

1

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

An Embedded Control Software Development

Environment with Data Consistency Verification for

Preemptive Multi-Task Systems
Taira Ito, Masayoshi Tamura, Myungryun Yoo and Takanori Yokoyama

Abstract—The paper presents an embedded control software

development environment that provides a tool to verify the data

consistency of embedded control software designed with Simulink

models and UML models. A controller model is built with

MATLAB/Simulink in the control logic design phase. Then a

software model that correctly executes the control logic in the

actual computing environment is built in the software design

phase. It must be verified during software design that the data

consistency of the software is preserved in the preemptive multi-

task environment because the simulation of Simulink models is

performed in an ideal environment in which "zero-time

execution" is assumed. We present a method to verify the data

consistency with SPIN model checker. We also present a tool that

automatically generates Promela code for data consistency

verification. We have applied the tool to a number of software

models transformed from Simulink models and have confirmed

its usefulness for embedded control software design.

Keywords—embedded control software, real-time systems,

model-based design, verification, model checking

I. Introduction
Model-based design has become popular in embedded

control software design, especially in the automotive control
domain. A CAD/CAE tool such as MATLAB/Simulink[1] is
used to design control logic. A controller model is designed
with block diagrams and verified by simulation, and source
code can be generated from the controller model by a code
generator such as Embedded Coder[1]. However, such
CAD/CAE tools are not sufficient for software design.
Sangiovanni-Vincentelli and Di Natale pointed out the
shortcomings of the tools: lack of separation between the
functional and architecture model, lack of support for defining
the task and resource model, lack of modeling for analysis and
backannotation of scheduling-related delays and lack of
sufficient semantics preservation[2]. The CAD/CAE tools
should be used for just control logic design, not for software
design.

 Software modeling languages such as UML should be
used for software design. UML provides a number of kinds of

diagrams, which are useful for not only functional design but
also nonfunctional design.

An embedded control system is usually designed as a
preemptive multi-task system. Tasks are allocated to CPU
cores when a multi-core processor is used. We have to design
the software to meet timing constraints and to correctly
execute control logic in the preemptive multi-task
environment. We design the task structure, task priorities,
inter-task communication, inter-task synchronization and
mutual exclusion to preserve data consistency. So the efficient
verification of data consistency is required.

Verification methods and tools utilizing model checkers
such as SPIN[3] have been presented for UML
models[4][5][6] and Simulink models[7][8], most of which are
based on state transitions. Some researches deal with multi-
task environments on real-time operating systems[9].
However, no tools are presented for the data consistency
verification of the control software that executes the control
logic in a preemptive multi-task environment.

The goal of the research is to present an embedded control
software development environment that supports data
consistency verification. We present a tool to generate
Promela code from UML models that describe the structure
and the behavior of the control software executed in a
preemptive multi-task environment. We can verify the data
consistency of the control software by running the Promela
code through SPIN.

The rest of the paper is organized as follows. Section II
describes the control software development process with
Simulink models and UML models. Section III describes a
data consistency verification method and a tool that generates
Promela code for data consistency verification. Finally,
Section IV concludes the paper.

II. Control Software Development
Process

A. Software Development Flow
Fig. 1 shows the embedded control software development

flow, which consists of the control logic design phase, the
software design phase and the programming phase[10].

In the control logic design phase, we build a Simulink
model that represents a control system. A Simulink model of a
control system usually consists of a plant model and a
controller model. The controller model represents control logic.

Taira Ito*, Masayoshi Tamura**, Myungryun Yoo*** and Takanori

Yokoyama***
Tokyo City University

1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-8557 Japan

*Presently with LAC Co., Ltd

**Presently with Hitachi INS Software, Ltd.

This work was supported in part by JSPS KAKENHI Grant Number

24500046.

2

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Fig. 2 shows an example Simulink model, which is a part
called Throttle Controller of an automotive control system.
The model consists of three inport blocks for Engine
Revolution, Engine Status and Accelerator Opening, two
subsystem blocks for Torque Calculation and Throttle
Opening Calculation, and an outport block for Throttle
Opening. The details of the calculation of Torque and Throttle
Opening are described in the lower layer models of the
subsystem blocks. The calculations are periodically executed
in the control period.

