

37

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Internal and external structure of

microservices architecture
 [Ionut Gheorghe Hrinca]

Abstract—Microservices are one of the hot topics around

architectural styles in software development. Its main

philosophy is not something new but lately there was a name

assigned to this architectural style and people started to talk

about it and adopt it. Many development teams seem to be too

eager to embrace microservices without realizing the

complexity that is added to the system by them.

The main focus in this paper is to define the characteristics

of the microservices architecture, its external and internal

structure, all in the context of cost and benefits and good

practices.

Keywords—microservices, architecture, microservices

architecture, hexagonal architecture

I. Introduction
The architecture oriented on microservices is a new hot

topic in approaching the architecture of high complex
systems. As per Martin Fowler explanation, “the term
microservice was discussed at a workshop of software
architects near Venice in May, 2011 to describe what the
participants saw as a common architectural style that many
of them had been recently exploring. In May 2012, the same
group decided on microservices as the most appropriate
name.”[3]

It took several years for microservices architecture to be
adopted. One of the first to experiment this new architectural
style was Netflix in 2013 in one of the projects run by
Adrian Cockcroft (one of the architects present at the
workshop in Venice in 2011)

II. Microservices architectural
style

A. Definition of the microservices
architectural style
At the logical level, the microservices architectural style

can be defined as the functional decomposition of the
system in components that can be managed and deployed
individually.

The first part of this definition refers to the functional
decomposition and actually it refers to vertically slicing of
the system. This is one of the main differences in approach
in contrast with the classical SOA.

Ionut Gheorghe Hrinca (Author)

PhD Economic Informatics - Bucharest University of Economic Studies

Romania

The second part of this definition refers to the
independence in management and deployment. This implies
that, in designing microservices, one must consider that
microservices shouldn’t share the state and also there
shouldn’t be any inter-process communication. Usually this
is achieved using REST interfaces over http.

Figure 1. Logical view of microservices architecture

B. Characteristics of microservices
architectural style
Analyzing the current literature around microservices

and also testing the theories in practice, the microservice
architectural style have the following set of characteristics
that differentiate it from the classical SOA approach [3].

a) Componentization through services
The classical approach was that the components were

included in some libraries, which were linked as part of a
program and using their functions in the internal memory
space of the machine. Everything was happening in the same
process.

The main difference is that services are components
outside the process, which run and communicate through a
mechanism (like web service calls or remote procedure
calls)

b) Organized around business
capabilities

In contrast with other architectural styles where the
applications and systems had different layers (UI,
technologic, application/server logic, data) with the business
logic spread through almost all the layers, the microservices
style approach is focused on splitting the business logic in
business capabilities. Each business capability is
incorporated in only one microservice, which contains in it
all layers from interfaces to data.

38

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

c) Smart endpoints and dump
communication channels

The systems developed based on microservices approach
aim to be as decoupled and as cohesive as possible,
containing inside of them all the business logic for the
domain that they serve.

The approach is similar with the filter approach in Unix.
Each microservice act as a filter in the sense that at the
moment of receiving a call, it applies the necessary logic
and provides a reply.

In classical SOA implementation one can notice that
complex ESB solutions, among the main purpose for which
they were created, they were in charge of a big part of
orchestration, choreography, sophisticated routing or even of
some business logic. In the microservice architectural style
only lightweight messaging solutions must be used (e.g.
message buses that handle only simple message routing).

d) Decentralized governance
Ideally, following the principle develop it and use it, the

teams that develop the microservices are in charge also of
operating them. From the practice one can say that
centralized governance leads to technological platform
standardization creating constraints for development of the
business requirements, which is exactly the opposite
direction that microservices architecture follow.

e) Decentralized data management
In the most abstract way, this means different views of

different systems on the conceptual model of the entity.
Decentralizing the data through the microservices creates
lots of problems in table update management. Distributed
transactions are a solution to this but they are well known as
being extremely hard to implement and they bring a lot of
complexity to the system. Inconsistency management is the
new challenge that the team responsible for the microservice
has. The most easy and common practice is that business to
accept a certain data inconsistency as a trade off for quick
reply to the customer request. A reversal mechanism is also
put in place to solve later the inconsistency issues. Always
one should balance the cost of solving all the consistency
issues with the cost of business loss due to the consistency
issues.

f) Infrastructure automation
To reach the level of agility that it promises, the

development of a system based on microservices should rely
on an automated infrastructure to reduce the burden of
deploying and testing microservices. Technics like
continuous delivery should be used in order to reduce the
effort by automating the build, the test and the deploy
stages.

g) Design to fail
Due to a sum of reasons or circumstances, any

microservice can be unavailable and this should be in every
development team member mind when they design the
application or system. The system should be design in such
way to handle this kind of failures. To prevent negative
effects due to unavailability, a real time monitoring system
needs to be in place in order to detect the problem and to

start the execution of the failover procedures or to restore
the service. Semantic monitoring is important to identify
eventually problems that could appear in the future based on
certain patterns.

h) Evolutionary design
The practitioners see the microservices architecture as a

tool to progressively decompose the applications in such a
way that developers could control the changes in their
application without slowing down the whole change process.
This change control don’t mean a slowing down of each
microservice but rather, using the right automated tools and
the right mindset on the system partitioning, means often
and faster deliveries in a controlled way.

C. Costs and benefits of microservices
architecture
The main benefits of microservices architecture are:

 Strong modularization - microservices reinforce
the modular structure of the system

 Independence in deployment - microservices
are easier to deploy because they are
autonomous and the risk of breaking down the
whole system is very low.

