

142

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

Preliminaries on a Hardware-Based Approach to

Support Mixed-Critical Workload Execution in

Multicore Processors

Fabian Vargas, Bruno Green

Abstract— The use of multicore processors in general-purpose

real-time embedded systems has experienced a huge increase in

the recent years. Unfortunately, critical applications are not

benefiting from this type of processors as one could expect. The

major obstacle is that we may not predict and provide any

guarantee on real-time properties of software running on such

platforms. The shared memory bus is among the most critical

resources, which severely degrades the timing predictability of

multicore software due to the access contention between cores. To

counteract this problem, we present in this paper a new approach

that supports mixed-criticality workload execution in a multicore

processor-based embedded system. It allows any number of cores

to run less-critical tasks concurrently with the critical core, which

is running the critical task. The approach is based on the use of a

dedicated Deadline Enforcement Checker (DEC) implemented in

hardware, which allows the execution of any number of cores

(running less-critical workloads) concurrently with the critical

core (executing the critical workload). This approach allows the

exploitation of the maximum performance offered by a

multiprocessing system while guaranteeing critical task

schedulability. A case-study based on a dual-core version of the

LEON3 processor was implemented and mapped in a Xilinx

Spartan 3E FPGA.

Keywords— Multicore Processor, Critical Application, High-

Performance Embedded System, Critical Task Schedulability,

Deadline Enforcement Checker (DEC).

I. Introduction

It is of common agreement among designers and users that
multicore processors will be increasingly used in future
embedded real-time systems for critical applications where, in
addition to reliability, high-performance is at a premium. The
major obstacle is that we may not predict and provide any
guarantee on real-time properties of software on such
platforms. As consequence, the timing deadline of critical real-
time tasks may be violated. In this context, the shared memory
bus is among the most critical resources, which severely
degrade the timing predictability of multicore workloads due
to access contention among cores. In critical embedded
systems (e.g., aeronautical systems) this uncertainty of the
non-uniform and concurrent memory accesses prohibits the
full utilization of the system performance. In more detail, the

Fabian Vargas and Bruno Green are with the Catholic University – PUCRS.

Electrical Engineering Dept.

Av. Ipiranga, Porto Alegre, Brazil.

system is designed in such a way that the processor runs in the
stand-alone mode when a critical task has to be executed, i.e.,
the bus controller allows only one core to run the critical
workload, and inhibits the other cores to execute less-critical
workloads till the completion of the critical task.

In order to counteract this problem and properly balance
reliability against performance as long as possible, we present
in this paper a new approach that supports mixed-criticality
workload execution by fully exploiting processor parallelism.
It allows any number of cores to run less-critical tasks
concurrently with the critical core, which is running the
critical task. The proposed approach is not based on any
multicore static timing analysis or any timing model of
multicore processor parts such as pipeline, cache memory and
interactions of these parts with shared memory bus. Instead,
the approach is based on the use of a dedicated Deadline
Enforcement Checker (DEC), which works as follows: when a
critical task starts running, the DEC allows the execution of
any number of cores (running less-critical workloads)
concurrently with the critical core (executing the critical
workload) till the moment when the DEC predicts that the
critical workload deadline will be violated if the processor
continues running all cores concurrently. At this moment, the
DEC inhibits the non-critical cores to execute less-critical
tasks till the completion of the critical task by the critical core.
Then, it is said that the system is switched from the “shared
mode” (where two or more cores are fighting for shared
memory bus access) to the “stand-alone mode”, where a
unique (the critical) core is running.

Given the above, the proposed approach presents the
following features and advantages compared to the existing
techniques:

a) It minimizes the computational complexity imposed by
multicore static timing analysis: it needs only to analyze
interactions between pipeline and cache models of a single
core when executing a given critical task. All inter-core
conflicts generated during the execution of the critical and the
various less-critical tasks caused by their non-uniform and
concurrent memory bus accesses are not taken into account by
the DEC.

b) From the above (a) statement, it is also concluded that
the proposed approach does not need the development and it is
not based on timing analysis models of multicore processors.
Therefore, the approach is not based on the faithfulness of the
multicore processor model to guarantee a precise workload
timing prediction.

c) In contrast to the existing approaches, the proposed
approach does not require any knowledge about the