In the software design phase, we build a software model in
UML to implement the controller model. Software design
consists of functional design and nonfunctional design. We
transform a Simulink model into a functional model
represented in UML in functional design. Then we build an
implementation model taking account of nonfunctional
properties in nonfunctional design.

Finally, C or C++ source programs are generated from the
implementation model in the programming phase.

B. Functional Design
The transformation from a Simulink model into a

functional model represented in UML is automatically
performed by a model transformation tool[10], the
transformation rules of which are based on the design method
of the time-triggered object-oriented software[11][12]. The
tool generates class diagrams, object diagrams and sequence
diagrams. A control system consists of controller objects that
represent subsystems of the control system and value objects
that represent important data, which represent reasonable

physical quantities such as input values, output values,
observed values, estimated values and desired values.

Fig. 3 shows the class diagram of the software
corresponding to the Simulink model shown by Fig. 2. The
class Controller is a class for controller objects and the class
ValueObject is a class for value objects. The class ValueObject
has the method update that calculates value and the method
get to read its value. The method update of ValueObject gets
the values of other ValueObjects by calling their methods get
and calculates its own value and stores the calculated value in
its attribute. An object of Controller consists of a number of
objects of ValueObjects and its method exec calls their
methods update. The method exec is periodically executed by
a task in the control period.

In Fig. 3, there is a subclass of Controller called
ThrottleController, which corresponds to the whole Simulink
model shown by Fig. 2. There are also subclasses of
ValueObject called EngineRevolution, EngineStatus,
AcceleratorOpening, Torque and ThrottleOpening, which
correspond to the subsystem blocks of the Simulink model.

We also represent tasks and CPU as objects. In Fig. 3, the
class Task represents tasks and the class Processor represents
CPU that executes tasks. The class Task has an attribute that
represents the priority of the task.

Fig. 4 shows the object diagram of the function model
corresponding to the Simulink model shown by Fig. 2. The

Control Logic Design
(MATLAB/Simulink)

Software
Design

(UML
Editor)

Programming
(Code Generator /

Code Composition Tool)
Source Program

(C / C++)

Controller Model
(Simulink Model)

Functional Model
(UML)

Functional Design
(Transformation Tool)

Nonfunctional Design
(Verification Tool /

Model Weaver) Implementation Model
(UML)

Figure 1. Development flow of embedded control software

ThrottleOpenig

throttleOpening

Torque

torque

ThrottleController

AcceleratorOpening

EngineStatus

EngineRevolution

engineRevolution

engineStatus

acceleratorOpening

Processor Task

priority

Controller

exec()

ValueObject

get()

update()

cons

Buffer

buf

get()

update()

get()

update()
get()

update()
get()

update()

get()

update()

get()

update()

exec()

Figure 3. Class diagram

Engine
Revolution

Torque

1

Engine
Status

2

Accelerator
Opening

3

Throttle
Opening 1

Out1

Torque Calculation

Throttle Opening Calculation

Throttle Controller

Engine
Status

Accelerator
Opening

Engine
Revolution

Torque

Engine
Status

Figure 2. Simulink model

:Accelerator

Opening

:Engine
Status
Controller

:Engine

Revolution

CPU1

:Processor

TaskA:Task :Throttle

Controller

:Torque

CPU2

:Processor
TaskC:Task

TaskB:Task

TaskD:Task

:Engine

Status

:Engine
Revolution
Controller

:Accelerator
Opening
Controler

:Throttle

Openingpriority = 10

priority = 10

priority = 20

priority = 30

automatically generated part

Figure 4. Object diagram

3

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

part enclosed with broken line is the functional model, which
is automatically generated by the model transformation tool
(the rest of the part is added in nonfunctional design). The
object model consists of an object of ThrottleController,
EngineRevolution, EngineStatus, AcceleratorOpening, Torque
and ThrottleOpening.

Fig. 5 shows the sequence diagram of the functional model
corresponding to the Simulink model shown by Fig. 2. The
part enclosed with broken line is the functional model, which
is automatically generated by the model transformation tool
(the rest of the part is added in nonfunctional design).

C. Nonfunctional Design
We design the task structure, task allocation to CPUs and

task priorities to meet timing constraints in nonfunctional
design. We also verify that the data consistency is preserved in
the preemptive multi-task environment because the functional
model is transformed from the Simulink model, the simulation
of which is performed in an ideal environment in which "zero-
time execution" is assumed.

