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Abstract  

Indoor environment usually has complicated structures and 

contains planes which can be used as extra features for 

registration. This paper proposes a method to use planar features 

extracted from depth camera for indoor localization. Two 

consecutive depth images are converted to point clouds and 

segmented to planes. Two sets of planes are then matched 

together to estimate the rotation matrix which is used as initial 

guess of iterative closest point (ICP) of point-to-plane 

registration. Our experimental result shows that ICP of point-to-

plane algorithm with the extra step of estimating the rotation 

guess matrix performs faster than conventional ICP and 

overcomes the drawback of ICP point-to-point algorithm in 

indoor environment.    

Keywords—Iterative closest point (ICP), Plane segmentation, 

Registration. 

I.  Introduction 
Over decades, localization always plays important roles in 

autonomous mobile robotic [1] especially for indoor 

localization in which accurate and safe navigation is strictly 

required due to space limitation and complicated indoor 

environment. However, an indoor environment in general 

contains a floor and the localization is narrowed down to the 

problem of estimating the poses, i.e., the position and 

orientation, of a mobile robot on the floor plane. The most 

conventional method for localization applied wheel odometer. 

The rotational encoder was mounted on the wheels of a mobile 

robot to provide distance and direction of each wheel which 

was later used to calculate the pose of the robot. However, this 

method results to unbounded accumulated errors caused by 

multiple factors such as different wheel diameter, wrong 

estimated wheelbase, wheel slip and limited resolution of 

wheel encoder. Another localization method namely visual 

odometry has been developed to track the pose of a robot by 

analyzing just images captured by a camera attached to it [2].  

An obstacle preventing practical implementation of this 

approach involves the lacks of 3D information when a normal 

RGB camera is used. Recently, it is possible to obtain useful 

information including depths via a single camera, making 

mobile robot navigation and indoor localization feasible.  So 

far, many types of depth cameras have been developed. A 

stereo camera achieves depth perception in a manner similar to 

human eyes by finding the correspondences between two 

images from the left and right cameras to estimate the 

disparity images. The disparity let us know how far from the 

interested points to the camera through perspective projection. 

However, finding the correspondences of pixels from the two 

images is not an easy task. If the global view of image is 

concerned, it consumes a lot of time to process the whole 

image. Meanwhile, if just local areas of an image are taken 

into account, the correspondence from one pixel to others 

cannot be exactly evaluated. A time of arrival (TOA) camera 

emits a beam of laser and receives the light reflection from the 

object surfaces to reveal depths. With complicated 

implementation, TOA camera is expensive. The structured 

light-based camera uses a structured-dot pattern to light an 

object. The deformation of dot-light let us know the distance 

from a point in 3-D to the camera. With current 

implementation of Kinect camera released by Microsoft in 

2011, the structured light-based camera achieves better quality 

of depths with reasonable price so that it has been accepted 

widely for indoor applications.  

To deal with the localization problem for a mobile system 

using depth images captured by a Kinect camera, a frame to 

frame registration is critical to track the position of a moving 

wheel chair. So far, the iterative closest point utilizing point-

to-point approach (ICP) [3] has been the most conventional 

technique to align the two 3D point clouds of two consecutive 

depth images. However, ICP usually leads to local 

optimization because of the bad initialization of 

transformation parameters. Besides, the appearance of big 

planes such as floors or walls in a depth images mainly 

determines the transformation to fit the two 3D points. If a 

robot is going straight away, somehow the main planes 

between two frames are similar. Consequently, the moving 

information cannot be captured correctly. Although there has 

been a variant of ICP utilizing point-to-plane (ICP-P2P) 

approach [4], the above problem was not completely solved.  

In this paper, we address the registration problem of 3D point 

clouds captured by a depth camera. To overcome the 

disadvantages of ICP and its variants to handle the 

appearances of big planes in a depth image, we propose a two-

stage registration ICP. In the first stage, the planes are detected 

from two 3D point clouds and an estimated rotation matrix is 

found by matching different planes of two point clouds. The 

fine registration is later performed with ICP-P2P and use 

estimated rotation matrix as guess matrix when the effects of 

the big planes are mitigated than ICP. Actually, by using 

estimated rotation matrix as initial guess can help ICP-P2P to 

converge faster and more robust.   

 

The rest of paper is organized as follows. Section 2 

describes our proposed methodology. We present 
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experimental results with discussion in Section 3. Finally, we 

conclude this paper with Section 4.  

