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Abstract— The use of multicore processors in general-purpose 

real-time embedded systems has experienced a huge increase in 

the recent years. Unfortunately, critical applications are not 

benefiting from this type of processors as one could expect. The 

major obstacle is that we may not predict and provide any 

guarantee on real-time properties of software running on such 

platforms. The shared memory bus is among the most critical 

resources, which severely degrades the timing predictability of 

multicore software due to the access contention between cores. To 

counteract this problem, we present in this paper a new approach 

that supports mixed-criticality workload execution in a multicore 

processor-based embedded system. It allows any number of cores 

to run less-critical tasks concurrently with the critical core, which 

is running the critical task. The approach is based on the use of a 

dedicated Deadline Enforcement Checker (DEC) implemented in 

hardware, which allows the execution of any number of cores 

(running less-critical workloads) concurrently with the critical 

core (executing the critical workload). This approach allows the 

exploitation of the maximum performance offered by a 

multiprocessing system while guaranteeing critical task 

schedulability. A case-study based on a dual-core version of the 

LEON3 processor was implemented and mapped in a Xilinx 

Spartan 3E FPGA. 
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I.  Introduction 

It is of common agreement among designers and users that 
multicore processors will be increasingly used in future 
embedded real-time systems for critical applications where, in 
addition to reliability, high-performance is at a premium. The 
major obstacle is that we may not predict and provide any 
guarantee on real-time properties of software on such 
platforms. As consequence, the timing deadline of critical real-
time tasks may be violated. In this context, the shared memory 
bus is among the most critical resources, which severely 
degrade the timing predictability of multicore workloads due 
to access contention among cores. In critical embedded 
systems (e.g., aeronautical systems) this uncertainty of the 
non-uniform and concurrent memory accesses prohibits the 
full utilization of the system performance.  In  more detail,  the  
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system is designed in such a way that the processor runs in the 
stand-alone mode when a critical task has to be executed, i.e., 
the bus controller allows only one core to run the critical 
workload, and inhibits the other cores to execute less-critical 
workloads till the completion of the critical task. 

In order to counteract this problem and properly balance 
reliability against performance as long as possible, we present 
in this paper a new approach that supports mixed-criticality 
workload execution by fully exploiting processor parallelism. 
It allows any number of cores to run less-critical tasks 
concurrently with the critical core, which is running the 
critical task. The proposed approach is not based on any 
multicore static timing analysis or any timing model of 
multicore processor parts such as pipeline, cache memory and 
interactions of these parts with shared memory bus. Instead, 
the approach is based on the use of a dedicated Deadline 
Enforcement Checker (DEC), which works as follows: when a 
critical task starts running, the DEC allows the execution of 
any number of cores (running less-critical workloads) 
concurrently with the critical core (executing the critical 
workload) till the moment when the DEC predicts that the 
critical workload deadline will be violated if the processor 
continues running all cores concurrently. At this moment, the 
DEC inhibits the non-critical cores to execute less-critical 
tasks till the completion of the critical task by the critical core. 
Then, it is said that the system is switched from the “shared 
mode” (where two or more cores are fighting for shared 
memory bus access) to the “stand-alone mode”, where a 
unique (the critical) core is running.  

Given the above, the proposed approach presents the 
following features and advantages compared to the existing 
techniques: 

a) It minimizes the computational complexity imposed by 
multicore static timing analysis: it needs only to analyze 
interactions between pipeline and cache models of a single 
core when executing a given critical task. All inter-core 
conflicts generated during the execution of the critical and the 
various less-critical tasks caused by their non-uniform and 
concurrent memory bus accesses are not taken into account by 
the DEC. 

b) From the above (a) statement, it is also concluded that 
the proposed approach does not need the development and it is 
not based on timing analysis models of multicore processors. 
Therefore, the approach is not based on the faithfulness of the 
multicore processor model to guarantee a precise workload 
timing prediction. 

c) In contrast to the existing approaches, the proposed 
approach does not require any knowledge about the 
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implementation of the less-critical workloads or even the 
number of workloads that will run concurrently with the 
critical task. The DEC is configured according to specific code 
structure and timing characteristics of the critical task, as it 
will be described in Section III. Then, the DEC monitors 
online the critical task execution and automatically switches 
the bus usage from the “shared” mode to the “stand-alone” 
mode to guarantee the maximum possible processor 
performance with workload schedulability. Note that if the 
number of less-critical tasks changes, there is no need to re-
compute the timing analysis process for the critical task to 
guarantee workload schedulability. This condition is ensured 
because the DEC can switch from the “shared mode” to the 
“stand-alone mode” automatically, no matters is the number of 
less-critical tasks are running in parallel with the critical one. 

