

33

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

Accurate and Efficient Visual Search on Embedded

Systems

[M. Balestri, G. Cabodi, G. Francini, A. Garbo, C. Loiacono, D. Patti, S. Quer]

Abstract— Recent developments in embedded processors

have enabled heterogeneous computing on mobile devices using

open-access general-purpose computing languages. Following

the MPEG CDVS standard, this paper presents an efficient

feature computation phase, completely implemented on

embedded devices supporting the OpenCL framework.

Following our contribution to the MPEG-CDVS standard, we

present the new born CDVS detector and its design for multi-

core parallel GPUs. We show how to adjust algorithmic

choices and implementation details to target the intrinsic

characteristics of the embedded platforms selected. We

compare our GPU implementation of the ALP keypoint

detector with the CPU based implementation of the CDVS

standard. We present data on different GPUs showing that our

solution is up to 7x faster than the CPU version. To sum up,

one of the main feature of our algorithm is to be fast enough to

be able to open new visual search scenarios exploiting entire

real-time on-board computations with no data transfer.

Keywords— image processing, visual search, feature

detection, compact descriptor, general purpose GPUs,

embedded systems

I. Introduction
Smart camera phones and tablet PCs have shown great

potential in mobile visual search, thanks to the integrated
functionality of high resolution color camera, powerful SoC
and pervasive 3G wireless connection. Most of the existing
mobile visual search systems are deployed in client-server
architectures. In on-line applications, the client takes the
picture and transfer it to the server. The server maintains a
duplicate or near-duplicate visual search system, and
employs approximate visual matching techniques. In other
words is the server that identifies the most similar images,
and returns visual objects information to mobile users.

Unfortunately, in 3G wireless environments, the
upstream delivery of a visual query is subject to the network
constraint of unstable or limited bandwidth. Latency from
query delivery may degenerate the user experience in a
significant way. However, with fast growing processing
power in mobile devices using Graphical Processing Units
(GPUs), sending an entire image seems unnecessary, since
visual feature extraction and compression can be performed

Gianpiero Cabodi, Alessandro Garbo, Carmelo Loiacono, Denis Patti,
Stefano Quer

Politecnico di Torino
Italy

Massimo Balestri, Gianluca Francini
Telecom Italia

Italy

This research was supported by industrial contract 30/2014 entitled

“Algorithms Optimization for Visual Search” .

on mobile devices.

 To reduce the visual query delivery latency, off-line
applications need compact and discriminative visual
descriptors [1]. This trend has received dedicated efforts in
MPEG standardization, i.e., the Compact Descriptor for
Visual Search (CDVS) [2]. The compact descriptor of an
image is composed of two main elements, namely a selected
number of compressed local descriptors and a single global
descriptor, representing the whole image.

These two elements are produced by a series of
processing steps:

 Keypoint detection: Identification of "Low
Polynomial degree" (ALP) keypoints. This phase is
based on the creation of a scale space made by a set
of Laplacian of Gaussian filtered images and the
subsequent identification of extreme by means of
polynomial approximations.

 Orientation Assignment: In this step, one or more
orientations are assigned to each keypoint, based on
local image gradient directions. This is the key
operation to represent keypoint descriptors as a
function of their orientations, therefore achieving
invariance to image rotation.

 Feature selection: Selection of a limited number of
keypoints to maximize the quality for subsequent
matching.

 Local descriptor computation: Computation of
local descriptors in correspondence of the selected
keypoints. Local descriptors are used in the
pairwise matching phase, i.e., to find out whether
the query and the reference images depict the same
scenes or not. For match detection, geometric
consistency check is performed to determine the
number of inliers among the keypoint matches
(correspondences) between the two images. In case
of a match, localization information is provided,
i.e., the position of the matching objects in the
image, where homography estimation is conducted.

 Local descriptor compression: Scalar
quantization-based compression of the selected
local descriptors. CDVS supports different sizes of
compact descriptor footprint, spanning from a
maximum of 16KBytes per image, which is the
fully performing operating mode, down to
512Bytes, for extremely constrained bandwidth
scenarios.

 Coordinate coding: Compression of the
coordinates of the selected keypoints.