II. Methodology 

A. Kinect camera and an electronic 
wheel chair 

The Kinect was introduced by Microsoft as a new controller 

for Microsoft Xbox 360 video game to capture gamers’ 

motion without requiring a marker attached on their bodies. 

The two valuable sensors of Kinect are the basic RGB camera 

and the depth camera which contains an infrared (IR) emitter 

and an IR receiver as depicted in Fig. 1. 

 

 
Figure 1. Microsoft Kinect device (left) and electronic wheelchair with Kinect 

camera (right). 

 

In details, the Kinect camera has angular field of view of 

57° horizontally and 43° vertically. The camera is well 

operated to capture depths from 0.8m to 6 m. Besides it can 

provide two images with full VGA resolution of 640×480 

pixels at a recording rate of 30 frames per second, the former 

for 24 bit RGB images and the later for 11 bit depth image 

with 2048 levels of depths. 

 

Because of its low cost and capability to produce depth 

image, it becomes the potential sensor for wide applications. 

Therefore beside the official SDK provided by Microsoft to 

support application development for Kinect, additional open-

source driver [5] as well as processing tools of third party 

were created to make Kinect’s application easy to develop and 

available to cross platforms (Mac, Linux, and Windows) [6]. 

After a depth image is captured by a depth camera, its pixels 

are transformed into 3D point clouds in a real world 

coordinate system as  

  
(    ) 

 
 

  
(    ) 

 
 

(1) 

where u and v are the row and column index of a pixel, u0, v0, 

and f are the parameters configured by a depth camera.  

 

However, depth data provided by Kinect is huge and 

needs to be down-sampled and filtered before further process. 

In this work, a depth image with resolution 640×480 pixels is 

reduced to a resolution of 320×240 pixels. The spatial filter is 

applied to range depth data from 0.6 – 4m horizontally and 

below 1.6m from the floor along the vertical direction as 

illustrated in Fig. 2. The depth range is chosen between 0.6 – 

4m to ensure valid data collection and minimize acquired 

errors of depth data to about 0.024m at maximum 4m of depth 

[7, 8]. The vertical range below 1.6m from the ground is due 

to the maximum height of the user sitting on a wheelchair. 

Lastly, the 3D point cloud is passed through a voxel grid filter 

with the leaf size of 0.05m provided by point cloud library 

(PCL) [9]. A voxel is a 3D box in space and contains several 

3D points, so the point cloud was divided into many square 

voxel with the length of 0.05m and all points in each voxel are 

represented by its centroid. 

 

 
 
Figure 2. Spacial filter of the system, horizotal view (left) and vertical view 

(right). The valid areas are marked by green. 

 

B. Plane detection and segmentation 
After depth image is obtained and converted into 3D point 

clouds, plane segmentation is applied. Many algorithms for 3D 

data plane segmentation have been proposed in recent years. 

Some researches considered depth image as a 2D gray-scale 

image and applied segmentation methods such as mean-shift 

clustering or graph-base segmentation. Although those 

methods achieved good result in some cases, close or touching 

objects in a depth image usually make them to perform badly. 

Other algorithms used RANSAC to robustly estimate the 

parameters of all planes in a depth image. However, such 

algorithms are slow and unsuitable for real-time systems as 

well as large and complex environments such as office room 

with furniture. Dub et al [10] applied the randomized Hough 

transformation to extract planes from depth images. A noise 

model is constructed to solve the task of finding parameter 

metric for randomized Hough transformation. Although, this 

algorithm is capable for real-time running of mobile robot 

platform, plane segmentation cannot be accurately performed. 

 

In this work, we apply the method described in [11] which 

consists of voxel-wise initial segmentation and pixel-wise 

accurate segmentation. Firstly, the depth image is converted 

into 3D point cloud and divided into voxels. Then normal of 

each voxel is calculated and area-growing algorithm is used to 

extract raw planes. Later, unclassified points are examined 

whether they belong to a plane or not. Then fragments of the 

same plane are merged together. 

 

In voxel-wise initial segmentation as illustrated in 

Algorithm 1, the point cloud is divided into voxels with a size 

of 0.2m in length. For each voxel if the number of point in that 

voxel is greater than a threshold, i.e., ten points in our 

experiments, it is considered as a valid voxel for estimating 

plane equation and points in a valid voxel is named as inlier-

point. Least square equation is applied to estimate the plane 
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equation that fits to all point of the voxel. Let a set of points in 

a voxel be    *        +   *     +  that is used to 

formulate the plane equation           .  The 

coefficients a, b, and c are found by the mean square 

estimation to minimize   ∑ (            )
 

  

(
 
 
 
)  (

∑  
 ∑    ∑  

∑    ∑  
 ∑  

∑  ∑   

)

  

(

∑    

∑    

∑  

). 
(

(2) 

After estimating planes for valid voxel, we check for 

whether the estimated planes are good enough to be used. The 

sum of point to plane distance at each valid voxel are 

calculated. When this sum is close to zero, it means that all 

points belong to the estimated plane. However if this sum is 

greater than a threshold, the corresponding voxel has too many 

artifacts. Therefore the voxel becomes invalid and all points in 

that voxel become outlier-point. 

