
 

1 

International Journal of Advances in Software Engineering & Research Methodology– IJSERM 
Volume 2: Issue 2     [ISSN : 2374-1619 ]     

Publication Date : 30 October, 2015 
 

An Embedded Control Software Development 

Environment with Data Consistency Verification for 

Preemptive Multi-Task Systems 
Taira Ito, Masayoshi Tamura, Myungryun Yoo and Takanori Yokoyama 

 
Abstract—The paper presents an embedded control software 

development environment that provides a tool to verify the data 

consistency of embedded control software designed with Simulink 

models and UML models. A controller model is built with 

MATLAB/Simulink in the control logic design phase. Then a 

software model that correctly executes the control logic in the 

actual computing environment is built in the software design 

phase. It must be verified during software design that the data 

consistency of the software is preserved in the preemptive multi-

task environment because the simulation of Simulink models is 

performed in an ideal environment in which "zero-time 

execution" is assumed. We present a method to verify the data 

consistency with SPIN model checker. We also present a tool that 

automatically generates Promela code for data consistency 

verification. We have applied the tool to a number of software 

models transformed from Simulink models and have confirmed 

its usefulness for embedded control software design. 
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I.  Introduction 
Model-based design has become popular in embedded 

control software design, especially in the automotive control 
domain. A CAD/CAE tool such as MATLAB/Simulink[1] is 
used to design control logic. A controller model is designed 
with block diagrams and verified by simulation, and source 
code can be generated from the controller model by a code 
generator such as Embedded Coder[1]. However, such 
CAD/CAE tools are not sufficient for software design. 
Sangiovanni-Vincentelli and Di Natale pointed out the 
shortcomings of the tools: lack of separation between the 
functional and architecture model, lack of support for defining 
the task and resource model, lack of modeling for analysis and 
backannotation of scheduling-related delays and lack of 
sufficient semantics preservation[2]. The CAD/CAE tools 
should be used for just control logic design, not for software 
design. 

 Software modeling languages such as UML should be 
used for software design. UML provides a number of kinds of 

diagrams, which are useful for not only functional design but 
also nonfunctional design.  

An embedded control system is usually designed as a 
preemptive multi-task system. Tasks are allocated to CPU 
cores when a multi-core processor is used. We have to design 
the software to meet timing constraints and to correctly 
execute control logic in the preemptive multi-task 
environment. We design the task structure, task priorities, 
inter-task communication, inter-task synchronization and 
mutual exclusion to preserve data consistency. So the efficient 
verification of data consistency is required. 

Verification methods and tools utilizing model checkers 
such as SPIN[3] have been presented for UML 
models[4][5][6] and Simulink models[7][8], most of which are 
based on state transitions. Some researches deal with multi-
task environments on real-time operating systems[9]. 
However, no tools are presented for the data consistency 
verification of the control software that executes the control 
logic in a preemptive multi-task environment. 

The goal of the research is to present an embedded control 
software development environment that supports data 
consistency verification. We present a tool to generate 
Promela code from UML models that describe the structure 
and the behavior of the control software executed in a 
preemptive multi-task environment. We can verify the data 
consistency of the control software by running the Promela 
code through SPIN. 

The rest of the paper is organized as follows. Section II 
describes the control software development process with 
Simulink models and UML models. Section III describes a 
data consistency verification method and a tool that generates 
Promela code for data consistency verification. Finally, 
Section IV concludes the paper. 

II. Control Software Development 
Process 

A. Software Development Flow 
Fig. 1 shows the embedded control software development 

flow, which consists of the control logic design phase, the 
software design phase and the programming phase[10]. 

In the control logic design phase, we build a Simulink 
model that represents a control system. A Simulink model of a 
control system usually consists of a plant model and a 
controller model. The controller model represents control logic.  
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Fig. 2 shows an example Simulink model, which is a part 
called Throttle Controller of an automotive control system. 
The model consists of three inport blocks for Engine 
Revolution, Engine Status and Accelerator Opening, two 
subsystem blocks for Torque Calculation and Throttle 
Opening Calculation, and an outport block for Throttle 
Opening. The details of the calculation of Torque and Throttle 
Opening are described in the lower layer models of the 
subsystem blocks. The calculations are periodically executed 
in the control period. 