143

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

implementation of the less-critical workloads or even the
number of workloads that will run concurrently with the
critical task. The DEC is configured according to specific code
structure and timing characteristics of the critical task, as it
will be described in Section III. Then, the DEC monitors
online the critical task execution and automatically switches
the bus usage from the “shared” mode to the “stand-alone”
mode to guarantee the maximum possible processor
performance with workload schedulability. Note that if the
number of less-critical tasks changes, there is no need to re-
compute the timing analysis process for the critical task to
guarantee workload schedulability. This condition is ensured
because the DEC can switch from the “shared mode” to the
“stand-alone mode” automatically, no matters is the number of
less-critical tasks are running in parallel with the critical one.

d) The approach can be applied to any type of processor,
considered that the designer is able to collect two signals from
the processor (“Program Counter” and “Annul”). The latter
signal indicates if the current instruction in the pipeline was
actually executed or not.

e) Given that the approach can be applied to any type of
processor, it allows a large spectrum of real-time operating
systems to be used. Thus, traditional and well-stablished real-
time operating systems for critical applications such as
VxWorks, LynxOS, Integrity or RTEMS and their advanced
versions compliant with ARINC-653 (an avionics standard for
safe, partitioned systems) [1] could also be considered in the
whole system design.

In this work, the terms “task” and “workload” have the
same meaning and are used interchangeably. Moreover, we
assume that there is only one critical core which is in charge of
running the critical task. Concurrently to this core, there can
be any number of non-critical cores, each of them executing
one or more less-critical tasks. The remainder of the paper is
organized as follows: Section II presents the fundamentals of
the problem and the existing solutions. Section III describes
the proposed approach and the Deadline Enforcement Checker
(DEC). Then, Section IV draws the final conclusions of the
work.

II. Preliminaries

A real-time computer system is a computer system where
the correctness of the system behavior depends not only on the
logical results of the computations, but also on the physical
time when these results are produced. If a result has utility
even after the deadline has passed, the deadline is classified as
soft, otherwise it is firm. However, if severe consequences
could result if a firm deadline is missed, then the deadline is
called hard [2] Fig. 1 depicts the basic notions concerning
timing analysis of systems.

A task typically shows a certain variation of execution
times depending on the input data or different behavior of the
environment. The longest response time is called the worst-
case execution time (WCET). In most cases, the state space is
too large to exhaustively explore all possible executions and
thereby determine the exact WCET. It is worth noting that
while in the last decades WCET bound was a topic mainly
related with hard real-time systems (such as aerospace and
military), recently it has become crucial in other domains
dealing with timing guarantees. This includes among others,

the automotive industry, mobile communication and high-
performance computing. In this sense, it is a mandatory
condition to have an accurate determination of the WCET
parameter in order to guarantee the hard-real time response of
these critical systems to the environment [2].

Fig. 1. Basic notions concerning timing analysis of systems.

A lot of research has been carried out within the area of

WCET analysis. However, each task is, traditionally, analyzed
in isolation as if it was running on a monoprocessor system.
Consequently, it is assumed that memory accesses over the
bus take constant amount of time to process. For
multiprocessor systems with a shared communication
infrastructure, however, transfer times depend on the bus load
and are therefore no longer constant, causing the traditional
methods to produce incorrect results. As response to this
specific need, several approaches dealing with WCET
prediction in multicore platforms have been proposed
[3,4,5,6]. These approaches represent a considerable
improvement of the state-of-the-art, but note:

a) They are not trivial in such a way that they must not
only analyze all interactions between pipeline and cache
models of a single core when executing a given critical task,
but they also analyze all inter-core conflicts generated during
the execution of the critical and the various less-critical
workloads and their non-uniform and concurrent memory bus
accesses. This analysis is even more complex when the
number of cores running in parallel increases.

b) If the number of tasks changes, the whole process must
be recomputed in order to reschedule the tasks into the TDMA
(resp. FCFS or Round-Robin) bus slots.

c) It may happen that after predicting the execution of a
critical task in a given multicore platform, the designer
concludes that this task is not schedulable when executed in
concurrence with other (less-critical) tasks. So, the whole
analysis is useless and a new analysis process must restart on
the basis of a smaller number of less-critical tasks to running
in parallel with the critical one. The final goal is to guarantee
schedulability of the critical task. If this is not attained yet,
then the whole process is restarted again with an even smaller
number of less-critical tasks. This “re-do” work is long and
complex. So, time consuming.

d) Concerning the approach presented in [6] up to this
moment, and from the best of our knowledge, it is applicable
only to the Merasa processor. So, traditional processors used
in embedded applications such as PowerPC, ARM and
LEON3 [7] as well as well-stablished real-time operating
systems for critical applications such as VxWorks, LynxOS,
Integrity or RTEMS and their versions compliant with

Measured WCET

direct on hardware

platform or

simulated (maximal

observed WCET)

Actual WCET,

including all possible

execution times (must

be found or upper

bounded)

WCET (upper

bounded, after

adding Security

Margins)

time 0
Security Margins

144

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

ARINC-653 (an avionics standard for safe, partitioned
systems) [1] cannot take advantage of this approach yet.

