

6

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Reducing False Alarms in Static Code Analysis with

Test Code Mutants
Hyun Woo Park and Kyung-Goo Doh

Abstract— Software is often exposed to safety accidents due to

hacking and defects. Most of the accidents are caused by bugs

and security vulnerabilities in source code. The bugs and

vulnerabilities should be eliminated during the development

phase before software release. Nowadays, many software

developers use static code analysis tools for secure software

development. Thus it is necessary to have an effective way of

evaluating the quality of static analysis. Despite the advantages of

static code analysis, the developers avoid to use it because of the

immoderate false alarms. Unless static analysis tool is tested

appropriately, the false-alarm rate may be increased. In this

paper, we propose a method of automatically generating test

codes based on mutation testing techniques.

Keywords—static code analysis, test code, mutation testing,

false alarm, secure coding.

I. Introduction

Trivial and minor software defects delay the delivery of
services and cause the loss of money. Especially, software
installed in automobiles, aircrafts, and rockets are expensive
and safety critical. The defects of their software can even
threaten human life. Researchers have proposed various
methods that apply test and analysis techniques to identify
defects residing in software.

Program analysis is the process of automatically or
manually analyzing the behavior of computer programs. There
are basically two types of program analysis: static and
dynamic analysis. These analyses detect defects and security
vulnerabilities in the program. Dynamic analysis is popular
and is performed by executing programs. However, it does not
guarantee the absence of vulnerabilities or defects. There are
many types of dynamic-analysis techniques, such as testing,
monitoring, debugging and program slicing [2].

Hyun Woo Park / Dept. of Computer Science and Engineering

Hanyang University ERICA

55 Hanyangdaehak-ro, Sangnok, Ansan, Gyeonggi, Korea

Kyung-Goo Doh / Dept. of Computer Science and Engineering
Hanyang University ERICA

55 Hanyangdaehak-ro, Sangnok, Ansan, Gyeonggi, Korea

Corresponding author

This research was supported by the MSIP(Ministry of Science, ICT and
Future Planning), Korea, under the ICT/SW Creative Research program

(NIPA-2014-H0502-14-3022) supervised by the NIPA(National IT Industry

Promotion Agency)

On the other hand, static analysis is performed without
actually executing programs. It can discover vulnerabilities
during the development phase, and cover every execution
path. Hence, it guarantees the absence of vulnerabilities and
defects. These vulnerabilities and defects are easier to correct
than the ones found during the testing phase since static
analysis finds the root of the vulnerability and defect. There
are many types of static-analysis techniques, such as type
inference, control-flow and data-flow analysis and model
checking [2].

Immature analysis tools often produce false positive results
where the tool reports a possible defect and vulnerability that
in fact is not. The use of immature analysis tools can also
result in false negative results where the tool misses defects or
vulnerabilities. In order to properly evaluate analysis
capabilities of the static analysis tools, well-selected test codes
containing probable defects and vulnerabilities need to be
prepared. Incomplete set of test codes might have defects in
analysis tools go undetected. Thus the preparation of test-code
set is an important factor for an analysis tool.

The practicality and effectiveness of static-analysis tools
can be maintained by keeping the balance between false
positive and negative rates. It is not simple to reduce both false
positive and negative rates at the same time. In order to
minimize the false-negative problem, analysis tool has to
consider relations between function calls and data sensitively.
However, it increases the false positive rate as well. False
positive and negatives are in inseparable relation.

Immoderate false-positive problem makes software
developers frustrated. Manual reviewing or auditing to check
the authenticity of analysis results is very time-consuming.

Furthermore, high false-positive rates have developers lose
their trust in analysis tools and regard actual defects and

vulnerabilities as false.

Hence it is necessary to minimize inseparable relation
between false-positive and false-negative problem. Despite of
the advantages of static analysis tools, the developers avoid
using them due to immoderate false alarms [1]. Moreover,
preparing test codes for the analysis tools requires a great deal
of efforts. To guarantee the quality of static-analysis tools, it is
necessary to properly prepare effective and abundant test
codes. In this paper, we study and suggest a method of
generating further effective and abundant test codes by
applying mutation-testing techniques to initial static-analysis
results.