The data consistency depends on the task structure, task
allocation and task priorities. For example, when the methods
update of all value objects of Fig. 4 are executed by one task,
the data consistency is preserved. However, if we implement
the functional model with multiple tasks, data consistency may
be violated.

Fig.6 (a) shows an example of preemptive execution of the
tasks on a single processor. Here, we assume update of Torque
and update of ThrottleOpening are executed by TaskA, update
of EngineStatus is executed by TaskC, and the priority of
TaskC is higher than the priority of TaskA. TaskA(n) (the nth
job of TaskA) is preempted by TaskC(m+1) (the (m+1)th job
of TaskC). TaskA(n) executes update of Torque before the
preemption and executes update of ThrottleOpening after the
preemption. The calculation of Torque uses the value of
EngineStatus calculated by TaskC(m), but the calculation of
ThrottleOpening uses the value of EngineStatus calculated by
TaskC(m+1). So the data consistency is violated in this case.

Fig.6 (b) shows an example of parallel execution of the
tasks on a multicore processor. TaskA and TaskC are executed
in parallel. TaskA(n) executes update of Torque before the
update of EngineStatus executed by TaskC(m+1) and executes
update of ThrottleOpening after that. So the data consistency
is violated as similar to the case (a).

Fig. 4 shows an example object diagram of an
implementation model. ThrottleController is executed by
TaskA with priority 10, which is allocated to CPU1. The
methods update of EngineRevolution, EngineStatus and
AcceleratorOpening are called by EngineRevolutionController
executed by TaskB with priority 10, EngineStatusController
executed by TaskC with priority 20 and
AcceleratorOpeningController executed by TaskD with
priority 30 each. TaskB, TaskC and TaskD are allocated to
CPU2. Fig. 5 and Fig. 7 show the sequence diagrams of the
implementation model.

After the task design, we verify the data consistency of the
implementation model using the verification method described
in Section III. If the data consistency of the verified model is
violated, we modify the model to preserve the data consistency
manually or using a model weaver[13].

Fig. 8 shows the object diagram of a modified
implementation model with a buffering mechanism, which is
one of wait-free inter-task communication mechanisms. Fig. 9
shows the sequence diagram of Task2 of the modified model.
The sequence diagrams of another tasks are the same as Fig. 7.
The data consistency is preserved in the modified model.

III. Data Consistency Verification

A. Promela Code for Verification
Data consistency verification is performed with the model

checker SPIN. Promela is a verification modeling language
used in SPIN. To verify the data consistency of value objects,
we check the number of updating of the value used to
calculate the values of related value objects. For example, the
number of updating of EngineStatus used to calculate Torque
is m and the number of updating of EngineStatus used to
calculate ThrottleOpening is m+1 in Fig.6. The data
consistency is violated in this case because the former number
of updating is different from the latter number of updating .

We use two kinds of Promela code: one for random
simulation, the other for correctness verification with LTL
(Linear Temporal Logic) formula.

:Throttle

Openig
:Torque

:Accelerator

Opening

:Engine

Status

:Engine

Revolution
:Throttle

Controller

update() get()

get()

get()

get()

get()

update()

exec()

TaskA

:Task

activate

automatically generated part

Figure 5. Sequence Diagram of TaskA

TaskC

TaskA

TaskC(m)

TaskA(n)

TaskC(m+1)

activate

activate

preempted

EngineStatus updated

Torque updated ThrottleOpening updated

TaskC
on

CPU2

TaskA
on

CPU1

Time

TaskC(m)

TaskA(n)

TaskC(m+1)

activate

activate

EngineStatus updated

Torque updated ThrottleOpening updated

TaskC(m+2) TaskC(m+2)

Time

(a) Preemptive execution of tasks
on a single processor

(b) Parallel execution of tasks
on a multicore processor

Figure 6. Behavior of tasks

:Engine

Revolution

update()
exec()

TaskB

:Task

activate

:Engine
Revolution
Controller

update()
exec()

TaskC

:Task

activate

:Engine
Status
Controller

update()
exec()

TaskE

:Task

activate

:Accelerator
Opening
Controller

:Engine

Status
:Accelerator

Opening

Figure 7. Sequence diagram of TaskB, TaskC and TaskD

4

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

Fig. 10 shows the Promela code for random simulation of
the implementation model represented by Fig. 3, Fig. 4, FIg. 5
and Fig. 7. Some parts of the code is omitted for simplicity.