III. The Proposed Approach

Fig. 2 depicts the situation where one critical task (TC) and
one less-critical task (T1) are running on two cores. When
both tasks are executed (in the “shared mode”), the WCET of
the TC violates its deadline D. Thus, the problem is
unschedulable (Fig. 2a). However, if TC is executed in the
“stand-alone mode”, it is schedulable (Fig. 2b). In contrast
with existing approaches, where only the critical task is
executed at a time in the multicore platform till its completion,
the proposed methodology is capable of scheduling the TC by
considering the following scenario: initially both tasks (TC
and T1) are executed on the system. Then, reference points
(RPs) are used to observe on-line the execution time of the TC
and decide switching the processor from the “shared mode” to
the isolated execution of TC (Fig. 2c). The approach can be
applied to any type of processor, considered that the designer
is able to collect two signals from the processor (“Program
Counter” and “Annul”). The latter signal indicates if the
current instruction in the pipeline was actually executed or
dropped down due to speculation-caused timing anomalies of
the processor.

Fig. 2. Scheduling based on WCET when are considered for execution (a)

both tasks, (b) only the critical task and (c) proposed approach.

In this work, we propose an approach to improve core

utilization by running several tasks in parallel while
guaranteeing the critical task schedulability. The target
platform can be a TDMA, First-Come First-Served (FCFS) or
Round Robin bus-access policy multicore system. We assume
a single core to run a unique critical task in parallel with any
number of cores running less-critical tasks. If running in the
stand-alone mode the critical task is perfectly schedulable.
However, if it is running in parallel with other less-critical
tasks, it cannot be guaranteed its schedulability, unless the
proposed approach is considered. Our methodology is split in
two steps:

i) Off-line, we analyze the control-flow-graph (CFG) of the
critical task and safely compute the remaining WCET

 at

several Reference Points (RPs) of the TC running in the stand-
alone mode. The remaining WCET (WCETR) is defined as the
WCET between the considered RP till the end of the code.

ii) On-line, for the system running in the shared mode, we
use a dedicated Deadline Enforcement Checker (DEC) to
monitor the real execution time of TC and to check whether
there is a risk that the critical task misses its deadline due to
system overload. If so, the less-critical tasks are temporarily
paused so that the critical task continues in the stand-alone

mode from that monitored point till its completion. After the
critical task is complete, the less-critical tasks can resume
execution from the point they were temporarily paused. The
proposed approach is schematically depicted in Fig. 3.

Fig. 3. Overview of the proposed approach: (a) WCETR computation at the

Reference Points (RP) of the TC running in the stand-alone mode; (b) General
block diagram of a multicore processor connected with the DEC.

Fig. 4 shows the computed timeline of a critical task. The

reference point zero (RP0) is hereby defined as the start of the
task. The Critical Time (CT) of a given Reference Point (RP)
is given by:

CT(RPn) = DeadlineTime – WCETR(RPn) – tover

Where WCETR(RPn) is the remaining worst-case execution

time from the RPn to the task end instant, which was statically
computed for the processor running in the “stand-alone”
mode. Finally, tover is a constant cost associated to the bus
arbiter to switch the processor from the “shared” to the “stand-
alone” mode.

When the critical task starts, the elapsed time is initialized
and incremented, clock-by-clock by the DEC and compared
against the CT collected at the last RP that it passed by. It
should be noted that during the critical task execution, the
CPU passes through several code paths with different times
(since the path taken along the code is a function of its inputs).
Therefore, it is mandatory that the CT be updated at every RP
distributed along the code. When the DEC compares the
elapsed time against the CT collected at the most recent RP
that it passed by, three possible situations may occur:

a) The elapsed time is smaller than the CT; then, the
processor continues executing in the “shared” mode.

b) The elapsed time is equal to or greater than the CT;
then, the DEC advises the bus arbiter to switch the
processor from the “shared” to the “stand-alone” mode.

