routine loop of detecting the objects by applying the data

association and the add new hypotheses in Karman filter

algorithm respectively and finally we update the frame using

the Kalman update function which in turn provides new input

in the loop.

 Figure 11. Tracking of moving objects [11]

IV. Conclusions
We have constructed a two-wheel Arduino tracker bot

based on the concepts of Machine-to-machine (M2M) system.

To extend the functionality of our task, we have also

implemented offline tracking. Design improvement could be

carried for a practical shape so that it serves real-life purpose

in surveillance. Wireless onshore connectivity between the

Arduino and the Android device could not be achieved

because of time complexity; hence this should be addressed.

Acknowledgement
This work is jointly supported by Independent University,

Bangladesh and University Grants Commission of Bangladesh

under HEQEP Number: CP-3359.

References
[1] Alan J. Lipton, Hironobu Fujiyoshi, and Raju S. Patil. “Moving Target

Classification and Tracking from Real-time Video”. Proc. IEEE

Workshop Application of Computer Vision. P. 8 – 14. 1998

[2] Ismail Haritaoglu, David Harwood, and Larry S. Davis. “W4: Real-
Time Surveillance of People and Their Activities”. IEEE Transactions

on Pattern Analysis and Machine Intelligence. p. 809-830

Processing

Prediction and

Target Tracking

Blob Detection

and Tracking

Start

149

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5 : Issue 2 [ISSN : 2250-3765]

Publication Date: 30 October, 2015

[3] L. Wixson. “Detecting Salient Motion by Accumulating Directionally-

Consistent Flow”. IEEE Transactions on Pattern Analysis and Machine
Intelligence. p. 774-780. April 2000.

[4] M. Han, W. XU, H. Tao, and Y. H. Gong. An Algorithm for multiple

object trajectory tracking. 2004.
[5] A. M. Buchanan and A. W. Fitzgibbon. Interactive feature tracking

using k-d trees and dynamic programming. 2006.

[6] C. Stauffer, W.E.L. Grimson. Adaptive Background Mixture Models
for Real-Time Tracking. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’99), vol. 2 pp. 2246,

1999.
[7] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Bi-directional tracking

using trajectory segment analysis. 2005.

[8] L. Davis, V.Philomin and R. Duraiswami, “Tracking Humans from a
Moving Platform”, in Proceedings of the International Conference on

Pattern Recognition, vol. 4, p. 4171, 2000, IEEE Computer Society.

[9] R. Gonzalez and R. Woods, “Digital Image processing”, 3rd, 2008,
Prentice Hall.

[10] R. Abiyev, D. Ibrahim, B. Erin, “Navigation of mobile robots in the

presence of obstacles”, Near Easr university, Department of Computer
Engineering, Mersin 10, Turkey.

[11] J.F. Engelberger, “Health-care Robotics Goes Commercial: The

Helpmate Experience” in Robotics, vol.11, pp. 517-523, 1993.
[12] Edward Rosten, Reid Porter and Tom Drummon, “FASTER and better:

A machine learning approach to corner detection” in IEEE Trans.

Pattern Analysis and Machine Intelligence, 2010, vol. 32, p. 105-119.

About Authors:

Aninda Saha has graduated from North South University in 2014. His research lies in

an interesting overlap of Machine Learning and Robotics. He is currently working in

operations, research, and development section at Excel BD. He is currently working as

a research assistant under the supervision of Dr. M. Ashraful Amin, PhD at Computer

Vision and Cybernetics Research Group.

Shuvo Kumar Paul works in the area of Machine Learning and Computer Vision. He

received his Bachelor of Science Degree in Computer Science and Engineering from

North South University. He has worked on Image processing, Data mining and

Machine learning. He is currently working as a research assistant under the

supervision of Dr. M. Ashraful Amin, PhD at Computer Vision and Cybernetics

Research Group.

Dr. Mahady Hasan is the Head of the Department of Computer Science & Engineering

at Independent University, Bangladesh. His research area includes spatial and

temporal databases, data mining, robotics and software engineering. He received his

PhD from University of New South Wales, Australia.

Dr. Amin is an active contributor to the field of machine learning. He is an editor of

Journal of Convergence Information Technology, Journal of Advanced Institute of

Convergence IT. He is also a reviewer of IEEE Transactions on Medical Imaging,

IEEE Transactions on Fuzzy Systems, and International Journal of Imaging and

Graphics, to name a few. Dr. Amin received his PhD from the City University of

Hong Kong. He leads the Computer Vision and Cybernetics group, where he recruits

young and promising research students.

