

45

International Journal of Advances in Image Processing Techniques– IJIPT
Volume 2 : Issue 2 [ISSN : 2372-3998]

Publication Date : 30 October, 2015

Combined Plane and Point Registration of Sequential

Depth Images for Indoor Localization
Nguyen Vu Duy Hau

1
, Nguyen Duc Thang

1*
, Trinh Thi Lan Anh

2
 and Tran Cong Hung

2

1 Department of Biomedical Engineering, International University - VNU-HCMC, Vietnam
2Posts and Telecommunications Institute of Technology-HCM, Vietnam

Abstract

Indoor environment usually has complicated structures and

contains planes which can be used as extra features for

registration. This paper proposes a method to use planar features

extracted from depth camera for indoor localization. Two

consecutive depth images are converted to point clouds and

segmented to planes. Two sets of planes are then matched

together to estimate the rotation matrix which is used as initial

guess of iterative closest point (ICP) of point-to-plane

registration. Our experimental result shows that ICP of point-to-

plane algorithm with the extra step of estimating the rotation

guess matrix performs faster than conventional ICP and

overcomes the drawback of ICP point-to-point algorithm in

indoor environment.

Keywords—Iterative closest point (ICP), Plane segmentation,

Registration.

I. Introduction
Over decades, localization always plays important roles in

autonomous mobile robotic [1] especially for indoor

localization in which accurate and safe navigation is strictly

required due to space limitation and complicated indoor

environment. However, an indoor environment in general

contains a floor and the localization is narrowed down to the

problem of estimating the poses, i.e., the position and

orientation, of a mobile robot on the floor plane. The most

conventional method for localization applied wheel odometer.

The rotational encoder was mounted on the wheels of a mobile

robot to provide distance and direction of each wheel which

was later used to calculate the pose of the robot. However, this

method results to unbounded accumulated errors caused by

multiple factors such as different wheel diameter, wrong

estimated wheelbase, wheel slip and limited resolution of

wheel encoder. Another localization method namely visual

odometry has been developed to track the pose of a robot by

analyzing just images captured by a camera attached to it [2].

An obstacle preventing practical implementation of this

approach involves the lacks of 3D information when a normal

RGB camera is used. Recently, it is possible to obtain useful

information including depths via a single camera, making

mobile robot navigation and indoor localization feasible. So

far, many types of depth cameras have been developed. A

stereo camera achieves depth perception in a manner similar to

human eyes by finding the correspondences between two

images from the left and right cameras to estimate the

disparity images. The disparity let us know how far from the

interested points to the camera through perspective projection.

However, finding the correspondences of pixels from the two

images is not an easy task. If the global view of image is

concerned, it consumes a lot of time to process the whole

image. Meanwhile, if just local areas of an image are taken

into account, the correspondence from one pixel to others

cannot be exactly evaluated. A time of arrival (TOA) camera

emits a beam of laser and receives the light reflection from the

object surfaces to reveal depths. With complicated

implementation, TOA camera is expensive. The structured

light-based camera uses a structured-dot pattern to light an

object. The deformation of dot-light let us know the distance

from a point in 3-D to the camera. With current

implementation of Kinect camera released by Microsoft in

2011, the structured light-based camera achieves better quality

of depths with reasonable price so that it has been accepted

widely for indoor applications.

To deal with the localization problem for a mobile system

using depth images captured by a Kinect camera, a frame to

frame registration is critical to track the position of a moving

wheel chair. So far, the iterative closest point utilizing point-

to-point approach (ICP) [3] has been the most conventional

technique to align the two 3D point clouds of two consecutive

depth images. However, ICP usually leads to local

optimization because of the bad initialization of

transformation parameters. Besides, the appearance of big

planes such as floors or walls in a depth images mainly

determines the transformation to fit the two 3D points. If a

robot is going straight away, somehow the main planes

between two frames are similar. Consequently, the moving

information cannot be captured correctly. Although there has

been a variant of ICP utilizing point-to-plane (ICP-P2P)

approach [4], the above problem was not completely solved.