Source Code

Code
Compiler

Binary Code

WCET
R

Analyzer *

* Timing Information used to configure the DEC
(a)

Core 0 Core 1 Core n

Shared
Memory

Bus
Controller

DEC

(b)

Shared Bus

145

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

c) The elapsed time is greater than the “Deadline”; then,
the DEC issues an “Error Indication” signal.

It is worth noting that during task execution in the “stand-
alone” mode, upon arriving in the current RP, if the DEC
detects that the execution of the critical task is faster than
predicted according to the last RP that it passed by, the DEC
signals to the bus arbiter to switch back to the “shared” mode
in order to privilege task concurrency in the multicore
platform.

Fig. 4. Timeline of a critical task execution.

 Fig. 5 depicts a general view of the DEC internal blocks
and their respective signals. The first block is the Checkpoint
Monitor, whose goal is to identify the current RP of the
task. This block can accomplish such goal in different ways
(depending on the type of the information that is treated by the
block) which are briefly described below:

a) The Checkpoint Monitor Block observes the instruction
address bus for memory reads. By comparing the
instruction addresses flowing through the bus, this block
detects when monitored core reaches a specific RP. A
drawback of such approach is that there is no guarantee
that the instruction read is actually executed by the
processor; for example the instructions fetched just after a
branch or a speculative execution by the CPU. As
consequence, it constrains the locations where a RP can
be inserted (since a RP cannot be inserted just after a
branch or an instruction that is speculatively executed).
Another problem is that if the processor has an instruction
cache, then the address of the executed instruction will
not appear in the bus in case of a cache hit.

b) Additionally to observe the instruction address bus, the
Checkpoint Monitor Block can also inspect the critical
core internal signals (such as the program counter - PC).
Unlike the previous method depicted in (a), by monitoring
the internal signals it is easy to know whether an
instruction is executed or not, relaxing the locations in
which RPs can be inserted (this approach enlarges the
universe of locations a RP can be inserted and so, it is a
better option compared to the previous one).
Nevertheless, this method is more intrusive.

c) Finally, the Checkpoint Monitor Block can receive
explicit information about the RP currently reached by the

core, directly from processor general purpose I/O pins
(e.g., GPIO port of the processor or any other
communication channel). In this case the Checkpoint
Monitor Block of the DEC is omitted and the RP
Identification (RPID) is fed directly to the second block
(Checkpoint Time Controller). Nevertheless, this method
has an important drawback: higher detection latency
compared to the methods (a) and (b) described above.
Moreover, the critical task must be modified to write the
RPID on the GPIO port of the processor or on any other
communication channel. It should be noted that system
designers are hesitant about this change in the user code.
Although, it has the advantage that it does not need to
access any processor internal signal or access to the
processor bus. Therefore, it can potentially work with
processors in which system designers do not have access
to the bus or internal processor signals (for instance, the
processor is a “black-box” third-part intellectual property
core or even a COTS processor).

Fig. 5. General view of the DEC internal blocks and their respective signals.

Among the three methods above, (b) is the one currently

implemented in the DEC.

The output of the Checkpoint Monitor Block is a
Reference Point Identification (RPID) that is fed to the
Checkpoint Time Controller, whose responsibility is to
correlate a RPID with its Critical Time CT(RPID). This
mapping process is performed by means of a content-
addressable memory (CAM): the CAM input is a RPID and the
output is the corresponding CT(RPID). The Checkpoint Time
Controller also notifies when the critical task starts running
(CTaskStart) and ends (CTaskEnd).

The final block (Watchdog) is responsible for notifying
the event “Warning”. When this event is yielded, the bus
controller forces the processor to switch execution from the
“shared-bus” mode into the “stand-alone” one (in which the
bus is exclusively allocated to the critical core). This block
also signals the “Deadline Reached”, which yields an “Error
Indication” signal. Fig. 6 depicts the control-flow graph (CFG)
of the DEC operation.

Critical

Task

start

PROCESSOR CLOCK CYCLES

RP
1
 RP

n-1

Last RP

WCET
R
(RP

1
)

WCET
R

(RP
n-1

)

WCET
R

(RP
0
)

RP
0

Critical

Task

end

D
ea

d
lin

e

Clk
Reset

CT(RPID)
CTaskStart
CTaskEnd

Checkpoint
Time

Controller

Warning
(*)

Deadline
Reached

(**)

Clk

Reset

RPID Clk Reset

Checkpoint
Monitor

Deadline Enforcement

Checker (DEC)

(*) Signal sent to the bus arbiter
(**) “Recovery” signal sent to the
processor or operating system

Watchdog

Timer

Processor Bus / GPIO Signals

146

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

Fig. 6. Control-flow graph (CFG) of the DEC operation.