In the software design phase, we build a software model in 
UML to implement the controller model. Software design 
consists of functional design and nonfunctional design. We 
transform a Simulink model into a functional model 
represented in UML in functional design. Then we build an 
implementation model taking account of nonfunctional 
properties in nonfunctional design.  

Finally, C or C++ source programs are generated from the 
implementation model in the programming phase. 

B. Functional Design 
The transformation from a Simulink model into a 

functional model represented in UML is automatically 
performed by a model transformation tool[10], the 
transformation rules of which are based on the design method 
of the time-triggered object-oriented software[11][12]. The 
tool generates class diagrams, object diagrams and sequence 
diagrams. A control system consists of controller objects that 
represent subsystems of the control system and value objects 
that represent important data, which represent reasonable 

physical quantities such as input values, output values, 
observed values, estimated values and desired values.  

Fig. 3 shows the class diagram of the software 
corresponding to the Simulink model shown by Fig. 2. The 
class Controller is a class for controller objects and the class 
ValueObject is a class for value objects. The class ValueObject 
has the method update that calculates value and the method 
get to read its value. The method update of ValueObject gets 
the values of other ValueObjects by calling their methods get 
and calculates its own value and stores the calculated value in 
its attribute. An object of Controller consists of a number of 
objects of ValueObjects and its method exec calls their 
methods update. The method exec is periodically executed by 
a task in the control period. 

In Fig. 3, there is a subclass of Controller called 
ThrottleController, which corresponds to the whole Simulink 
model shown by Fig. 2. There are also subclasses of 
ValueObject called EngineRevolution, EngineStatus, 
AcceleratorOpening, Torque and ThrottleOpening, which 
correspond to the subsystem blocks of the Simulink model.  

We also represent tasks and CPU as objects. In Fig. 3, the 
class Task represents tasks and the class Processor represents 
CPU that executes tasks. The class Task has an attribute that 
represents the priority of the task. 

Fig. 4 shows the object diagram of the function model 
corresponding to the Simulink model shown by Fig. 2. The 
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Figure 1. Development flow of embedded control software 
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Figure 3. Class diagram 
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Figure 2.  Simulink model 
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Figure 4. Object diagram 
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part enclosed with broken line is the functional model, which 
is automatically generated by the model transformation tool 
(the rest of the part is added in nonfunctional design). The 
object model consists of an object of ThrottleController, 
EngineRevolution, EngineStatus, AcceleratorOpening, Torque 
and ThrottleOpening.  

Fig. 5 shows the sequence diagram of the functional model 
corresponding to the Simulink model shown by Fig. 2. The 
part enclosed with broken line is the functional model, which 
is automatically generated by the model transformation tool 
(the rest of the part is added in nonfunctional design).  

C. Nonfunctional Design  
We design the task structure, task allocation to CPUs and 

task priorities to meet timing constraints in nonfunctional 
design. We also verify that the data consistency is preserved in 
the preemptive multi-task environment because the functional 
model is transformed from the Simulink model, the simulation 
of which is performed in an ideal environment in which "zero-
time execution" is assumed.  

The data consistency depends on the task structure, task 
allocation and task priorities. For example, when the methods 
update of all value objects of Fig. 4 are executed by one task, 
the data consistency is preserved. However, if we implement 
the functional model with multiple tasks, data consistency may 
be violated. 

Fig.6 (a) shows an example of preemptive execution of the 
tasks on a single processor. Here, we assume update of Torque 
and update of ThrottleOpening are executed by TaskA, update 
of EngineStatus is executed by TaskC, and the priority of 
TaskC is higher than the priority of TaskA. TaskA(n) (the nth 
job of TaskA) is preempted by TaskC(m+1) (the (m+1)th job 
of TaskC). TaskA(n) executes update of Torque before the 
preemption and executes update of ThrottleOpening after the 
preemption. The calculation of Torque uses the value of 
EngineStatus calculated by TaskC(m), but the calculation of 
ThrottleOpening uses the value of EngineStatus calculated by 
TaskC(m+1). So the data consistency is violated in this case. 