7

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

II. Types of Test Codes

Two types of test codes are used to evaluate the analysis
precision of static analysis tools. The one type is the sample
codes publicly available in various sites defining and
explaining defects and vulnerabilities [3]. The other type is a
prepared test code created manually by analysis-tool
developers [4, 5]. Using these two types as test codes has
advantages and disadvantages.

CVE (Common Vulnerabilities and Exposures) [7] and
US-CERT (United States Computer Emergency Readiness
Team) [8] have been established to provide a unified,
measurable set of software weaknesses, vulnerabilities and
secure-coding guidelines. Documents of CVE and US-CERT
available publicly provide sample codes that show the
existence and nonexistence of defects or vulnerabilities. Tool
developers could use these sample codes as test codes. They
might not be sufficient, however, because they are only
examples and not complete as test code. Manually
constructing test codes based on the samples code is very
time-consuming.

Some test codes can be prepared readily by tool
developers. However, developers tend to write the test codes
that work only for the specific logic implemented in their tool,
missing some vulnerabilities and defects. Thus the test code
could be written in such a way that it only works in very
simple and limited way [5]. This may increase false-alarm
rates of the static-analysis tool.

Two types of test codes used to evaluate analysis
capabilities of the tool have obvious advantages and
disadvantages. However, it is wise to use sample source codes
from CVE and US-CERT because they tend to be more
reliable. Therefore, an approach which starts from sample
source codes provided and makes them more complete as test
codes is in need.

III. Related Research

Researches have been done to compensate negative aspects
of static analysis. Recent advances in static-analysis
technologies have brought forward tools that do deeper
analyses that find more defects and vulnerabilities, and
produce a reasonable amount of false alarms [1]. Due to the
considerable high cost of reviewing and auditing false alarms,
extensive researches are still ongoing.

Several static-analysis tools have been developed through
the years in order to discover defects and vulnerabilities in the
software development phase. Research on evaluating five
modern static analysis tools (ARCHER [9], BOON [10], Poly-
Space C Verifier [11], Splint [12], and UNO [13]) using open-
source code examples containing 14 exploitable buffer
overflows has been conducted [6]. The research showed that
only Poly-Space and Splint have reasonable detection rates.

Poly-Space and Splint had average detection rates of 87% and
57%, respectively. However, the average false-alarm rate of
these two tools is still about 50%. It has both high detection
and false-alarm rates. High false-alarm rates makes software
developers review and audit source code manually which is
painful.

Mutation testing is fault-based test method, and it is used
to design additional software test set and evaluate the quality
of existing software test set. It identifies the location of defects
and vulnerabilities in source code. Faults are introduced into
the program source code by creating a set of faulty versions,
called mutants [14]. These mutants are created from the
original program source code by applying a mutation operators
which introduce a single syntactic change or fault to source
code. The test sets are used to execute the created mutants
with the goal of causing each mutant to fail the test set. If a
test set cannot distinguish a mutant, it requires additional test
cases to distinguish all the mutants. It improves the quality of
the test set. Mutation operators are various, Table 1 shows
basic ten mutation operators.

Table 1. Mutation Operator

Operator Description

ABS Absolute value insertion

AOR Arithmetic operator replacement

LOR Logical operator replacement

ROR Relational operator replacement

UOI Unary operator insertion

UOD Unary operator deletion

COR Conditional operator replacement

SOR Shift operator replacement

ASR Assignment operator replacement

SVR Scalar variable replacement

The number of mutants which can be generated increases
exponentially. Thus, applying the mutation operator to every
location of source code is very expensive and time-consuming.
Since mutation testing execution cost is considerably high,
researchers have proposed a selective mutation technique,
which uses a subset of the mutation operators instead of using
all operators [15]. Even with the selective mutation technique,
the cost of creating and testing mutants is still not reasonable.
Hence, extensive researches about the reduction of mutation
testing cost are still ongoing.