 Global descriptor aggregation: Aggregation of
local descriptors, to form a single global descriptor.

34

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

A. Contributions and Comparisons
In this paper, we present an efficient and accurate

OpenCL implementation of the first and the second steps
listed above, as those steps are among the most critical ones.
Our approach entails the following major contributions:

 Presenting the new ALP (A low degree polynomial)
detector, the latest contribution to the CDVS
standard.

 Re-engineering the Gaussian Scale Space (GSS)
computation, i.e., the most expensive step of the
keypoint detection phase.

 Optimizing all sequential steps of the CDVS
standard to concurrently run on many-cores general
purpose graphical processor units.

 Using new approaches to store all required data on
proper GPU data structures to reduce the memory
accesses and efficiently distribute the OpenCL
kernels workload.

We present experimental results on standard benchmarks,
comparing accuracy and efficiency of our GPU
implementation with respect to its state of the art CPU
counterpart.

Notice that, previous work (for examples, see references
[3, 4, 5, 6]) present different implementation of the well
known SIFT algorithm. Conversely, we concentrate on the
novel CDVS ALP detector and on embedded platforms. Our
target is to write an efficient and accurate ALP parallel
implementation running on embedded systems. As far as we
know, a few of those contributions are presented for the first
time.

B. Roadmap
Section II and Section III describe our parallel

implementation of the keypoint detector and orientation
assignment algorithms, respectively. Section IV presents our
experimental evidence. We run our experiments on standard
images, and we present time performance as well as
precision accuracy. Finally, Section V concludes the paper
with some summarizing remarks. Notice that there is no
explicit background section as background notions are
reported in each section whenever required.

II. Parallel ALP Keypoint Detector
The ALP (A Low-degree Polynomial) [7] detector

identifies interest points finding local extrema in the scale
space by approximating the scale-space [8] using
polynomials. In the scale space-representation, the images
that result from the Laplacian-of-Gaussian filtering are
functions of the scale parameter. ALP approximates these
functions with polynomials of low degree. The algorithm
works by subdividing the scale space in octaves in order to
maintain a low complexity.

In the following sections (from Section II.A to Section
II.F) we present the overall process for a single octave
focusing on our GPU implementation of each step.

A. Gaussian Scale Space Computation
In order to compute Gaussian Scale Space (GSS) it is

necessary to create a representation of the image
frequencies. This is achieved using a scale space pyramid as
introduced by Witkin [9]. The scale-space pyramid is
constructed by taking a gray-scaled version of the original
image and applying a Gaussian filtering repeatedly with
kernels of increasing size. The most blurred image from this
pyramid is down-scaled by a factor of two, and, afterwards,
convolved with the same set of Gaussian kernels to create
the next pyramid.

We implemented 2D Gaussian filtering using two 1D
Gaussian horizontal filters. The process implies filtering the
image with an 1D Gaussian, taking the transpose of the
result, convolving (again) with the same filter, and
transposing the result. We decided to use just horizontal
filters due to the OpenCL data structure we consider. We
used RGBA OpenCL textures in order to reduce the number
of memory accesses. In fact, working with OpenCL textures
drastically reduces memory access latency, whereas using
OpenCL global memory is very time consuming. Moreover,
most modern GPUs have a separate texture cache. When a
specific pixel in the texture is requested, the GPU stores the
data in a special buffer that is close to where the actual
computations are performed. In our scenario, we work with
gray scale images. As a consequence, we store 4 gray level
pixels in one item of the RGBA texture, reducing the
number of memory accesses. In this way we also reduce the
original image width by 4 times as each OpenCL kernel

1

instance computes the convolution considering 4 gray level
pixels at the same time. We also implemented a branch-less
OpenCL code, as loops in OpenCL kernel functions are fully
unrolled without branch (“if” statement) operations.

Fig. 1. Gaussian Filtering: Performing Convolution using

OpenCL kernels.