 Technological diversity - using this
architectural style different technologies,
frameworks, data access technologies and
coding languages can be used and can be mixed
in order to target the best solution for each
requirement.

All the benefits come always with the attached costs.
Among these costs we can mention:

 Cost of distributed systems - distributed
systems are hard to develop and also it is hard
to change the developers’ mind set in regards to
asynchronous function calls and to the fact that
the functions can be unavailable and their
component need to handle the situation
accordingly.

 Cost of consistency - keeping the consistency
level high implies a high cost

 Operational complexity - the operations teams
need to be mature enough and they need a set of
automated tools for automated deployment,
automated testing, monitoring, etc.

Analyzing the costs and the benefits of microservices
architecture for the decision for adopting the architectural
style one needs to take in consideration also the complexity
of the system but also its dynamic and frequency of change
through which business value can be delivered faster. Martin
Fowler presents in his article [4] the fact that, for the
classical architectural styles, once the complexity of the
system increases the productivity decreases with a much
higher correlation coefficient compared to microservice
architecture.

39

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

III. External structure of
microservices architecture

When you use microservices for decomposing the
system the expectations are that you end up with a loosely
coupled system in which you have agility in development,
flexibility in operations, you can scale microservices
independently, you can deploy microservices independently
(different deployment options should be made available by
the architecture). In case of a microservice failure that needs
to be isolated and shouldn’t affect other microservices and
shouldn’t bring the whole system down until the issue is
fixed.

The next diagram represents a proposed external
structure in designing microservices-oriented system
architecture. Using this approach the system can be
decomposed into loosely coupled microservices that:

 Have an interface or an explicit contract - REST
/ SOAP (1)

 Boundaries are aligned with business
capabilities (2)

 Use asynchronous communication between
microservices (3)

 Have their own storage - they are the
authoritative source of data for their domain (4)

Figure 2. Microservices architecture - external structure

Decomposition of the system needs to be done in a way
that a microservice incorporates all the necessary functions
of the covered domain [1]. If done this way, decomposition
doesn’t just break the system into small and independent
units, but in autonomous units with capabilities that can be
used by other components.

Applying the approach described above in the diagram,
multiple touch points or any other third party applications
(part of the system) can consume the microservices
capabilities, exposed by their APIs, and offer to the
customer the functionality and the experience that he or she
expects.

Synchronous communication leads to a high level of
coupling between components of the system and also
reduces the throughput of the system. In order to avoid this
microservices have to communicate asynchronously
exchanging events using the publisher-subscriber integration
pattern [2]. To facilitate the communication between
microservices it is recommended to use a lightweight event
bus. The advantages of using this pattern are:

 Temporal decupling

 Microservices don’t depend on each other’s
availability

 Better business analytics by capturing the
history of business events

IV. Internal structure of a
microservice

A. Hexagonal architecture
microservices
A microservice should follow the hexagonal architecture

pattern. This pattern is also called ports and adapters. The
main reason in choosing this kind of architecture is the
separation between business aspects and technological
aspects.

Figure 3. Hexagonal architecture of a microservice

Hexagonal architecture defines the conceptual layers of
code responsibility and indicates ways to decouple between
the layers. It also defines when and how to use interfaces.
The hexagonal architecture is not a new development pattern
inside a framework but rather is a way to describe good
practices. It describe ways to decouple code from the
framework, means to expose the application and how to use
frameworks only as means to create functionality into the
application.

In a port and adapters design pattern, the port is an
expression of component’s interface. In ports expose the
functionality of the core. Out ports describe how the core
sees the outside world (the rest of the components of the
system with which it interacts).

The adaptors are located outside the hexagon
(component). Their role is to ensure that the transport of the
information between the port and the destination component
is happening according to the contract of the port interface.
When the microservice is tested, the only thing that needs to
be replaced is the port. This can be done using the DI
(dependency injection) technique.

40

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

B. Structural modularity of a
microservice
Considering its hexagonal architecture, a microservice

should contain the following components around its core
domain model:

 Interface adaptors - REST / SOAP

 Serialization / deserialization component

 Helper function

 Third party libraries

 Persistence component

 Logging component

 DI container

 Publish / subscribe event component

All these components and the way they interact are
depicted in the following diagram. All asynchronous
communication is marked using dashed lines.

Figure 4. Microservice - internal structure

C. Evolutionary steps in the direction
of mature modularity
System decomposition into microservices alone is not

enough for reaching a high agility level in development.
Microservices bring along some additional complexity that
needs to be taken care of. In order react quickly and cheap to
the business change need, the dependency between
microservice modules must be managed.

Modularity saves the complexity problems created by
the microservices. Creating a mature level of modularity
requires following the next four steps:

 Creation of modules - dependencies on others
modules’ identity (Maven style) solve problems
like transitive dependency problem and “jar
hell” problem

 Module encapsulation - dependencies on
packages exported by other modules. Modules
are isolated form each other by having public

and private packages and dedicated class
loaders.

 Module dependency management - minimizing
coupling between modules by applying
modularity patterns and enforcing the desired
dependencies.

 Module dynamism - the modules can be
upgraded/replaced on the fly without downtime.

References

[1] Eric Evans, Domain-Driven Design: Tackling Complexity in the

Heart of Software, Addison-Wesley, New York 2011

[2] Gregor Hohpe, Bobby Wolf , Enterprise Integration Patterns, 1st ed.,
Addison-Wesley Professional, 2003, pp151-153, 137-141

[3] Martin Fowler - Microservices - March 2014 -
http://martinfowler.com/articles/microservices.html

[4] Martin Fowler - Microservices premium - May 2015 -
http://martinfowler.com/bliki/MicroservicePremium.html

