

32

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Continuous delivery as a service
An approach to implement continuous delivery as a service in large organizations

[Ionut Gheorghe Hrinca, Mircea Raducu Trifu]

Abstract—In agile software development small and

incremental pieces of software are created and delivered to the

stakeholders in order to validate their value. From the moment

of finishing coding until the software is delivered to the client

there is a repetitive quality assurance process that is the perfect

candidate for automation. The mission of continuous delivery is

to create a pipeline containing continuous integration,

automated deployment and automated testing offering

feedback at each stage in order to fix issues early in the

process.

Building and maintaining a continuous delivery pipeline

requires a lot of effort. In case of large organizations with

many development teams spread across the globe having

replicated continuous delivery pipelines generate high costs

compared to a central delivery pipeline offered as a service.

Reusability and collaboration between development teams are

some of the key topics that continuous delivery as a service is

targeting. For building a central pipeline for the whole

organization a lot of things need to be considered in order to be

reliable, secure, efficient and easy to use and maintain.

Keywords—continuous delivery, continuous integration,

code repository, build stage, autmated testing, automated

deployment

I. Introduction
Change is inevitable when using an information system

in a large organization. To keep the business running and to
preserve the competitive advantage, the organizations need
to come with new ideas of improvement that most of the
time turns into process automation or new functionality in
the information system. Any practitioner can confirm that
there is a long way from the idea to deploy in production of
the development, moment when it starts creating value. One
of the aspects that make this journey long is the fact that
there are different teams for development and software
operations with different skill sets. This makes
communication to be hard when it comes to deploying the
development on different environments. Also environment
differences can make this journey longer and even can lead
to production deployment issues.

In order to improve this process an organization needs to
think to automate as much as possible and the testing and
deployment are one of the best candidates for this, reducing

Ionut Gheorghe Hrinca (Author)

PhD Economic Informatics - Bucharest University of Economic Studies

Bucharest, Romania

Mircea Raducu Trifu (Author)

PhD Economic Informatics - Bucharest University of Economic Studies
Romania

the delivery time but also mitigating all the risks of human
errors in the manual process. Building a continuous delivery
process will reduce the delivery time.

The benefits of implementing a continuous delivery
process are[3]:

 Enables collaboration among teams creating
clarity at each step from the build, testing and
deploy processes

 Offers immediate feedback and issues are
identifies and solved early in the process

 Automated deployment on any environment.

Either in small companies or big international
organization that develop software for internal use or for
third parties, implementation of a CD pipeline became a
must in order to have a successful agile development
process.

If a company decides to use a CD it has two options.
One option would be to implement its own CD pipeline and
spend resources in managing the underlying infrastructure
instead of concentrating on application development. The
second option is to use is as a service. Second option looks
to be suitable for small companies that don’t have necessary
resources to manage the CD pipeline infrastructure. Large,
globally spread corporations might also go for a CDaaS
because it reduces costs (one infrastructure) and enables
cooperation and code reuse.

In this article we will describe an approach for
implementation of a CDaaS in large organizations. The main
focus will be on defining the key components of a CDaaS
pipeline, a governance model and security aspects.

II. Why continuous delivery as a
service?

A. Factors that lead large
organizations towards a CDaaS
In a large organization spread across the globe one can

often notice that in every branch, even if they use a quite

large common set of applications, the implementations are

quite different and that mainly because each branch develop

in isolation. This has a significant impact on the reusability

degree that makes the overall organization development cost

to be high. The enterprise features that a CDaaS needs to

deliver for hundreds of agile development teams are:

 Shared global, searchable version control

system to foster re-use

 Backlog management and governance tooling

across multiple team

33

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

 Reporting and metrics across multiple teams to

know where they are

 Knowledge sharing across teams

 Self service onboarding on the continuous

delivery pipeline (tutorials, web casts, etc.) to

avoid onboarding cost and to be able to scale up

quickly

Building a continuous delivery pipeline is hard and

expensive. Operating it involves also some costs too. There

is a need for an operations team to manage the infrastructure

and all the tools used by the pipeline. Having the continuous

delivery pipeline replicated throughout the enterprise lead to

increased costs and low collaboration between development

teams.

B. Impact on the organization
Implementing a continuous delivery process is not an

easy task to do for an organization. It takes a lot of effort
and time to reach the end state and make it stable. This is the
main reason any organization might ask from the first place
why it wants to implement continuous delivery, what are the
business reasons and what are the expected outcomes. The
organization needs to be prepared to invest 2 to 3 years to
reach the state of having continuous delivery[3].
Considering the amount of time required to build the process
and the pipeline, the organization should avoid a classical
approach of analyzing and planning in advance for a long
period and only after that to start implementing the process.
An incremental approach is preferable for this because it is
hard (if not impossible) to state from the beginning how the
end state will really look like.