In this paper, we address the registration problem of 3D point

clouds captured by a depth camera. To overcome the

disadvantages of ICP and its variants to handle the

appearances of big planes in a depth image, we propose a two-

stage registration ICP. In the first stage, the planes are detected

from two 3D point clouds and an estimated rotation matrix is

found by matching different planes of two point clouds. The

fine registration is later performed with ICP-P2P and use

estimated rotation matrix as guess matrix when the effects of

the big planes are mitigated than ICP. Actually, by using

estimated rotation matrix as initial guess can help ICP-P2P to

converge faster and more robust.

The rest of paper is organized as follows. Section 2

describes our proposed methodology. We present

46

International Journal of Advances in Image Processing Techniques– IJIPT
Volume 2 : Issue 2 [ISSN : 2372-3998]

Publication Date : 30 October, 2015

experimental results with discussion in Section 3. Finally, we

conclude this paper with Section 4.

II. Methodology

A. Kinect camera and an electronic
wheel chair

The Kinect was introduced by Microsoft as a new controller

for Microsoft Xbox 360 video game to capture gamers’

motion without requiring a marker attached on their bodies.

The two valuable sensors of Kinect are the basic RGB camera

and the depth camera which contains an infrared (IR) emitter

and an IR receiver as depicted in Fig. 1.

Figure 1. Microsoft Kinect device (left) and electronic wheelchair with Kinect

camera (right).

In details, the Kinect camera has angular field of view of

57° horizontally and 43° vertically. The camera is well

operated to capture depths from 0.8m to 6 m. Besides it can

provide two images with full VGA resolution of 640×480

pixels at a recording rate of 30 frames per second, the former

for 24 bit RGB images and the later for 11 bit depth image

with 2048 levels of depths.

Because of its low cost and capability to produce depth

image, it becomes the potential sensor for wide applications.

Therefore beside the official SDK provided by Microsoft to

support application development for Kinect, additional open-

source driver [5] as well as processing tools of third party

were created to make Kinect’s application easy to develop and

available to cross platforms (Mac, Linux, and Windows) [6].

After a depth image is captured by a depth camera, its pixels

are transformed into 3D point clouds in a real world

coordinate system as

()

()

(1)

where u and v are the row and column index of a pixel, u0, v0,

and f are the parameters configured by a depth camera.

However, depth data provided by Kinect is huge and

needs to be down-sampled and filtered before further process.

In this work, a depth image with resolution 640×480 pixels is

reduced to a resolution of 320×240 pixels. The spatial filter is

applied to range depth data from 0.6 – 4m horizontally and

below 1.6m from the floor along the vertical direction as

illustrated in Fig. 2. The depth range is chosen between 0.6 –

4m to ensure valid data collection and minimize acquired

errors of depth data to about 0.024m at maximum 4m of depth

[7, 8]. The vertical range below 1.6m from the ground is due

to the maximum height of the user sitting on a wheelchair.

Lastly, the 3D point cloud is passed through a voxel grid filter

with the leaf size of 0.05m provided by point cloud library

(PCL) [9]. A voxel is a 3D box in space and contains several

3D points, so the point cloud was divided into many square

voxel with the length of 0.05m and all points in each voxel are

represented by its centroid.

Figure 2. Spacial filter of the system, horizotal view (left) and vertical view

(right). The valid areas are marked by green.

B. Plane detection and segmentation
After depth image is obtained and converted into 3D point

clouds, plane segmentation is applied. Many algorithms for 3D

data plane segmentation have been proposed in recent years.

Some researches considered depth image as a 2D gray-scale

image and applied segmentation methods such as mean-shift

clustering or graph-base segmentation. Although those

methods achieved good result in some cases, close or touching

objects in a depth image usually make them to perform badly.

Other algorithms used RANSAC to robustly estimate the

parameters of all planes in a depth image. However, such

algorithms are slow and unsuitable for real-time systems as

well as large and complex environments such as office room

with furniture. Dub et al [10] applied the randomized Hough

transformation to extract planes from depth images. A noise

model is constructed to solve the task of finding parameter

metric for randomized Hough transformation. Although, this

algorithm is capable for real-time running of mobile robot

platform, plane segmentation cannot be accurately performed.