Figure 1 shows a convolution step (with 4 gray pixels, a
texture item), performed by a kernel. Boxes in the image
represent different items of a texture. Each item is composed
by 4 elements (x, y, z, w) representing 4 gray scale pixels.
The size of the Gaussian filter is 15, then for each gray pixel
the 14th adjacent pixels take part in the computation. In
order to read the adjacent pixels, we need to perform just 5
memory accesses because, we read 4 gray pixels at the same
time. The neighboring kernels can use this data to avoid
further accesses to the texture memory. Furthermore, the
kernels at the border of the image also apply padding, and

1 OpenCL kernels can be seen as entry points to the device

program, i.e., the only functions that can be called from the host. A

single kernel execution can run on all or many processing elements

in parallel.

35

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

consider padded pixels in the convolution computation. We
didn’t use OpenCL work-groups

2
 to perform convolutions,

because in this case the work-group setup is very expensive.
We save about 10% of time avoiding work group usage in
the convolution step. The Test Model (TM) implementation
of the CDVS [2] performs the Gaussian Filtering using a 1D
horizontal filter and a 1D vertical filter without transposing
the result. Using a Gaussian filter of size 15, the standard
approach implies 15 memory accesses, whereas our solution
needs just 5 memory accesses. Even though we have to
perform a matrix transposition, our solution has been proved
to be much faster than the CDVS TM one.

B. Laplacian Computation
The Laplacian of an image highlights regions of rapid

intensity change. The Laplacian operator is applied to an
image that has first been smoothed by a Gaussian filter. The
operator takes a single gray-level image as input and
produces another gray-level image as output. We
implemented OpenCL kernels able to apply the Laplacian
operator to 4 gray pixels.

L.x += V0.w + V1.y

L.y += V1.x + V1.z

L.z += V1.y + V1.w

L.w += V1.z + V2.x

L += V3 + V4 – V1 – V1 – V1 – V1

Fig. 2. Laplacian computation considering 4 gray pixels at

the same time.

Figure 2 shows which input image pixels (left-hand side)
are used to compute the output pixels (right-hand side).
Boxes in the image represent different texture items. Each
item is composed by 4 elements (x, y, z ,w) representing 4
gray scale pixels. The formulas at the bottom of the figure
represent the computation of Laplacian for each pixel (L.x,
L.y, L.z, L.w). Each kernel computes the Laplacian for 4
pixels at the same time accessing the memory 5 times. We
run (width/4 ∙ height) kernels, where (width ∙ height) is the
size of the source image. In the CDVS Test Model
implementation Laplacian operators are applied sequentially
on each pixel, whereas in our solution they are run at the
same time on all image pixels.

C. Scale-space function approximation
For each pixel in the image, a polynomial approximation

of the scale-space function is searched for a local extrema
over a certain interval. The coefficients of the polynomial
are obtained by computing weighted sums of the Laplacian
images. The scale is the parameter value where the
polynomial assumes the extrema. The pixel candidates are
subject to a comparison with the adjacent 8 pixels. Those

2 Work-groups are collections of related work-items executing on a single

computation unit. Work-items in the group execute the same kernel, and

share local memory and work-group barriers.

having extreme polynomial values exceeding their neighbors
are kept as candidates, all others are discarded.

In our OpenCL implementation we defined two different
kind of kernels. The first one computes the coefficients as
linear combination of Laplacian. The second one evaluates
the roots of the first derivative of the polynomial, and it also
stores the minimum and maximum polynomial values (used
in next steps) of each pixel. For both kernel types, (width/4 ∙
height) instances work in parallel. Unlike the Gaussian and
Laplacian computation, where also neighboring pixels are
considered, in this case each kernel performs just one
memory access to process 4 gray pixels.

D. Coordinate refinement to subpixel
precision
The previous stages compute data that are refined as

follows:

 The position of candidates (see Section II.C) is
refined to sub-pixel precision using a different
polynomial. Variables in this polynomial are the two
values that influence the displacement from the
integer pixel position.

 Displacements are detected on polynomial local
maximum or minimum.

 Points are discarded if the detected displacement is
larger than a threshold.