A task is represented by a process with an infinite loop.
TaskA and TaskC is represented as processes (TaskB and
TaskD are omitted, but similar to TaskC). Priority-based
scheduling is simulated with provided clauses. A method of an
object is represented as an inline function. For example,
update of Torque is represented as update__Torque() and exec
of ThrottleController is represented as ThrottleController().

The number of updating of an object is stored in a variable.
For example, the number of updating of Torque is stored in
_Torque and the number of updating of EngineStatus is stored
in _EngineStatus. If the value of an object is read by another
object, the number of updating of the former object read by the
latter object is also stored in a variable. For example, the
number of updating of EngineStatus read by Torque is stored
in EngineStatus__Torque and the number of updating of
EngineStatus read by ThrottleOpening is stored in
EngineStatus__ThrottleOpening.

If a value is read by two or more objects belonging to the
same controller, the number of updating of the value read by
each object is checked for verification by an assertion. In this
example, the number of updating of EngineStatus read by
Torque must be equal to the number of updating of
EngineStatus read by ThrottleOpening. So the assertion to
check that EngineStatus__Torque is equal to
EngineStatus__ThrottleOpening is located in
ThrottleController(). We can detect the violation during
random simulation with the Promela code.

The Promela code shown above is useful to find when and
where data consistency violations occur. However, the
Promela code that contains infinite loops cannot be used to
verify that no violation occurs, i.e. the correctness of the
model. For example, the Promela code for random simulation
cannot verify the correctness of the modified implementation
model represented by Fig. 3, Fig. 7, Fig. 8 and Fig. 9. So we
use another Promela code with LTL (Linear Temporal Logic)
formula for correctness verification.

Fig. 11 shows Promela code for correctness verification of
the implementation model represented by Fig. 3, Fig. 4, Fig. 5
and Fig. 7. A task is represented by a process with no infinite
loop. Some parts of the code is omitted for simplicity.

The number of updating of the value of an object read by
another object is stored in two variables. For example, the
number of updating of EngineStatus read by Torque is stored

:Accelerator

Opening

:Engine
Status
Controller

:Engine

Revolution

CPU1

:Processor
:Throttle

Controller

:Torque

CPU2

:Processor :Engine

Status

:Engine
Revolution
Controller

:Accelerator
Opening
Controler

:Throttle

Opening
:Engine
Status
Buffer

TaskA:Task

TaskC:Task

TaskB:Task

TaskD:Task

priority = 10

priority = 10

priority = 20

priority = 30

Figure 8. Object diagram of modified implementation model

update()

get()

get()

get()

update()

exec()
activate

update() get()

get()

get()

:Throttle

Openig
:Torque

:Accelerator

Opening

:Engine

Status

:Engine

Revolution
:Throttle

Controller

TaskA

:Task

:Engine
Status
Buffer

Figure 9. Sequence diagram of TaskA of modified implementation model

int _Torque = 0; /* number of updating of Torque */
int _ThrottleOpening = 0; /* number of updating of ThrottleOpening */
int _EngineStatus = 0; /* number of updating of EngineStatus */
.
int Processor1_Processor_Priority = 0; /* priority of the task executed by Processor1 */
int TaskA_Task_Priority = 10; /* priority of TaskA */
int TaskA_Task_PreemptsTask_Priority = 0; /* priority of the task preempted by TaskA */
.
int Processor2_Processor_Priority = 0; /* priority of the task executed by Processor2 */
.
int TaskC_Task_Priority = 20; /* priority of TaskC */
int TaskA_Task_PreemptsTask_Priority = 0; /* priority of the task preempted by TaskC */
.
int _EngineStatus__Torque = 0; /* number of updating of EngineStatus read by Torque */
int _AcceleratorOpening__Torque = 0;

/* number of updating of AcceleratorOpening read by Torque */
int _EngineRevolution__ThrottleOpening = 0;

/* number of updating of EngineRevolution read by ThrottleOpening */
int _EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus read by ThrottleOpening */
int _Torque__ThrottleOpening = 0;

/* number of updating of Torque read by ThrottleOpening */
.
inline update__Torque() /* execution of method update of object Torque */
{
_EngineStatus__Torque = _EngineStatus;
_AcceleratorOpening__Torque = _AcceleratorOpening;
_Torque = _Torque + 1;