In this work, we apply the method described in [11] which

consists of voxel-wise initial segmentation and pixel-wise

accurate segmentation. Firstly, the depth image is converted

into 3D point cloud and divided into voxels. Then normal of

each voxel is calculated and area-growing algorithm is used to

extract raw planes. Later, unclassified points are examined

whether they belong to a plane or not. Then fragments of the

same plane are merged together.

In voxel-wise initial segmentation as illustrated in

Algorithm 1, the point cloud is divided into voxels with a size

of 0.2m in length. For each voxel if the number of point in that

voxel is greater than a threshold, i.e., ten points in our

experiments, it is considered as a valid voxel for estimating

plane equation and points in a valid voxel is named as inlier-

point. Least square equation is applied to estimate the plane

47

International Journal of Advances in Image Processing Techniques– IJIPT
Volume 2 : Issue 2 [ISSN : 2372-3998]

Publication Date : 30 October, 2015

equation that fits to all point of the voxel. Let a set of points in

a voxel be * + * + that is used to

formulate the plane equation . The

coefficients a, b, and c are found by the mean square

estimation to minimize ∑ ()

(

) (

∑
 ∑ ∑

∑ ∑
 ∑

∑ ∑

)

(

∑

∑

∑

).
(

(2)

After estimating planes for valid voxel, we check for

whether the estimated planes are good enough to be used. The

sum of point to plane distance at each valid voxel are

calculated. When this sum is close to zero, it means that all

points belong to the estimated plane. However if this sum is

greater than a threshold, the corresponding voxel has too many

artifacts. Therefore the voxel becomes invalid and all points in

that voxel become outlier-point.

After plane estimation, these voxel-planes are pieces of a

large-real plane so normal and area-growing algorithms are

used to extract initial plane. If adjacent voxels have the same

normal direction or the angle of them smaller than a threshold,

we cluster them together. Finally, if a voxel cluster is larger

than a threshold, it is considered as a plane. In this process,

voxels belong to a plane are called planar-voxels, and voxels

that not belong to any plane are called non-planar voxels.

Points in all the non-planar voxels should be accurately

examined pixel by pixel in the refined segmentation later.

Algorithm 1: Initial plane segmentation

Step 1. Traverse the voxel grid and find a voxel Vo that has not been
processed. Calculate average distance d of points of Vo to its own estimated

plane. If d is smaller than a threshold then create a queue Q and add Vo to
Q. Otherwise, find another Vo.

Step 2. Examine 26 neighbor voxels Vi (i=1,2….,25,26) of the voxel Vo. If

the voxel Vi has not been processed then go to the calculation:
Let ni = (xi,yi,zi) be the normal of Vi and no= (x,y,z) be the normal of Vo.

Calculate the angle of the two normal vectors as follows,

| | | |

If |cos | is larger than a threshold Vo and Vi are added to the same cluster.
If the cluster is larger than a threshold we consider it as a plane. Then insert

Vi to Q.

Step 3. Pick another element from Q and regard it as Vo and return to step

2.
Step 4. If Q is empty, return step 1.

Step 5. Repeat step 1 to step 4 until all voxels are processed.

In algorithm 2, pixel-wise accurate segmentation is the

process to refine the roughly segmented plane that we get from

initial segmentation. In this process, each point of non-planar

voxel is checked to determine whether it belongs to a certain

plane or not. It is obviously that a point is on a plane if the

distance from the point to the plane is nearly zero. Hence for

each point of non-planar voxel, the distance of it and neighbor

voxel-plane is checked. If the distance is smaller than a

threshold the point is considered to be of that plane. In details,

the number of adjacent voxels is a parameter in this algorithm.

Algorithm 2: Refine segmentation

Step 1. Traverse voxel grid, find a voxel Vo that has not been clustered to a
plane (non-planar voxel).

Step 2. Search in 26 neighbor voxels Vi (i=1,2….,25,26) of the voxel Vo, a
plane Pi that has not been processed.