 

After plane estimation, these voxel-planes are pieces of a 

large-real plane so normal and area-growing algorithms are 

used to extract initial plane. If adjacent voxels have the same 

normal direction or the angle of them smaller than a threshold, 

we cluster them together. Finally, if a voxel cluster is larger 

than a threshold, it is considered as a plane. In this process, 

voxels belong to a plane are called planar-voxels, and voxels 

that not belong to any plane are called non-planar voxels. 

Points in all the non-planar voxels should be accurately 

examined pixel by pixel in the refined segmentation later. 

 
Algorithm 1: Initial plane segmentation 

Step 1. Traverse the voxel grid and find a voxel Vo that has not been 
processed. Calculate average distance d of points of Vo to its own estimated 

plane. If d is smaller than a threshold then create a queue Q and add Vo to 
Q. Otherwise, find another Vo. 

Step 2. Examine 26 neighbor voxels Vi (i=1,2….,25,26 ) of the voxel Vo. If  

the voxel Vi has not been processed then go to the calculation: 
Let ni = (xi,yi,zi) be the normal of Vi and no= (x,y,z) be the normal of  Vo. 

Calculate the angle of the two normal vectors as follows, 

     
                 

|  | |  |
              

If |cos  | is larger than a threshold Vo and Vi are added to the same cluster. 
If the cluster is larger than a threshold we consider it as a plane. Then insert 

Vi to Q. 

Step 3. Pick another element from Q and regard it as Vo and return to step 

2. 
Step 4. If Q is empty, return step 1. 

Step 5. Repeat step 1 to step 4 until all voxels are processed.  

 

In algorithm 2, pixel-wise accurate segmentation is the 

process to refine the roughly segmented plane that we get from 

initial segmentation. In this process, each point of non-planar 

voxel is checked to determine whether it belongs to a certain 

plane or not. It is obviously that a point is on a plane if the 

distance from the point to the plane is nearly zero. Hence for 

each point of non-planar voxel, the distance of it and neighbor 

voxel-plane is checked. If the distance is smaller than a 

threshold the point is considered to be of that plane. In details, 

the number of adjacent voxels is a parameter in this algorithm. 

 
Algorithm 2: Refine segmentation 

Step 1. Traverse voxel grid, find a voxel Vo that has not been clustered to a 
plane (non-planar voxel). 

Step 2. Search in 26 neighbor voxels Vi (i=1,2….,25,26 ) of the voxel Vo, a 
plane Pi that has not been processed. 

Step 3. Calculate distance d from points of the non-planar voxel to plane 

Pi. Let p (x’,y’,z’) denote coordinates of one point in center voxel Vo, Vi 

denote the i-th planar voxel in the neighborhood that belong to the plane Pi 

parameterized by Ax + By + Cz + 1 = 0 .The distance from p to Pi is: 

     
|              |

√        
 

     If dij is smaller than a threshold p is considered belong to plane Pi, 

otherwise p is not a point in Pi. 

Step 4. Return to step 2 until all surrounding planes are processed. 
Step 5. Repeat step 1 to step 4 until all non-planar voxel have been 

processed. 

 

  After fine segmentation, all planes are segmented, but 

some plane may be divided into several parts. So in order to 

merge pieces of a real plane together, the angle of normal of 

adjacent planes is checked again. If it is smaller than a 

threshold, we merge them as a plane. 

C. Proposed plane registration 
Kinect captures depth image at the frame rates of 30Hz and a 

wheelchair speed is slow in indoor environment so that two 

continuous depth image will have their corresponding point 

clouds highly overlapped when presented on the same Kinect 

coordinate as illustrated by Fig. 3.  

 

 
 

Figure 3. Two point clouds constructed from two consecutive depth images 
shown on the same coordinate system of Kinect camera (left). The circle area 

illustrates two distinguished table corners matched by a red line but they are 

actually the same corner table in the real world (right). 
 