}

inline update__ThrottleOpening() /* execution of update of Torque */
{
_EngineRevolution__ThrottleOpening = _EngineRevolution;
_EngineStatus__ThrottleOpening = _EngineStatus;
_Torque__ThrottleOpening = _Torque;
_ThrottleOpening = _ThrottleOpening + 1;

}

inline ThrottleController() /* execution of exec of ThrottleController */
{
update__Torque();
update__ThrottleOpening();
assert((_EngineStatus__Torque == _EngineStatus__ThrottleOpening));

}
.
inline update__EngineStatus() /* execution of update of EngineStatus */
{
_EngineStatus = _EngineStatus + 1;

}

inline EngineStatusController() /* execution of exec of EngineStatusController */
{
update__EngineStatus();

}
.
active proctype TaskA()
provided(Processor1_Processor_Priority <= TaskA_Task_Priority) /* TaskA */

{
do
:: atomic{

(Processor1_Processor_Priority < TaskA_Task_Priority);
TaskA_Task_PreemptsTask_Priority = Processor1_Processor_Priority;
Processor1_Processor_Priority = TaskA_Task_Priority;

}
ThrottleController();
Processor1_Processor_Priority = TaskA_Task_PreemptsTask_Priority;

od;
}
.
active proctype TaskC()
provided(Processor2_Processor_Priority <= TaskC_Task_Priority) /* TaskC */

{
do
:: atomic{

(Processor2_Processor_Priority < TaskC_Task_Priority);
TaskC_Task_PreemptsTask_Priority = Processor2_Processor_Priority;
Processor2_Processor_Priority = TaskC_Task_Priority;

}
EngineStatusController();
Processor2_Processor_Priority = TaskC_Task_PreemptsTask_Priority;

od;
}

Figure 10. Promela code for random simulation

5

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
Volume 2: Issue 2 [ISSN : 2374-1619]

Publication Date : 30 October, 2015

in EngineStatus__Torque and used__EngineStatus__Torque.
The number of updating of EngineStatus read by
ThrottleOpening is stored in EngineStatus__ThrottleOpening
and used__EngineStatus__ThrottleOpening. The storing in
used__EngineStatus__Torque and the storing in
used__EngineStatus__ThrottleOpening are atomically
executed in ThrottleController().

The LTL formula used for correctness verification is []p,
which means that the proposition p is always true. The never
claim for ![]p is located at the end of the code. The
proposition p is a conjunction of conditions. The proposition p
of this example is that used__EngineStatus__Torque is equal
to used__EngineStatus__ThrottleOpening.

We can generate a model checker from the Promela code
with the never claim by SPIN and perform correctness
verification. For example, we get one error result by the model
checker for the implementation model represented by Fig. 3,
Fig. 4, Fig. 5 and Fig. 7 and no error result by the model
checker for the modified implementation model represented
by Fig. 3, Fig. 7, Fig. 8 and Fig. 9.

B. Promela Code Generation Tool
We have developed a Promela code generation tool, which

inputs an implementation model and generates two kinds of
Promela code described in the previous section: one for
random simulation, the other for correctness verification.

We have applied the Promela code generation tool to a
number of software models transformed from Simulink
models: a fuel injections system, a hybrid electric vehicle
system, a stepping motor control system and an engine speed
control system, which are provided by the MathWorks,
Inc.[1]. When data consistency violations were detected, we
modified the models and verified the data consistency of the
modified models. Through the experiments, we have
confirmed that the tool is useful for the data consistency
verification of embedded control software.

IV. Conclusion
We have presented a method to verify the data consistency

of embedded control software with SPIN model checker. We
have also presented a tool that automatically generates
Promela code for data consistency verification. We have
applied the tool to a number of software models transformed
from Simulink models and have confirmed its usefulness for
embedded control software design.

References

[1] The MathWorks Inc., http://www.mathworks.com/.

[2] A. Sangiovanni-Vincentelli and M. Di Natale, "Embedded system design
for automotive applications," IEEE Computer, Vol.40, No.10, pp.42-51,
2007.

[3] G. J. Holzmann, "The model checker SPIN," IEEE Transactions on
Software Engineering, Vol.23, No.5, pp.279-295, 1997.

[4] E. Mikk, Y. Lakhnech, M. Siegel and G. J. Holzmann, "Implementing
statecharts in PROMELA/SPIN," Proc. 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques, pp.90-101, 1998.