Fig.6 (b) shows an example of parallel execution of the 
tasks on a multicore processor. TaskA and TaskC are executed 
in parallel. TaskA(n) executes update of Torque before the 
update of EngineStatus executed by TaskC(m+1) and executes 
update of ThrottleOpening after that. So the data consistency 
is violated as similar to the case (a). 

Fig. 4 shows an example object diagram of an 
implementation model. ThrottleController is executed by 
TaskA with priority 10, which is allocated to CPU1. The 
methods update of EngineRevolution, EngineStatus and 
AcceleratorOpening are called by EngineRevolutionController 
executed by TaskB with priority 10, EngineStatusController 
executed by TaskC with priority 20 and 
AcceleratorOpeningController executed by TaskD with 
priority 30 each. TaskB, TaskC and TaskD are allocated to 
CPU2. Fig. 5 and Fig. 7 show the sequence diagrams of the 
implementation model. 

After the task design, we verify the data consistency of the 
implementation model using the verification method described 
in Section III. If the data consistency of the verified model is 
violated, we modify the model to preserve the data consistency 
manually or using a model weaver[13]. 

Fig. 8 shows the object diagram of a modified 
implementation model with a buffering mechanism, which is 
one of wait-free inter-task communication mechanisms. Fig. 9 
shows the sequence diagram of Task2 of the modified model. 
The sequence diagrams of another tasks are the same as Fig. 7. 
The data consistency is preserved in the modified model. 

III. Data Consistency Verification 

A. Promela Code for Verification 
Data consistency verification is performed with the model 

checker SPIN. Promela is a verification modeling language 
used in SPIN. To verify the data consistency of value objects, 
we check the number of updating of the value used to 
calculate the values of related value objects. For example, the 
number of updating of  EngineStatus used to calculate Torque 
is m and the number of updating of EngineStatus used to 
calculate ThrottleOpening is m+1 in Fig.6. The data 
consistency is violated in this case because the former number 
of updating  is different  from the latter number of updating . 

We use two kinds of Promela code: one for random 
simulation, the other for correctness verification with LTL 
(Linear Temporal Logic) formula. 
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Figure 5. Sequence Diagram of TaskA 
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Figure 6. Behavior of tasks 
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Figure 7. Sequence diagram of TaskB, TaskC and TaskD 
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Fig. 10 shows the Promela code for random simulation of 
the implementation model represented by Fig. 3, Fig. 4, FIg. 5 
and Fig. 7. Some parts of the code is omitted for simplicity. 

A task is represented by a process with an infinite loop. 
TaskA and TaskC is represented as processes (TaskB and 
TaskD are omitted, but similar to TaskC). Priority-based 
scheduling is simulated with provided clauses. A method of an 
object is represented as an inline function. For example, 
update of Torque is represented as update__Torque() and exec 
of ThrottleController is represented as ThrottleController(). 

The number of updating of an object is stored in a variable. 
For example, the number of updating of Torque is stored in 
_Torque and the number of updating of EngineStatus is stored 
in _EngineStatus. If the value of an object is read by another 
object, the number of updating of the former object read by the 
latter object is also stored in a variable. For example, the 
number of updating of EngineStatus read by Torque is stored 
in EngineStatus__Torque and the number of updating of 
EngineStatus read by ThrottleOpening is stored in 
EngineStatus__ThrottleOpening. 

If a value is read by two or more objects belonging to the 
same controller, the number of updating of the value read by 
each object is checked for verification by an assertion. In this 
example, the number of updating of EngineStatus read by 
Torque must be equal to the number of updating of 
EngineStatus read by ThrottleOpening. So the assertion to 
check that EngineStatus__Torque is equal to 
EngineStatus__ThrottleOpening is located in 
ThrottleController(). We can detect the violation during 
random simulation with the Promela code. 