The blue point cloud corresponding to the first depth 
image captured by Kinect at the starting position and the white 
point cloud corresponding to the second depth image captured 
by Kinect when it was moved forward and turned left. Fig. 4 
simply illustrates the point clouds of Fig. 3 in which it shows 
the 2D view of floor plane on the real world coordinate with 
the origin O and the green line is the table corner mentioned in 
Fig. 3. O1 and O2 are the position of Kinect on the 2D real 
world coordinate and the triangle is the horizontal field of 
view of the Kinect at each position. The blue point cloud is 
captured when Kinect at the position O1 or the world origin O. 
The white cloud is captured at the position O2 after the Kinect 
moves forward and turns left. The Fig. 4 shows that the 
distance from table corner – green line to position O1 is larger 
than to position O2. This means the distance from the table 
corner to O1y vector is also larger than to O2y vector. As a 
result, the white corner table point cloud is closer to the 
coordinate origin than the blue one. The corresponding table 
corner plane of the first point cloud (blue) was the result of the 
corner plane of the second point cloud (white) rotated to left 
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around the vertical axis which perpendicular to floor planes 
(the green axis in Fig. 3) and then translated forward. 
Consequently, a rotation matrix which transformed two actual 
corresponding planes to parallel was also the actual rotation 
matrix. So the task was try to find the potential corresponding 
plane pairs between two point clouds and calculate the best 
estimated rotation matrix which transformed all planes of 
second point cloud to parallel to corresponding planes of first 
point cloud.  

 

 
Figure 4. 2D view of corner table in two different Kinect position, 

 

After segmenting planes of two point clouds, we have a 

list of planes in both point clouds. We aim to find the 

estimated rotation matrix by firstly finding the potential 

corresponding plane pairs between two point clouds. Two 

points cloud are highly overlapped because of the slow speed 

of indoor environment. Consequently the corresponding 

planes between two point clouds are close and the number of 

points in plane of both corresponding plane are similar. So two 

planes are potentially corresponding to each other when 

distance between two plane centroids are closest and the 

number of point in planes are not much different. Based on 

these properties for each plane of the first point cloud, we can 

find the potential corresponding plane of the second point 

cloud. The actual corresponding plane pairs provide the 

rotation matrix which transforms them and also other actual 

corresponding plane pairs to parallel. Each potential 

corresponding plane pairs lead an estimated rotation matrix 

and the best rotation matrix is the one that maximizes the 

parallel of all potential corresponding plane pairs. We use an 

estimated rotation matrix to transform all planes in the second 

point cloud and calculate cosine angle between each 

corresponding plane pairs (planes of first point cloud and 

transformed planes of second point cloud). For more 

robustness we multiply the number of point in plane of first 

point cloud to each cosine angle because the larger plane has 

more priority than the smaller plane and sum all of them. The 

best estimated rotation matrix is the one that has the largest 

sum. The algorithm to find estimated rotation matrix is 

described in Algorithm 3.  

Finally, we run ICP-P2P algorithm to align the second 

point cloud to the first point cloud with the best estimated 

rotation matrix as guess matrix. 

 
 

 

Algorithm 3: Estimate Rotation Matrix 

Input: Plane coefficients of both point cloud 

Output: The estimated rotation matrix 

 

Step 1. Calculate centroids of each planes in both point clouds 
Step 2. for each plane in the first cloud 

find corresponding plane in the second cloud which has               

minimum distance between centroids and ratio number of point 

between two planes in range 0.5 – 2m 

 end for 

Step 3. for each plane in the first cloud 

calculate cosine angle of two planes, get value of angle, rotate the 

corresponding plane in second cloud by calculated angle around the 

vertical axis, recalculate cosine angle of both rotated planes with plane 

in first cloud and finally get rotate angle corresponding to the larger 

cosine angle 

if larger cosine angle > 0.99 (corresponding planes were parallel) 

for each plane in the first cloud 

rotate all planes in second cloud  by rotate angle, calculate sum of 

number of point in first cloud multiplied with absolute cosine angle 

between plane in first cloud and corresponding rotated plane in 

second cloud, i.e., (sumOfCos = sumOfCos + 

numOfPointInPlaneOfFirstCloud * |cos(planeInFirstCloud & 

correspondingRotatedPlaneInSecondCloud)|) 

 

find the best rotate angle and construct the estimated rotation  

matrix with corresponding to the maximum of sumOfCos  

       end for  

end if  

end for  

 

 

III. Experimental Results 
 

Fig. 5 illustrates the results of plane segmentation. Obviously, 

it can be seen that the planes extracted were presented with 

different color and the points which did not belong to planes 

were removed. 
 