Building a continuous delivery process generates also
changes in almost all organizational levels. In order to avoid
a failure it needs to be implemented in such a way that small
incremental business value results can be presented to
increase awareness of the benefits that continuous delivery
brings. Getting feedback from all organizational levels is
very important for adjusting the direction of the continuous
delivery implementation.

C. How to start implementing
continuous delivery as a service
First step for building a continuous delivery is to

implement continuous integration. This step is the hardest to
implement because of the resistance to change of the
organization. If you think with which you should start the
implementation of continuous integration, think about
starting with the development teams and don’t even consider
to start with the operations teams because they are already
overwhelmed with daily activities.

For implementing a successful continuous delivery
process the organizational structure and the system
architecture need to be considered. Another aspect with high
importance is building the organizational culture around
continuous delivery process and also around continuous
improvement process.

In designing and using continuous delivery as a service
the following things need to be considered [1]:

 Suitable applications for continuous delivery
are the ones that follow the principle of
“convention over configuration”;

 Applications need to be designed and developed
having in mind the continuous delivery

 Infrastructure needs to be treated in similar way
as the code and must be automated;

 Choosing a convention based on service means
that decisions related to continuous delivery
infrastructure were already taken and the focus
should be on how the applications should be
designed to use the CDaaS.

III. Governance
Centralizing the continuous delivery process into a

CDaaS for the whole organization involves also putting in
place governance around it. There are many ways of setting
up the governance model but we will focus on describing
two options: central governance model and meritocracy
model.

A. Central governance model
In central governance model a named team is responsible

for the governance. There are advantages and disadvantages
related to this model but one of the main reasons this model
is not the most desirable one is that it can lead to creation of
an “ivory tower”. The risk of loosing the reality about the
process is quite high and the governance team might take
wrong decisions based on what they suppose it is happening
in the continuous delivery process.

B. Meritocratic governance model
Meritocratic governance model is a commonly founded

model in which the influence is gained through the
recognitions of the contributors. One of the most famous
examples of this model is the Apache Software Foundation.
Executing this governance model is mainly based on
collaboration between groups of individuals sharing
common interests but also sharing “good to know” type of
knowledge and solutions to different problems in regards to
the continuous delivery pipeline offered as a service.

The more users are involved in this model and contribute
sending suggestions, fixes, or just answering questions, the
bigger becomes the community and its contribution.

Using this model, an individual or a team gain its right to
be part of the development team of the CDaaS by playing an
active role in the contribution process. In this way the access
rights increases and, in a natural manner, this access rights
increase is due to the evolved ability of the contributors
facing solving different issues raised during operating the
CDaaS pipeline.

The roles in the meritocracy model are:

 User - someone that uses the software

 Contributor - user that contributes in form of
code or documentation

 Committer - developer that has the write access
to the code repository

34

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

 PMC (project management committee) member
- a contributor or a committer that was elected
due to the merit of the evolution of the project.

 PMC chair - appointed by the board formed by
the PMC members.

IV. Reference model for CDaaS
The current literature describe the following high level

components of a continuous delivery pipeline [3]:

 Commit stage

 Automated testing stage

 Manual testing stage

 Delivery stage

In order to create an efficient continuous delivery

pipeline as a service that will actually create value inside the

organization, some key and enterprise specific components

need to be present inside it:

 Exploring portal

 Metrics, analytics and monitoring portals

 Documentation and training portal.

The following diagram depicts at high-level model of a

continuous delivery as a service implementation including

some examples of solutions available for each component.

Figure 1. Continuous delivery as a service

A. Continuous integration
In order to have an enterprise level continuous

integration inside the CDaaS that can be used by

development teams spread around the globe, it must be

designed on the following three pillars:

 Global version control system available to all

development teams. Collaboration between the

teams must be possible and encouraged

 Stateless build server. Anytime needed, a new

instance of it should be possible to be created.

In order to make this possible it should follow

the following three principles: build server

configuration must be kept in version control;

new instances of the build server should be

able to be updated easily; destroying and

creating instances of the build server should

happen without any loss.

 Global artifact repository. This is required in

the build stage and in the test stage. One of the

important artifact repository capability

requirements is the ability to import libraries

and artifacts from the Internet in a secured

way. This capability is required because not

always the software is in-house developed and

artifacts and libraries could be developed and

shipped by third parties.

Distributed nature of the development teams in

organization makes the versioning control inside de CDaaS

to require having specific features. One of the options for a

distributed version control system is Git. The main

advantage of Git is that it allows replication of the main line

on the developers’ working station allowing him to make

local commits (even in offline mode). The developer can

sync later on with the main version control server.