The indicated points in Fig. 6 are detailed as follows:

(1) By default when a critical task starts running, the
processor bus is set on the “shared-bus” mode.

(2) The condition:

“CT(RPn) = DeadlineTime – WCETR(RPn) – tover”

is tested and one of the three previously mentioned
situations may occur: (a) the elapsed time is smaller
than the CT; (b) the elapsed time is equal to or greater
than the CT; and (c) the elapsed time is greater than
the “Deadline” and then, the DEC issues an “Error
Indication” signal.

(3) At this moment, the processor is running in the
“shared-bus” mode.

(4) At this moment, the bus arbiter switches processor
operation from “shared” to “stand-alone” mode.

(5) Critical task (being executed in the “shared” or “stand-
alone” mode) terminates, conditionally that it does not
violates deadline.

IV. Final Considerations and Conclusions

We presented a new approach that supports mixed-
criticality workload execution in a multicore processor-based
embedded system. Given that the proposed approach can be

applied to any type of processor, it allows a large spectrum of
real-time operating systems to be used. Thus, traditional and
well-stablished real-time operating systems for critical
applications such as VxWorks, LynxOS, Integrity or RTEMS
and their advanced versions compliant with ARINC-653 (an
avionics standard for safe, partitioned systems) could also be
considered in the whole system design.

The approach allows any number of cores to run less-
critical tasks concurrently with the critical core, which is
running the critical task. The approach is based on the use of a
dedicated a hardware-based Deadline Enforcement Checker
(DEC), which allows the execution of any number of cores
(running less-critical workloads) concurrently with the critical
core (executing the critical workload). This approach allows
the exploitation of the maximum performance offered by a
multiprocessing system while guaranteeing critical task
schedulability.

A case-study based on a dual-core version of the LEON3
processor [7] was implemented and mapped in a Xilinx
Spartan 3E FPGA. The measured area overhead is
considerably small, in the order of 4.14% for the dual-core
version of the LEON3 processor. Furthermore, several critical
application codes based on WCET benchmarks [8] were
compiled to this processor. The experimental results
demonstrated that the proposed approach is very effective on
combining system high-performance with critical task
schedulability within timing deadline.

Acknowledgment

This work has been supported in part by CNPq (National Science
Foundation, Brazil) under contract n. 303701/2011-0 (PQ).

References

[1] http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf Last access: June
2015.

[2] Reinhard Wilhelm et al., “The Worst-Case Execution-Time Problem –
Overview of Methods and Survey of Tools”, ACM Trans. On Embedded
Computing Systems, vol. 7, no. 3, April 2008.

[3] Jakob Rosén, Petru Eles, Zebo Peng, Alexandru Andrei
“PredictableWorst-Case Execution Time Analysis for Multiprocessor
Systems-on-Chip”, 2011 6th IEEE International Symposium on
Electronic Design, Test and Application, pp 99-104.

[4] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, “A
Unified WCET Analysis Framework for Multi-core Platforms”, Proc. of
RTAS 2012.

[5] Mingsong Lv, Wang Yi, Nan Guan, Ge Yu, Timon Kelter, Peter
Marwedel, Heiko Falk, “Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software”, ACM Trans. On
Embedded Computing Systems, vol. 13, no. 4s, March 2014.

[6] Theo Ungerer et al., “Merasa: Multicore Execution of Real-Time
Applications Supporting Analyzability”, IEEE Micro, Computer
Society, September-October, 2010, pp. 66-75.

[7] http://gaisler.com/index.php/products/processors/leon3. Last access:
June 2015.

[8] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The
Mälardalen WCET benchmarks – past, present and future. In Björn
Lisper, editor, Proc. 10th International Workshop on Worst-Case
Execution Time Analysis (WCET’2010), pages 137–147, Brussels,
Belgium, July 2010. OCG.

Start/Reset

Reset “Timer”
“DeadlineReached” = False
“Warning” = False

Yes
No

Yes

No

No

Yes

“Warning”
= False

“DeadlineReached”
= True

Error
State

*

*

Yes

No Timer <
CT(RPn)?

Timer <
Deadline?

(1)

(2)

(3)

(4)

(5)

“Warning” = False

“Warning”
= False

Critical Task
Terminated?

Critical Task Start?