 
Figure 5. The point cloud (right) and the corresponding point cloud after plane 
segmentation (left). 

 

As mention previously, the problem of ICP in indoor 

registration is illustrate in Fig. 6, the first cloud is the white 

cloud, the transformed second cloud is the green cloud, the 

second cloud is captured after wheelchair move forward about 

0.2 m. Because of the overlap area of floor plane and the wall 

too large, ICP fails to move the second cloud forward to 

maintain the distance between point to point smallest. In the 

other hand, the ICP-P2P performs well in this case the second 

cloud is moved forward two corner table are in the same plane 

now [8]. 
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Figure 6. Two point cloud after registration by ICP (left) and ICP-P2PG 

(right). 
In our experiments, the wheel chair with mounted Kinect was 

moved forward with small variations of moving left or right 

and the data was recorded with 200 frames. We divide the 

running steps of our algorithm into three data sets: 5 frames 

(SF-5), 10 frames (SF-10) and 20 frames (SF-20) and three 

algorithms: ICP, ICP-P2P and our proposed ICP-P2P with the 

estimated rotation matrix as initial guess (ICP-P2PG). We also 

test the effects of our spatial filter where the data is divided in 

two sets: using spatial filter and without using spatial filter. 

The results are showed in Table 1 (The spatial filter is used) 

and Table 2 (The spatial filter is not applied) respectively. We 

used the mean distance of transformed plane centroids of 

second point cloud to corresponding planes of the first point 

cloud to evaluate the accuracy. The smaller the mean distance 

was the more accuracy the registration performed.  

 

The comparisons were make after all fail registration were 

eliminated. Our results show that the mean distance of ICP-

P2PG is smaller than ICP in all cases, revealing that ICP-

P2PG performed better than ICP method. Meanwhile ICP-

P2PG is faster than ICP-P2P as the averaging iteration needed 

for the convergence of ICP-P2PG is smaller. If we use spatial 

filters, more planes were eliminated. It likely leads to the plane 

matching more accuracy and successful registration. 

  
TABLE I. COMPARISION BETWEEN ICP, P2P AND P2PG WITHOUT 

SPATIAL FILTER. 

 SF-5 SF-10 SF-20 

IC

P 

ICP-

P2P 

ICP-

P2P
G 

IC

P 

IC

P-
P2

P 

IC

P-
P2

PG 

IC

P 

IC

P-
P2

P 

IC

P-
P2

PG 

Mean 
Distance 

0.1
11

3 

0.10
47 

0.10
48 

0.1
51

1 

0.1
65

4 

0.1
49

8 

0.2
07

2 

0.1
64

3 

0.1
64

2 

Registrat
ion Fail 

6|4
0 

6|40 6|40 6|2
0 

4|2
0 

4|2
0 

6|1
0 

5|1
0 

7|1
0 

Mean 

Iteration 

n/a 23.2

5 

17.5

9 

n/a 33.

25 

33.

18 

n/a 40.

66 

12.

66 

 
TABLE II. COMPARISION BETWEEN ICP, P2P AND P2PG WITH 

SPATIAL FILTER. 

 SF-5 SF-10 SF-20 

IC

P 

ICP-

P2P 

ICP-

P2P
G 

IC

P 

IC

P-
P2

P 

IC

P-
P2

PG 

IC

P 

IC

P-
P2

P 

IC

P-
P2

PG 

Mean 
Distance 

0.1
19

0.11
39 

0.11
22 

0.2
05

0.1
22

0.1
23

0.5
70

0.3
83

0.4
81

3 6 6 2 1 5 5 

Registrat

ion Fail 

6|4

0 

4|40 3|40 6|2

0 

5|2

0 

2|2

0 

5|1

0 

5|1

0 

5|1

0 

Mean 

Iteration 

n/a 22.5

4 

20.4

5 

n/a 21.

5 

39.

14 

n/a 43.

25 

33.

25 

IV. Conclusion 
In this paper, we presented a new approach of 3D point cloud 

registration for indoor environment based on plane 

segmentation and ICP-P2P. Because indoor environment is 

usually dominant by planes and especially flat floor plane, we 

can use plane feature to estimate the rotation matrix and down-

sample data by removing points which are not in planes to 

make ICP converge faster and more robust. As the 

experimental results shows, ICP-P2PG outperforms ICP 

regarding accuracy and converges faster than ICP-P2P. 

However, Our proposed method performs ineffectively when 

the floor plane is not flat and when the number of planes 

detected is small. Our future works will focus on addressing 

these rising issues. 
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