The Promela code shown above is useful to find when and 
where data consistency violations occur. However, the 
Promela code that contains infinite loops cannot be used to 
verify that no violation occurs, i.e. the correctness of the 
model. For example, the Promela code for random simulation 
cannot verify the correctness of the modified implementation 
model represented by Fig. 3, Fig. 7, Fig. 8 and Fig. 9. So we 
use another Promela code with LTL (Linear Temporal Logic) 
formula for correctness verification. 

Fig. 11 shows Promela code for correctness verification of 
the implementation model represented by Fig. 3, Fig. 4, Fig. 5 
and Fig. 7. A task is represented by a process with no infinite 
loop. Some parts of the code is omitted for simplicity.  

The number of updating of the value of an object read by 
another object is stored in two variables. For example, the 
number of updating of EngineStatus read by Torque is stored 
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Figure 8. Object diagram of modified implementation model 
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Figure 9. Sequence diagram of TaskA of modified implementation model 

int _Torque = 0;                    /* number of updating of Torque */
int _ThrottleOpening = 0;           /* number of updating of ThrottleOpening */
int _EngineStatus = 0;              /* number of updating of EngineStatus */
. . . . .
int Processor1_Processor_Priority = 0; /* priority of the task executed by Processor1 */
int TaskA_Task_Priority = 10;  /* priority of TaskA */
int TaskA_Task_PreemptsTask_Priority = 0; /* priority of the task preempted by TaskA */
. . . . .
int Processor2_Processor_Priority = 0; /* priority of the task executed by Processor2 */
. . . . .
int TaskC_Task_Priority = 20;  /* priority of TaskC */
int TaskA_Task_PreemptsTask_Priority = 0; /* priority of the task preempted by TaskC */
. . . . .
int _EngineStatus__Torque = 0;    /* number of updating of EngineStatus read by Torque */
int _AcceleratorOpening__Torque = 0;

/* number of updating of AcceleratorOpening read by Torque */
int _EngineRevolution__ThrottleOpening = 0;

/* number of updating of EngineRevolution read by ThrottleOpening */
int _EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus read by ThrottleOpening */
int _Torque__ThrottleOpening = 0;

/* number of updating of Torque read by ThrottleOpening */
. . . . .
inline update__Torque()  /* execution of method update of object Torque */
{
_EngineStatus__Torque = _EngineStatus;
_AcceleratorOpening__Torque = _AcceleratorOpening;
_Torque = _Torque + 1;

}

inline update__ThrottleOpening()  /* execution of update of Torque */
{
_EngineRevolution__ThrottleOpening = _EngineRevolution;
_EngineStatus__ThrottleOpening = _EngineStatus;
_Torque__ThrottleOpening = _Torque;
_ThrottleOpening = _ThrottleOpening + 1;

}

inline ThrottleController()  /* execution of exec of  ThrottleController */
{
update__Torque();
update__ThrottleOpening();
assert((_EngineStatus__Torque == _EngineStatus__ThrottleOpening));

}
. . . . .
inline update__EngineStatus()  /* execution of  update of EngineStatus */
{
_EngineStatus = _EngineStatus + 1;

}

inline EngineStatusController()  /* execution of exec of EngineStatusController */
{
update__EngineStatus();

}
. . . . .
active proctype TaskA() 
provided(Processor1_Processor_Priority <= TaskA_Task_Priority) /* TaskA */

{
do
:: atomic{

(Processor1_Processor_Priority < TaskA_Task_Priority);
TaskA_Task_PreemptsTask_Priority = Processor1_Processor_Priority;
Processor1_Processor_Priority = TaskA_Task_Priority;

}
ThrottleController();
Processor1_Processor_Priority = TaskA_Task_PreemptsTask_Priority;

od;
}
. . . . .
active proctype TaskC() 
provided(Processor2_Processor_Priority <= TaskC_Task_Priority) /* TaskC */

{
do
:: atomic{

(Processor2_Processor_Priority < TaskC_Task_Priority);
TaskC_Task_PreemptsTask_Priority = Processor2_Processor_Priority;
Processor2_Processor_Priority = TaskC_Task_Priority;

}
EngineStatusController();
Processor2_Processor_Priority = TaskC_Task_PreemptsTask_Priority;

od;
}

 

Figure 10. Promela code for random simulation 
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in EngineStatus__Torque and used__EngineStatus__Torque. 
The number of updating of EngineStatus read by 
ThrottleOpening is stored in EngineStatus__ThrottleOpening 
and used__EngineStatus__ThrottleOpening. The storing in 
used__EngineStatus__Torque and the storing in 
used__EngineStatus__ThrottleOpening are atomically 
executed in ThrottleController(). 