In order to have all the elements required by the first

pillar that we mentioned for the continuous integration, Git

alone or any other distributed version control system is not

enough. There is a need for an additional tool (i.e. Stash)

that fulfill the rest of the requirements:

 Creation and management of the code

repositories

 Traceability in the development process

 Fine grained security model

 Collaboration tools at code level

 Scalability in order to be part of a organization

wide CDaaS

The build server in a CDaaS needs to be stateless in

order to assure high availability and scalability, but also to

allow updates without any impact on the build process. The

following diagram represents a more detailed view of the

build stage.

Figure 2. Architecture of the build stage

For choosing a solution for the artifact repository the

following requirements need to be met:

35

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

 High availability deployment

 Secure access to the artifact repository

 Existence of an API for integration with other

tools in the delivery pipeline (i.e. Jenkins,

Nolio) for the following operations: artifact

search, repository creation, users and groups

management, etc.

 Sharing capabilities in order to define access to

different repositories

 Tagging capabilities to facilitate artifacts

finding

 Logging and monitoring capabilities

B. Deployment
In the continuous delivery pipeline the deployment must

be automated. The deployment processes have to be

configured in the tool (i.e. Nolio) in an environment

agnostic way.

In this stage the artifacts created during the build stage

are picked up from the artifact repository and, using the

deployment processes, the development deployed on

different environments. As a good practice, the

environments have to be created to be as similar as possible

to the production environment. This way the risk of

something to go wrong during delivery to production is

mitigated because the deployment process was also tested so

many times on a similar environment.

In a CDaaS the deployment process needs to be as

generic as possible. In order to accomplish that a manifest

file describing the artifacts to be deployed, the order and

constraints needs to be created and placed in the repository

in order to be picked up at deployment time.

C. Testing
In a continuous delivery as a service the automated

testing requires a powerful infrastructure. Every automated

test must be run isolated in order avoid interference with

other automated tests that run in parallel. Here, the

interference refers to both functional (capabilities) and

nonfunctional (performance, resilience, etc.) topics.

An option to isolate the testing is running them into so-

called containers. A good candidate for doing that is Docker.

A container uses a minimum set of libraries and resources

required by the software to be tested. The hardware

resources are used in an optimum way in contrast with the

virtualization alternative. In this way the automated test can

be scaled up and the infrastructure can support the load of

having the automated test inside the continuous delivery

pipeline offered as a service.

D. Monitoring and analytics portal
In order to deliver a continuous delivery pipeline service,

monitoring and analytics are very important. Because of

that, existence of a portal is crucial. Even the acceptance

criteria for the new developments should be possible to be

monitored through these portals (acceptance criteria can be

managed by tools like iValidate). The continuous delivery

process can check if all acceptance criteria are met in an

automated way and the build could deploy directly to

production. If there are manual steps defined, the process is

waiting for the manual acknowledgment of the manual test

completions.

Different metrics measurements need to be displayed on

dashboards. These metrics can be grouped by DevOps teams

or by application or system. Some metrics examples are:

 Average time of a development cycle

 Number of exceeded deadlines

 Median for issues per day

 Cost of infrastructure

V. Security
Security in a continuous delivery pipeline is a very

important. At the organizational level there should be one

security policy. The security around CDaaS needs to ensure

the access based on the needs that a role must have. In order

to have a central security for the whole organization around

CDaaS there is a need for the following pre-conditions:

 Unique users database

 Single point for definition and search of user

groups

 Existence of a way to map the IT assets on

users

It is useful to use for the CDaaS the IAM security model.

As Gartner describes [2] IAM is security discipline that

grants to the right person the right to access the right

resources at the right time and for the right purpose.

IAM system is a combination of business processes,

security policies and allows the organization to grant the

access to confidential information in a secured way [4]. In

order to have an IAM integrated system the following four

elements:

 Means for the user to access the applications,

systems and the documents from the

organization for which his role is entitled to

access.

 Ability to authenticate the user using the PLOP

(Principle Of Least Privilege) principle through

which the user access is set to a minimum that

can permit him to do the daily job.

 SSO (Single Sign On) to easily facilitate the

access to the resources the user is entitled to

access.

 A way to audit the IAM system in order to

validate if it is aligned to security requirements.

The following picture depicts the IAM model applied to

the CDaaS.

36

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Figure 3. Security model for a CDaaS

Acknowledgment
We thank ING continuous delivery team that helped with

the infrastructure to test the proposed model of continuous
delivery pipeline as a service.

References

[1] Dave Ohara - Moving toward continuous delivery as a service - 2013

http://research.gigaom.com/report/moving-toward-continuous-
delivery-as-a-service/

[2] Gartner - Identity and Access Management -
http://www.gartner.com/it-glossary/identity-and-access-management-
iam/

[3] Jez Humble, David Farley - Continuous Delivery: Reliable software
releases through build, test and deploy automation, Addison-Wesley,
New York 2011

[4] Margaret Rouse - Identity Access Management -
http://searchsecurity.techtarget.com/definition/identity-access-
management-IAM-system