d) The approach can be applied to any type of processor, 
considered that the designer is able to collect two signals from 
the processor (“Program Counter” and “Annul”). The latter 
signal indicates if the current instruction in the pipeline was 
actually executed or not.  

e) Given that the approach can be applied to any type of 
processor, it allows a large spectrum of real-time operating 
systems to be used. Thus, traditional and well-stablished real-
time operating systems for critical applications such as 
VxWorks, LynxOS, Integrity or RTEMS and their advanced 
versions compliant with ARINC-653 (an avionics standard for 
safe, partitioned systems) [1] could also be considered in the 
whole system design. 

In this work, the terms “task” and “workload” have the 
same meaning and are used interchangeably. Moreover, we 
assume that there is only one critical core which is in charge of 
running the critical task. Concurrently to this core, there can 
be any number of non-critical cores, each of them executing 
one or more less-critical tasks. The remainder of the paper is 
organized as follows: Section II presents the fundamentals of 
the problem and the existing solutions. Section III describes 
the proposed approach and the Deadline Enforcement Checker 
(DEC). Then, Section IV draws the final conclusions of the 
work. 

II. Preliminaries 

A real-time computer system is a computer system where 
the correctness of the system behavior depends not only on the 
logical results of the computations, but also on the physical 
time when these results are produced. If a result has utility 
even after the deadline has passed, the deadline is classified as 
soft, otherwise it is firm. However, if severe consequences 
could result if a firm deadline is missed, then the deadline is 
called hard [2] Fig. 1 depicts the basic notions concerning 
timing analysis of systems.  

A task typically shows a certain variation of execution 
times depending on the input data or different behavior of the 
environment. The longest response time is called the worst-
case execution time (WCET). In most cases, the state space is 
too large to exhaustively explore all possible executions and 
thereby determine the exact WCET. It is worth noting that 
while in the last decades WCET bound was a topic mainly 
related with hard real-time systems (such as aerospace and 
military), recently it has become crucial in other domains 
dealing with timing guarantees. This includes among others, 

the automotive industry, mobile communication and high-
performance computing. In this sense, it is a mandatory 
condition to have an accurate determination of the WCET 
parameter in order to guarantee the hard-real time response of 
these critical systems to the environment [2]. 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Basic notions concerning timing analysis of systems. 

 
A lot of research has been carried out within the area of 

WCET analysis. However, each task is, traditionally, analyzed 
in isolation as if it was running on a monoprocessor system. 
Consequently, it is assumed that memory accesses over the 
bus take constant amount of time to process. For 
multiprocessor systems with a shared communication 
infrastructure, however, transfer times depend on the bus load 
and are therefore no longer constant, causing the traditional 
methods to produce incorrect results. As response to this 
specific need, several approaches dealing with WCET 
prediction in multicore platforms have been proposed 
[3,4,5,6]. These approaches represent a considerable 
improvement of the state-of-the-art, but note: 

a) They are not trivial in such a way that they must not 
only analyze all interactions between pipeline and cache 
models of a single core when executing a given critical task, 
but they also analyze all inter-core conflicts generated during 
the execution of the critical and the various less-critical 
workloads and their non-uniform and concurrent memory bus 
accesses. This analysis is even more complex when the 
number of cores running in parallel increases. 

b) If the number of tasks changes, the whole process must 
be recomputed in order to reschedule the tasks into the TDMA 
(resp. FCFS or Round-Robin) bus slots. 

c) It may happen that after predicting the execution of a 
critical task in a given multicore platform, the designer 
concludes that this task is not schedulable when executed in 
concurrence with other (less-critical) tasks. So, the whole 
analysis is useless and a new analysis process must restart on 
the basis of a smaller number of less-critical tasks to running 
in parallel with the critical one. The final goal is to guarantee 
schedulability of the critical task. If this is not attained yet, 
then the whole process is restarted again with an even smaller 
number of less-critical tasks. This “re-do” work is long and 
complex. So, time consuming. 

d) Concerning the approach presented in [6] up to this 
moment, and from the best of our knowledge, it is applicable 
only to the Merasa processor. So, traditional processors used 
in embedded applications such as PowerPC, ARM and 
LEON3 [7] as well as well-stablished real-time operating 
systems for critical applications such as VxWorks, LynxOS, 
Integrity or RTEMS and their versions compliant with 
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ARINC-653 (an avionics standard for safe, partitioned 
systems) [1] cannot take advantage of this approach yet. 