Step 3. Calculate distance d from points of the non-planar voxel to plane

Pi. Let p (x’,y’,z’) denote coordinates of one point in center voxel Vo, Vi

denote the i-th planar voxel in the neighborhood that belong to the plane Pi

parameterized by Ax + By + Cz + 1 = 0 .The distance from p to Pi is:

| |

√

 If dij is smaller than a threshold p is considered belong to plane Pi,

otherwise p is not a point in Pi.

Step 4. Return to step 2 until all surrounding planes are processed.
Step 5. Repeat step 1 to step 4 until all non-planar voxel have been

processed.

 After fine segmentation, all planes are segmented, but

some plane may be divided into several parts. So in order to

merge pieces of a real plane together, the angle of normal of

adjacent planes is checked again. If it is smaller than a

threshold, we merge them as a plane.

C. Proposed plane registration
Kinect captures depth image at the frame rates of 30Hz and a

wheelchair speed is slow in indoor environment so that two

continuous depth image will have their corresponding point

clouds highly overlapped when presented on the same Kinect

coordinate as illustrated by Fig. 3.

Figure 3. Two point clouds constructed from two consecutive depth images
shown on the same coordinate system of Kinect camera (left). The circle area

illustrates two distinguished table corners matched by a red line but they are

actually the same corner table in the real world (right).

The blue point cloud corresponding to the first depth
image captured by Kinect at the starting position and the white
point cloud corresponding to the second depth image captured
by Kinect when it was moved forward and turned left. Fig. 4
simply illustrates the point clouds of Fig. 3 in which it shows
the 2D view of floor plane on the real world coordinate with
the origin O and the green line is the table corner mentioned in
Fig. 3. O1 and O2 are the position of Kinect on the 2D real
world coordinate and the triangle is the horizontal field of
view of the Kinect at each position. The blue point cloud is
captured when Kinect at the position O1 or the world origin O.
The white cloud is captured at the position O2 after the Kinect
moves forward and turns left. The Fig. 4 shows that the
distance from table corner – green line to position O1 is larger
than to position O2. This means the distance from the table
corner to O1y vector is also larger than to O2y vector. As a
result, the white corner table point cloud is closer to the
coordinate origin than the blue one. The corresponding table
corner plane of the first point cloud (blue) was the result of the
corner plane of the second point cloud (white) rotated to left

48

International Journal of Advances in Image Processing Techniques– IJIPT
Volume 2 : Issue 2 [ISSN : 2372-3998]

Publication Date : 30 October, 2015

around the vertical axis which perpendicular to floor planes
(the green axis in Fig. 3) and then translated forward.
Consequently, a rotation matrix which transformed two actual
corresponding planes to parallel was also the actual rotation
matrix. So the task was try to find the potential corresponding
plane pairs between two point clouds and calculate the best
estimated rotation matrix which transformed all planes of
second point cloud to parallel to corresponding planes of first
point cloud.

Figure 4. 2D view of corner table in two different Kinect position,

After segmenting planes of two point clouds, we have a

list of planes in both point clouds. We aim to find the

estimated rotation matrix by firstly finding the potential

corresponding plane pairs between two point clouds. Two

points cloud are highly overlapped because of the slow speed

of indoor environment. Consequently the corresponding

planes between two point clouds are close and the number of

points in plane of both corresponding plane are similar. So two

planes are potentially corresponding to each other when

distance between two plane centroids are closest and the

number of point in planes are not much different. Based on

these properties for each plane of the first point cloud, we can

find the potential corresponding plane of the second point

cloud. The actual corresponding plane pairs provide the

rotation matrix which transforms them and also other actual

corresponding plane pairs to parallel. Each potential

corresponding plane pairs lead an estimated rotation matrix

and the best rotation matrix is the one that maximizes the

parallel of all potential corresponding plane pairs. We use an

estimated rotation matrix to transform all planes in the second

point cloud and calculate cosine angle between each

corresponding plane pairs (planes of first point cloud and

transformed planes of second point cloud). For more

robustness we multiply the number of point in plane of first

point cloud to each cosine angle because the larger plane has

more priority than the smaller plane and sum all of them. The

best estimated rotation matrix is the one that has the largest

sum. The algorithm to find estimated rotation matrix is

described in Algorithm 3.