The LTL formula used for correctness verification is []p, 
which means that the proposition p is always true. The never 
claim for ![]p is located at the end of the code. The 
proposition p is a conjunction of conditions. The proposition p 
of this example is that used__EngineStatus__Torque is equal 
to used__EngineStatus__ThrottleOpening. 

We can generate a model checker from the Promela code 
with the never claim by SPIN and perform correctness 
verification. For example, we get one error result by the model 
checker for the implementation model represented by Fig. 3, 
Fig. 4, Fig. 5 and Fig. 7 and no error result by the model 
checker for the modified implementation model represented 
by Fig. 3, Fig. 7, Fig. 8 and Fig. 9. 

B. Promela Code Generation Tool 
We have developed a Promela code generation tool, which 

inputs an implementation model and generates two kinds of 
Promela code described in the previous section: one for 
random simulation, the other for correctness verification. 

We have applied the Promela code generation tool to a 
number of software models transformed from Simulink 
models: a fuel injections system, a hybrid electric vehicle 
system, a stepping motor control system and an engine speed 
control system, which are provided by the MathWorks, 
Inc.[1]. When data consistency violations were detected, we 
modified the models and verified the data consistency of the 
modified models. Through the experiments, we have 
confirmed that the tool is useful for the data consistency 
verification of embedded control software.  

IV. Conclusion 
We have presented a method to verify the data consistency 

of embedded control software with SPIN model checker. We 
have also presented a tool that automatically generates 
Promela code for data consistency verification. We have 
applied the tool to a number of software models transformed 
from Simulink models and have confirmed its usefulness for 
embedded control software design.  
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. . . . .
int _EngineStatus__Torque = 0;  /* number of updating of EngineStatus read by Torque */
. . . . .
int _EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus read by ThrottleOpening */
. . . . .
int used__EngineStatus__Torque = 0;

/* number of updating of EngineStatus used to calculate Torque */
int used__EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus used to calculate ThrottleOpening */
. . . . .
inline ThrottleController()  /* execution of exec of  ThrottleController */
{
update__Torque();
update__ThrottleOpening();
atomic{
used__EngineStatus__Torque = _EngineStatus__Torque;
used__EngineStatus__ThrottleOpening = _EngineStatus__ThrottleOpening;

}
}
. . . . .
active proctype TaskA() 
provided(Processor1_Processor_Priority <= TaskA_Task_Priority) /* TaskA */

{
atomic{
(Processor1_Processor_Priority < TaskA_Task_Priority);
TaskA_Task_PreemptsTask_Priority = Processor1_Processor_Priority;
Processor1_Processor_Priority = TaskA_Task_Priority;

}
ThrottleController();
rocessor1_Processor_Priority = TaskA_Task_PreemptsTask_Priority;

}
. . . . .
active proctype TaskC() 
provided(Processor2_Processor_Priority <= TaskC_Task_Priority) /* TaskC */

{
atomic{
(Processor2_Processor_Priority < TaskC_Task_Priority);
TaskC_Task_PreemptsTask_Priority = Processor2_Processor_Priority;
Processor2_Processor_Priority = TaskC_Task_Priority;

}
EngineStatusController();
Processor2_Processor_Priority = TaskC_Task_PreemptsTask_Priority;

}

/* proposition that number of updating of EngineStatus used to calculate Torque must be 
always equal to number of updating of EngineStatus used to calculate ThrottleOpening */

#define p 
(((used__EngineStatus__Torque == used__EngineStatus__ThrottleOpening)))

/* never claim */
never { /* ! []p */ 
T0_init:
if
:: (! ((p))) -> goto accept_all
:: (1) -> goto T0_init

fi;
accept_all:
skip

}

 
Figure 11. Promela code for correctness verification 