III. The Proposed Approach 

Fig. 2 depicts the situation where one critical task (TC) and 
one less-critical task (T1) are running on two cores. When 
both tasks are executed (in the “shared mode”), the WCET of 
the TC violates its deadline D. Thus, the problem is 
unschedulable (Fig. 2a). However, if TC is executed in the 
“stand-alone mode”, it is schedulable (Fig. 2b). In contrast 
with existing approaches, where only the critical task is 
executed at a time in the multicore platform till its completion, 
the proposed methodology is capable of scheduling the TC by 
considering the following scenario: initially both tasks (TC 
and T1) are executed on the system. Then, reference points 
(RPs) are used to observe on-line the execution time of the TC 
and decide switching the processor from the “shared mode” to 
the isolated execution of TC (Fig. 2c). The approach can be 
applied to any type of processor, considered that the designer 
is able to collect two signals from the processor (“Program 
Counter” and “Annul”). The latter signal indicates if the 
current instruction in the pipeline was actually executed or 
dropped down due to speculation-caused timing anomalies of 
the processor. 
 

 
Fig. 2. Scheduling based on WCET when are considered for execution (a) 

both tasks, (b) only the critical task and (c) proposed approach. 

 
In this work, we propose an approach to improve core 

utilization by running several tasks in parallel while 
guaranteeing the critical task schedulability. The target 
platform can be a TDMA, First-Come First-Served (FCFS) or 
Round Robin bus-access policy multicore system. We assume 
a single core to run a unique critical task in parallel with any 
number of cores running less-critical tasks. If running in the 
stand-alone mode the critical task is perfectly schedulable. 
However, if it is running in parallel with other less-critical 
tasks, it cannot be guaranteed its schedulability, unless the 
proposed approach is considered. Our methodology is split in 
two steps:  

i) Off-line, we analyze the control-flow-graph (CFG) of the 
critical task and safely compute the remaining WCET

 
 at 

several Reference Points (RPs) of the TC running in the stand-
alone mode. The remaining WCET (WCETR) is defined as the 
WCET between the considered RP till the end of the code. 

ii) On-line, for the system running in the shared mode, we 
use a dedicated Deadline Enforcement Checker (DEC) to 
monitor the real execution time of TC and to check whether 
there is a risk that the critical task misses its deadline due to 
system overload. If so, the less-critical tasks are temporarily 
paused so that the critical task continues in the stand-alone 

mode from that monitored point till its completion. After the 
critical task is complete, the less-critical tasks can resume 
execution from the point they were temporarily paused. The 
proposed approach is schematically depicted in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Overview of the proposed approach: (a) WCETR computation at the 

Reference Points (RP) of the TC running in the stand-alone mode; (b) General 
block diagram of a multicore processor connected with the DEC. 

 
Fig. 4 shows the computed timeline of a critical task. The 

reference point zero (RP0) is hereby defined as the start of the 
task. The Critical Time (CT) of a given Reference Point (RP) 
is given by: 

 
CT(RPn) = DeadlineTime – WCETR(RPn) – tover 

 
Where WCETR(RPn) is the remaining worst-case execution 

time from the RPn to the task end instant, which was statically 
computed for the processor running in the “stand-alone” 
mode. Finally, tover is a constant cost associated to the bus 
arbiter to switch the processor from the “shared” to the “stand-
alone” mode.  

When the critical task starts, the elapsed time is initialized 
and incremented, clock-by-clock by the DEC and compared 
against the CT collected at the last RP that it passed by. It 
should be noted that during the critical task execution, the 
CPU passes through several code paths with different times 
(since the path taken along the code is a function of its inputs). 
Therefore, it is mandatory that the CT be updated at every RP 
distributed along the code. When the DEC compares the 
elapsed time against the CT collected at the most recent RP 
that it passed by, three possible situations may occur:  

a) The elapsed time is smaller than the CT; then, the 
processor continues executing in the “shared” mode. 

b) The elapsed time is equal to or greater than the CT; 
then, the DEC advises the bus arbiter to switch the 
processor from the “shared” to the “stand-alone” mode. 
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c) The elapsed time is greater than the “Deadline”; then, 
the DEC issues an “Error Indication” signal. 

It is worth noting that during task execution in the “stand-
alone” mode, upon arriving in the current RP, if the DEC 
detects that the execution of the critical task is faster than 
predicted according to the last RP that it passed by, the DEC 
signals to the bus arbiter to switch back to the “shared” mode 
in order to privilege task concurrency in the multicore 
platform. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Timeline of a critical task execution. 
 