IV. Generating Test Code Mutants

8

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

 CVE and US-CERT provide source-code examples that

show security weaknesses and vulnerabilities, as well as cases
that violate secure-coding guidelines. Figure 1 shows a C
program example given in US-CERT documents. This
particular secure-code guideline numbered FLP30-C says, “Do
not use floating-point variables as a loop counter”[8].
Floating-point numbers represent real numbers. It is often
mistakenly assumed that they can represent any simple
fraction exactly. Floating-point numbers are subject to
representational limitations unlike an integer number, and
binary floating-point numbers cannot represent all real
numbers exactly. In addition, because floating-point numbers
are able to represent large values, it is often mistakenly
assumed that they can represent all significant digits of those
values as well. The first for-loop in Figure 1 uses variable of
type float as a loop counter, it has the problem that there is a
possibility of the inaccurate number of iterations. This loop
may iterate either nine or ten times. However, the second for-
loop has no problem since this for-loop uses integer type
variable as a loop counter. It iterates exactly ten times.

However, these test cases are not sufficient since there are
other similar types such as double and long double. If the test
cases in Figure 1 alone are used to evaluate the precision of
static analysis tool, false-negative rates may rise because some
of the necessary test cases were omitted. In contrast, test cases
that do not include other types such as integer, short, long, etc.
may raise false-positive rates.

Testing analysis tool with just a few representative
examples might be insufficient and might not cover every
possible case. Defects and vulnerabilities other than what is on
the published documents ought to be additionally reviewed.
Creating loop code with all types as a loop counter variable in
manual requires a great deal of efforts and it is very time-
consuming. Furthermore, manual construction of test codes is
always prone to have missing cases. Developers could also
make mistakes.

Most analysis tools are able to locate the exact location in
the source code where defects or vulnerabilities occur.
Applying each mutation operator to every location of original
test code is inefficient. It creates a lot of useless test-code
mutants [15]. By using only the reported location normally
represented as a line number and column number range,
appropriate and sufficient test-code mutants can be generated
in a reasonable time.

The overview of how appropriate and sufficient test-code
mutants are generated is shown in Figure 2. The test code is
parsed to create AST(Abstract Syntax Tree). The static
analysis tool analyzes the AST. The analysis result is the set of
location information where defects or vulnerabilities reside.

Mutant generator takes the AST and the location as input, and
then it generates the several test-code mutant ASTs. The
generated mutant ASTs are converted to source code. Test-
code mutants are adequate because they are modified from the
analysis result. In addition, since it applies a mutation operator
to the specific location of source code, it is not very time-
consuming to generate. Figure 3 shows an example of the
generated test-code mutants.

The analysis tool which is developed with the above
original test-code reports the floating-point number type
variable. Test code mutants are generated with line
information and original test code. Test code mutants with all
types are generated, and they are analyzed again. An
appropriate analysis capability testing reduces the false alarm

Figure 2. CERT FLP30-C example code

Figure 1. Overview of generating test-code mutants

Figure 3. Example of generated test-code mutants

9

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

rates.

V. Conclusion and Future works

The history of static analysis is shorter than that of
dynamic analysis. However, both analysis techniques have
clear advantages and disadvantages. Ironically, the best way to
certify that the source code has the least amount of defects and
vulnerabilities is by combining both the static and dynamic
analysis. The commercial use of static analysis is growing and
extensive researches on compensating disadvantages of static
analysis have been carrying out. Static analysis discovers
defects and vulnerabilities of software during the development
phase, and it examines all possible execution paths and
variable values, so it does guarantee the absence of
vulnerabilities and defects. It also discovers the root of the
vulnerability and defect, so it is easier to correct them.

However, the false-alarm problem of static code analysis is
inevitable. Despite its advantages, software developers avoid
using it because of the immoderate false alarms. Researches
on comparing detection and false-alarm rates of several
commercial static-analysis tools with open source have been
done [1, 6]. It is impossible to eliminate all false alarms, but it
is possible to minimize the false alarm rates.