[5] J. Lilius and I. P. Paltor, "vUML: a tool for verifying UML models,"
Proc. 14th IEEE International Conference on Automated
Software Engineering, pp.255-258, 1999.

[6] V. del Bianco, L. Lavazza and M. Mauri, "Model checking UML
specifications of real time software," proc. 8th IEEE International
Conference on Engineering of Complex Computer Systems, pp.203-212,
2002.

[7] B. Meenakshi, A. Bhatnagar and S. Roy, "Tool for translating Simulink
models into input language of a model checker," Proc. 8th International
Conference on Formal Engineering Methods, pp.606-620, 2006.

[8] C. Chen, J. S. Dong and J. Sun, "A formal framework for modeling and
validating Simulink diagrams," Formal Aspects of Computing, Vol.21,
No.5, pp.451-483, 2006.

[9] T. Aoki, "Model Checking Multi-Task Software on Real-Time
Operating Systems," Proc. 11th IEEE International Symposium on
Object Oriented Real-Time Distributed Computing, pp.551-555, 2008.

[10] T. Kamiyama, M. Tamura, T. Soeda, M. Yoo and T. Yokoyama, "An
Embedded Control Software Development Environment with Simulink
Models and UML Models," IAENG International Journal of Computer
Science, Vol.39, No.3, pp.261-268, 2012

[11] T. Yokoyama, H. Naya, F. Narisawa, S. Kuragaki, W. Nagaura, T. Imai
and S. Suzuki, "A Development Method of Time-Triggered Object-
Oriented Software for Embedded Control Systems," Systems and
Computers in Japan, Vol.34, No.2, pp.338-349 2003.

[12] T. Yokoyama, "An Aspect-Oriented Development Method for
Embedded Control Systems with Time-Triggered and Event-Triggered
Processing," Proc. 11th IEEE Real-Time and Embedded Technology and
Application Symposium, pp.302-311, 2005.

[13] T. Soeda, Y. Yanagidate and T. Yokoyama, "Embedded Control
Software Design with Aspect Patterns," Journal of the Chinese Institute
of Engineering, Vol.34, Issue 2, pp.213-225, 2011.

.
int _EngineStatus__Torque = 0; /* number of updating of EngineStatus read by Torque */
.
int _EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus read by ThrottleOpening */
.
int used__EngineStatus__Torque = 0;

/* number of updating of EngineStatus used to calculate Torque */
int used__EngineStatus__ThrottleOpening = 0;

/* number of updating of EngineStatus used to calculate ThrottleOpening */
.
inline ThrottleController() /* execution of exec of ThrottleController */
{
update__Torque();
update__ThrottleOpening();
atomic{
used__EngineStatus__Torque = _EngineStatus__Torque;
used__EngineStatus__ThrottleOpening = _EngineStatus__ThrottleOpening;

}
}
.
active proctype TaskA()
provided(Processor1_Processor_Priority <= TaskA_Task_Priority) /* TaskA */

{
atomic{
(Processor1_Processor_Priority < TaskA_Task_Priority);
TaskA_Task_PreemptsTask_Priority = Processor1_Processor_Priority;
Processor1_Processor_Priority = TaskA_Task_Priority;

}
ThrottleController();
rocessor1_Processor_Priority = TaskA_Task_PreemptsTask_Priority;

}
.
active proctype TaskC()
provided(Processor2_Processor_Priority <= TaskC_Task_Priority) /* TaskC */

{
atomic{
(Processor2_Processor_Priority < TaskC_Task_Priority);
TaskC_Task_PreemptsTask_Priority = Processor2_Processor_Priority;
Processor2_Processor_Priority = TaskC_Task_Priority;

}
EngineStatusController();
Processor2_Processor_Priority = TaskC_Task_PreemptsTask_Priority;

}

/* proposition that number of updating of EngineStatus used to calculate Torque must be
always equal to number of updating of EngineStatus used to calculate ThrottleOpening */

#define p
(((used__EngineStatus__Torque == used__EngineStatus__ThrottleOpening)))

/* never claim */
never { /* ! []p */
T0_init:
if
:: (! ((p))) -> goto accept_all
:: (1) -> goto T0_init

fi;
accept_all:
skip

}

Figure 11. Promela code for correctness verification