 Fig. 5 depicts a general view of the DEC internal blocks 
and their respective signals. The first block is the Checkpoint 
Monitor, whose goal is to identify the current RP of the 
task. This block can accomplish such goal in different ways 
(depending on the type of the information that is treated by the 
block) which are briefly described below: 

a) The Checkpoint Monitor Block observes the instruction 
address bus for memory reads. By comparing the 
instruction addresses flowing through the bus, this block 
detects when monitored core reaches a specific RP. A 
drawback of such approach is that there is no guarantee 
that the instruction read is actually executed by the 
processor; for example the instructions fetched just after a 
branch or a speculative execution by the CPU. As 
consequence, it constrains the locations where a RP can 
be inserted (since a RP cannot be inserted just after a 
branch or an instruction that is speculatively executed). 
Another problem is that if the processor has an instruction 
cache, then the address of the executed instruction will 
not appear in the bus in case of a cache hit. 

b) Additionally to observe the instruction address bus, the 
Checkpoint Monitor Block can also inspect the critical 
core internal signals (such as the program counter - PC). 
Unlike the previous method depicted in (a), by monitoring 
the internal signals it is easy to know whether an 
instruction is executed or not, relaxing the locations in 
which RPs can be inserted (this approach enlarges the 
universe of locations a RP can be inserted and so, it is a 
better option compared to the previous one). 
Nevertheless, this method is more intrusive. 

c) Finally, the Checkpoint Monitor Block can receive 
explicit information about the RP currently reached by the 

core, directly from processor general purpose I/O pins 
(e.g., GPIO port of the processor or any other 
communication channel). In this case the Checkpoint 
Monitor Block of the DEC is omitted and the RP 
Identification (RPID) is fed directly to the second block 
(Checkpoint Time Controller). Nevertheless, this method 
has an important drawback: higher detection latency 
compared to the methods (a) and (b) described above. 
Moreover, the critical task must be modified to write the 
RPID on the GPIO port of the processor or on any other 
communication channel. It should be noted that system 
designers are hesitant about this change in the user code. 
Although, it has the advantage that it does not need to 
access any processor internal signal or access to the 
processor bus. Therefore, it can potentially work with 
processors in which system designers do not have access 
to the bus or internal processor signals (for instance, the 
processor is a “black-box” third-part intellectual property 
core or even a COTS processor). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  General view of the DEC internal blocks and their respective signals. 

 
Among the three methods above, (b) is the one currently 

implemented in the DEC. 

The output of the Checkpoint Monitor Block is a 
Reference Point Identification (RPID) that is fed to the 
Checkpoint Time Controller, whose responsibility is to 
correlate a RPID with its Critical Time CT(RPID). This 
mapping process is performed by means of a content-
addressable memory (CAM): the CAM input is a RPID and the 
output is the corresponding CT(RPID). The Checkpoint Time 
Controller also notifies when the critical task starts running 
(CTaskStart) and ends (CTaskEnd).  

The final block (Watchdog) is responsible for notifying 
the event “Warning”. When this event is yielded, the bus 
controller forces the processor to switch execution from the 
“shared-bus” mode into the “stand-alone” one (in which the 
bus is exclusively allocated to the critical core).  This block 
also signals the “Deadline Reached”, which yields an “Error 
Indication” signal. Fig. 6 depicts the control-flow graph (CFG) 
of the DEC operation.  

Critical 

Task 

start 

PROCESSOR CLOCK CYCLES 

RP
1
 RP

n-1
 

Last RP 

WCET
R
(RP

1
) 

WCET
R 

(RP
n-1

) 

WCET
R 

(RP
0
) 

RP
0
 

Critical 

Task 

end 

D
ea

d
lin

e 

Clk 
Reset 

CT(RPID) 
CTaskStart 
CTaskEnd 

Checkpoint 
Time 

Controller 

Warning 
(*) 

Deadline 
Reached 

(**) 

Clk 

Reset 

RPID Clk Reset 

Checkpoint 
Monitor 

Deadline Enforcement 

Checker (DEC) 

(*) Signal sent to the bus arbiter 
(**) “Recovery” signal sent to the 
processor or operating system 

Watchdog 
 
 

Timer 

Processor Bus / GPIO Signals 



 

146 

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE 
Volume 4 : Issue 2  [ISSN : 2319-7498]     

Publication Date : 30 October, 2015 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.  Control-flow graph (CFG) of the DEC operation. 
 

The indicated points in Fig. 6 are detailed as follows: 

(1)  By default when a critical task starts running, the 
processor bus is set on the “shared-bus” mode. 