Finally, we run ICP-P2P algorithm to align the second

point cloud to the first point cloud with the best estimated

rotation matrix as guess matrix.

Algorithm 3: Estimate Rotation Matrix

Input: Plane coefficients of both point cloud

Output: The estimated rotation matrix

Step 1. Calculate centroids of each planes in both point clouds
Step 2. for each plane in the first cloud

find corresponding plane in the second cloud which has

minimum distance between centroids and ratio number of point

between two planes in range 0.5 – 2m

 end for

Step 3. for each plane in the first cloud

calculate cosine angle of two planes, get value of angle, rotate the

corresponding plane in second cloud by calculated angle around the

vertical axis, recalculate cosine angle of both rotated planes with plane

in first cloud and finally get rotate angle corresponding to the larger

cosine angle

if larger cosine angle > 0.99 (corresponding planes were parallel)

for each plane in the first cloud

rotate all planes in second cloud by rotate angle, calculate sum of

number of point in first cloud multiplied with absolute cosine angle

between plane in first cloud and corresponding rotated plane in

second cloud, i.e., (sumOfCos = sumOfCos +

numOfPointInPlaneOfFirstCloud * |cos(planeInFirstCloud &

correspondingRotatedPlaneInSecondCloud)|)

find the best rotate angle and construct the estimated rotation

matrix with corresponding to the maximum of sumOfCos

 end for

end if

end for

III. Experimental Results

Fig. 5 illustrates the results of plane segmentation. Obviously,

it can be seen that the planes extracted were presented with

different color and the points which did not belong to planes

were removed.

Figure 5. The point cloud (right) and the corresponding point cloud after plane
segmentation (left).

As mention previously, the problem of ICP in indoor

registration is illustrate in Fig. 6, the first cloud is the white

cloud, the transformed second cloud is the green cloud, the

second cloud is captured after wheelchair move forward about

0.2 m. Because of the overlap area of floor plane and the wall

too large, ICP fails to move the second cloud forward to

maintain the distance between point to point smallest. In the

other hand, the ICP-P2P performs well in this case the second

cloud is moved forward two corner table are in the same plane

now [8].

49

International Journal of Advances in Image Processing Techniques– IJIPT
Volume 2 : Issue 2 [ISSN : 2372-3998]

Publication Date : 30 October, 2015

Figure 6. Two point cloud after registration by ICP (left) and ICP-P2PG

(right).
In our experiments, the wheel chair with mounted Kinect was

moved forward with small variations of moving left or right

and the data was recorded with 200 frames. We divide the

running steps of our algorithm into three data sets: 5 frames

(SF-5), 10 frames (SF-10) and 20 frames (SF-20) and three

algorithms: ICP, ICP-P2P and our proposed ICP-P2P with the

estimated rotation matrix as initial guess (ICP-P2PG). We also

test the effects of our spatial filter where the data is divided in

two sets: using spatial filter and without using spatial filter.

The results are showed in Table 1 (The spatial filter is used)

and Table 2 (The spatial filter is not applied) respectively. We

used the mean distance of transformed plane centroids of

second point cloud to corresponding planes of the first point

cloud to evaluate the accuracy. The smaller the mean distance

was the more accuracy the registration performed.

The comparisons were make after all fail registration were

eliminated. Our results show that the mean distance of ICP-

P2PG is smaller than ICP in all cases, revealing that ICP-

P2PG performed better than ICP method. Meanwhile ICP-

P2PG is faster than ICP-P2P as the averaging iteration needed

for the convergence of ICP-P2PG is smaller. If we use spatial

filters, more planes were eliminated. It likely leads to the plane

matching more accuracy and successful registration.

TABLE I. COMPARISION BETWEEN ICP, P2P AND P2PG WITHOUT

SPATIAL FILTER.