Effective and abundant test-code generation lets us not
only see false-positive rates to be decreased, but also false-
negative rates. TO accomplish that, various and effective
mutation operators of mutation testing can be applied to static
analysis. Both mutation testing and static code analysis
discover defects and vulnerabilities of the software. However,
static analysis can be performed faster than mutation testing.
Test code mutants can be generated programming-language
independently in a reasonable time. The reason is that it
requires only the source code and the location where the defect
or vulnerability exists. Preparing abundant and effective test
codes is the key to solving the false-alarm problem.

As future works, we plan to generate more effective and
adequate test codes. There are various kinds of static analysis
[2] such as control-flow analysis, data-flow analysis, model
checking, etc. In this paper, we only consider type mutation
techniques. However, flows between functions and data can
also be mutated with other mutation operators such as
statement mutation and value mutation. We would like to
create more test-code mutants to reduce false-alarm rates of
static analysis.

References

1. I. Gomez, P. Morgado, T. Gomes, and R. Moreira, “An overview on the
Static Code Analysis approach in Software Development,” Tech. rep.,
Faculdade de Engenharia da Universidad do Porto 2009

2. Program Analysis, http://en.wikipedia.org/wiki/Program_analysis

3. R. K. McLean, “Comparing static security analysis tools using open
source Software,” 6th IEEE Int. Conf. SW Security Reliability
Companion (SERE-C), pp. 68-74, Gaithersburg, U.S.A., Jun. 2012

4. T. Hofer, “Evaluation static source code analysis tools,” M.S Thesis,
School Compt. Common. Sci. École Polytechnique Fédérale de
Lausanne, Mar. 2010

5. J. Bang, and R. Ha, “Validation Test Codes Development of Static
Analysis Tool for Secure Software,” J. KICS, vol. 38C, no.05, pp. 420-
427, Oct. 2013

6. M. Zitser, R. Lippmann, and T.Leek, “Testing static analysis tools using
exploitable buffer overflows from open source code,” 12th ACM
SIGSOFT Int. Proc. symposium on Foundations of Software
engineering, vol. 29, no.06, pp. 97-106, Nov. 2004

7. MITRE, Common Vulnerabilities and Exposures, Retrieved Dec, 18,
2014 from https://cve.mitre.org

8. US-CERT Vulnerability, US Computer Emergency Readiness Team,
Retrieved Dec, 30, 2014 from http://cert.org

9. Y. Xie, A. Chou, and D. Engler. “Archer: Using symbolic, path-sensitive
analysis to detect memory access errors,” 11th ACM SIGSOFT Int. Proc.
Symposium on Foundations of Software engineering, vol. 28, no.05, pp.
327-336. 2003

10. D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A First Step
Towards Automated Detection of Buffer Overrun Vulnerabilities,” In
NDSS, pp. 3-17. Feb. 2000

11. PolySpace C Verifier, http://www.polyspace.com/download.htm

12. D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE, Software, vol 19, no 01, pp. 42-51.
2002

13. G. J. Holzmann, “Static source code checking for user-defined
properties,” In Proc. International Conference on Integrated Design and
Process Technology, June. 2002

14. S. Kim, J. A. Clark, and J. A. McDermid, “Class Mutation: Mutation
Testing for Object-Oriented Programs”, Proc. ObjectDays Conference
on Object-Oriented Software Systems, Oct. 2000

15. A. Jefferson, Gregg Rothermel, and Christian Zapf. "An experimental
evaluation of selective mutation." Proceedings of the 15th international
conference on Software Engineering. IEEE Computer Society Press,
1993

About Author (s):

Kyung-Goo Doh is Professor in the Department of
Computer Science and Engineering at Hanyang
University ERICA, Republic of Korea. He received
his Ph.D. in computer science at Kansas State
University. His research interests are in the area of
programming languages, program analysis, software
security, and software engineering.

Hyun Woo Park is a Master’s Student in the
Department of Computer Science and Engineering at
Hanyang University, Republic of Korea. He received
his B.S. in computer science at the University of
Waikato, New Zealand. His research interests are in the
area of programming languages and software
engineering.