(2) The condition: 

“CT(RPn) = DeadlineTime – WCETR(RPn) – tover” 

is tested and one of the three previously mentioned 
situations may occur: (a) the elapsed time is smaller 
than the CT; (b) the elapsed time is equal to or greater 
than the CT; and (c) the elapsed time is greater than 
the “Deadline” and then, the DEC issues an “Error 
Indication” signal. 

(3) At this moment, the processor is running in the 
“shared-bus” mode. 

(4) At this moment, the bus arbiter switches processor 
operation from “shared” to “stand-alone” mode. 

(5) Critical task (being executed in the “shared” or “stand-
alone” mode) terminates, conditionally that it does not 
violates deadline. 

IV. Final Considerations and Conclusions 

We presented a new approach that supports mixed-
criticality workload execution in a multicore processor-based 
embedded system. Given that the proposed approach can be 

applied to any type of processor, it allows a large spectrum of 
real-time operating systems to be used. Thus, traditional and 
well-stablished real-time operating systems for critical 
applications such as VxWorks, LynxOS, Integrity or RTEMS 
and their advanced versions compliant with ARINC-653 (an 
avionics standard for safe, partitioned systems)  could also be 
considered in the whole system design. 

The approach allows any number of cores to run less-
critical tasks concurrently with the critical core, which is 
running the critical task. The approach is based on the use of a 
dedicated a hardware-based Deadline Enforcement Checker 
(DEC), which allows the execution of any number of cores 
(running less-critical workloads) concurrently with the critical 
core (executing the critical workload). This approach allows 
the exploitation of the maximum performance offered by a 
multiprocessing system while guaranteeing critical task 
schedulability.  

A case-study based on a dual-core version of the LEON3 
processor [7] was implemented and mapped in a Xilinx 
Spartan 3E FPGA. The measured area overhead is 
considerably small, in the order of 4.14% for the dual-core 
version of the LEON3 processor. Furthermore, several critical 
application codes based on WCET benchmarks [8] were 
compiled to this processor. The experimental results 
demonstrated that the proposed approach is very effective on 
combining system high-performance with critical task 
schedulability within timing deadline. 
 

Acknowledgment 

This work has been supported in part by CNPq (National Science 
Foundation, Brazil) under contract n. 303701/2011-0 (PQ). 

References 

[1] http://www.windriver.com/products/product-
overviews/PO_VxWorks653_Platform_0210.pdf  Last access: June 
2015. 

[2] Reinhard Wilhelm et al., “The Worst-Case Execution-Time Problem – 
Overview of Methods and Survey of Tools”, ACM Trans. On Embedded 
Computing Systems, vol. 7, no. 3, April 2008. 

[3] Jakob Rosén, Petru Eles, Zebo Peng, Alexandru Andrei 
“PredictableWorst-Case Execution Time Analysis for Multiprocessor 
Systems-on-Chip”, 2011 6th IEEE International Symposium on 
Electronic Design, Test and Application, pp 99-104. 

[4] Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, “A 
Unified WCET Analysis Framework for Multi-core Platforms”, Proc. of 
RTAS 2012. 

[5] Mingsong Lv, Wang Yi, Nan Guan, Ge Yu, Timon Kelter, Peter 
Marwedel, Heiko Falk, “Combining Abstract Interpretation with Model 
Checking for Timing Analysis of Multicore Software”, ACM Trans. On 
Embedded Computing Systems, vol. 13, no. 4s, March 2014. 

[6] Theo Ungerer et al., “Merasa: Multicore Execution of Real-Time 
Applications Supporting Analyzability”, IEEE Micro, Computer 
Society, September-October, 2010, pp. 66-75. 

[7] http://gaisler.com/index.php/products/processors/leon3.  Last access: 
June 2015. 

[8] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The 
Mälardalen WCET benchmarks – past, present and future. In Björn 
Lisper, editor, Proc. 10th International Workshop on Worst-Case 
Execution Time Analysis (WCET’2010), pages 137–147, Brussels, 
Belgium, July 2010. OCG. 

Start/Reset 

Reset “Timer” 
“DeadlineReached” = False 
“Warning” = False 

Yes 
No 

Yes 

No 

No 

Yes 

“Warning” 
= False 

“DeadlineReached” 
= True 

Error 
State 

* 

* 

Yes 

No Timer < 
CT(RPn)? 

Timer < 
Deadline? 

(1) 

(2) 

(3) 

(4) 

(5) 

“Warning” = False 

“Warning” 
= False 

Critical Task 
Terminated? 

Critical Task Start? 