 SF-5 SF-10 SF-20

IC

P

ICP-

P2P

ICP-

P2P
G

IC

P

IC

P-
P2

P

IC

P-
P2

PG

IC

P

IC

P-
P2

P

IC

P-
P2

PG

Mean
Distance

0.1
11

3

0.10
47

0.10
48

0.1
51

1

0.1
65

4

0.1
49

8

0.2
07

2

0.1
64

3

0.1
64

2

Registrat
ion Fail

6|4
0

6|40 6|40 6|2
0

4|2
0

4|2
0

6|1
0

5|1
0

7|1
0

Mean

Iteration

n/a 23.2

5

17.5

9

n/a 33.

25

33.

18

n/a 40.

66

12.

66

TABLE II. COMPARISION BETWEEN ICP, P2P AND P2PG WITH

SPATIAL FILTER.

 SF-5 SF-10 SF-20

IC

P

ICP-

P2P

ICP-

P2P
G

IC

P

IC

P-
P2

P

IC

P-
P2

PG

IC

P

IC

P-
P2

P

IC

P-
P2

PG

Mean
Distance

0.1
19

0.11
39

0.11
22

0.2
05

0.1
22

0.1
23

0.5
70

0.3
83

0.4
81

3 6 6 2 1 5 5

Registrat

ion Fail

6|4

0

4|40 3|40 6|2

0

5|2

0

2|2

0

5|1

0

5|1

0

5|1

0

Mean

Iteration

n/a 22.5

4

20.4

5

n/a 21.

5

39.

14

n/a 43.

25

33.

25

IV. Conclusion
In this paper, we presented a new approach of 3D point cloud

registration for indoor environment based on plane

segmentation and ICP-P2P. Because indoor environment is

usually dominant by planes and especially flat floor plane, we

can use plane feature to estimate the rotation matrix and down-

sample data by removing points which are not in planes to

make ICP converge faster and more robust. As the

experimental results shows, ICP-P2PG outperforms ICP

regarding accuracy and converges faster than ICP-P2P.

However, Our proposed method performs ineffectively when

the floor plane is not flat and when the number of planes

detected is small. Our future works will focus on addressing

these rising issues.

Acknowledgment
This research is funded by Vietnam National Foundation for
Science and Technology Development (NAFOSTED) under
grant number 102.05-2013.11.

References
[1] Cox, I.J. "Blanche-an experiment in guidance and navigation of an

autonomous robot vehicle", IEEE Transactions on Robotics and Automation,

7(2), pp. 193-204, 1991.

[2] Nistér, D., Naroditsky, O., and Bergen, J., "Visual odometry’, in Visual

odometry (IEEE, 2004, edn.), pp. I-652-I-659 Vol. 651

[3] Besl, P.J., and McKay, N.D., "Method for registration of 3-D shapes’, in

Method for Registration of 3-D Shapes (International Society for Optics and

Photonics, 1992, edn.), pp. 586-606.

[4] Chen, Y., and Medioni, G., "Object modeling by registration of multiple

range images’, in Object modeling by registration of multiple range images

(IEEE, 1991, edn.), pp. 2724-2729.

[5] https://github.com/avin2/SensorKinect/, accessed 18th December, 2013

[6] https://github.com/OpenNI/OpenNI, accessed 18th December, 2013

[7] Peasley, B., and Birchfield, S., "Real-time obstacle detection and

avoidance in the presence of specular surfaces using an active 3D sensor",

(IEEE, 2013, edn.), pp. 197-202

[8] Khoshelham, K., and Elberink, S.O., "Accuracy and resolution of kinect

depth data for indoor mapping applications", Sensors, 12 (2), pp. 1437-1454,

2012.

[9] http://pointclouds.org/, accessed 18th December,2013.

[10] Dub, D., Zell, A., “Real-time plane extraction from depth images with the

randomized hough transform” IEEE International Conference on Computer

Vision Workshops (ICCV Workshops), pp. 1084–1091, 2011.

[11] Fusiello, A., V. Murino, “Real-Time Plane Segmentation and Obstacle

Detection of 3D Point Clouds for Indoor Scenes” ECCV. Workshops and

Demonstrations, Springer Berlin Heidelberg. 7584: 22-31, 2012.