Input : Coefficient, Min and Max Res, Min and Max Scale Textures

Output: Keypoints

 01: maxDispl = 1.0;

 02: i = getXPixelPosition ()

 03: j = getYPixelPosition ()

 04: A = readPixelImage (CoeffcientATexture, i, j);

 05: B = readPixelImage (CoeffcientBTexture, i, j);

 06: C = readPixelImage (CoeffcientCTexture, i, j);

 07: D = readPixelImage (CoeffcientDTexture, i, j);

 08: minRes = readPixelImage (MinResponseTexture, i, j);

 09: maxRes = readPixelImage (MaxResponseTexture, i, j);

 10: minScale = readPixelImage (MinScaleTexture, i, j);

 11: maxScale = readPixelImage (MaxScaleTexture, i, j);

 12: IsExtrema = Extrema (minRes, maxRes, minScale, maxScale);

 13: if (isExtrema) then

 14: p = ComputePolynomial (A, B, C, D);

 15: deltaX = ComputeDeltaX (p);

 16: deltaY = ComputeDeltaY (p);

 17: if ((|deltaX|<=maxDispl) && (|deltaY| <= maxDispl)) then

 18: isKeypoint = true;

 19: end if

 20: end if

Algorithm 1: Keypoint detection considering 4 gray pixels.

36

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

We implemented a kernel able to perform all steps listed
above. The kernel processes 4 gray pixels in parallel. It
reads the values computed in previous steps and select the
keypoints. Finally, it stores the keypoints in a texture as
described in Section II.E.

Algorithm 1 shows the implementation of the kernel that

detects keypoints. Functions getPixelPosition (lines 2÷3)

return the positions of the current texture item (4 gray level
pixels). Then, in lines 4÷11, we read the corresponding
coefficients, responses and scale values computed in the

previous steps. The Extrema function (line 12) is used to

figure-out whether a texture item contains candidate pixels.
For each candidate, the algorithm converts its position from
the scale space domain to the coordinate domain. Notice
that, unlike the reference Test Model implementation of the
CDVS standard, we perform all tasks described above
concurrently, considering 4 gray pixels at the same time.

E. Adapting coord inates and scale to
image resolution
Candidates are detected one octave at a time, and the

analyzed images in each octave have half the size of those in
the previous octave. The coordinates and scales are referred
to the coordinate system of the octave in which they are
detected. A further step is therefore necessary to map
coordinates and scale to the resolution of the converted
image [2].

Once coordinate are mapped, we need to store the
keypoints. We store the keypoints in OpenCL texture,
instead of saving it on temporary CPU data structures. This
drastically reduces the memory access latency of the other
kernels for the next computation.

Fig. 3. OpenCL implementation: A Keypoint Structure.

Figure 3 shows the OpenCL texture used to store the

computed keypoints. The maximum size of this texture is
1024 ∙ 8. Each keypoint is stored in 4 elements, and each
element is composed by 4 float numbers. Then, the total
number of float elements per keypoint is 16. The first 9 float
numbers (from ix to curvRatio) represent the position, the
scale and others keypoints characteristics. The last 7
elements (from nAngles to the last element) represent the
keypoint orientation (which will be introduced in Section
III). As the maximum number of keypoints that can be
stored in a row is 256, the total number of keypoints per
octave that can be stored in the texture is 2048 (256 ∙ 8). To
fill the keypoint texture described above, we use the
approach described in Section II.D. Essentially, we run a
kernel instance for each candidate, and this kernel checks
whether the candidate is actually a keypoint. In the

affirmative case, the kernel has to access the keypoint
structure and increment the total number of keypoints. As
the keypoint structure is shared by several kernels, proper

synchronization has to be adopted. We used the OpenCL
atomic_inc function to perform atomic increments on

global keypoint counters. The keypoint texture will be also
used in the orientation stage (see Section III).

F. Elimination of Duplicates
When all octaves are completed, the next step has to

eliminate interest points duplicates derived from
independent processing of each octave. Each candidate
detect in the previous octave q is compared with each
candidate detected in octave q − 1. If the coordinates and the
scale of the two candidates are below two given thresholds,
they are subject to the following elimination process:

 If the polynomial values associated with the two
candidates have opposite signs, both of them are
kept.

 If the polynomial values have the same sign, then
the candidate with the smallest absolute value is
eliminated.

The OpenCL kernel implemented to accomplish this task
works with the keypoint textures described in Section II.E.
We run (nKeypointsq ∙ nKeypointsq−1) kernel instances where
nKeypointsq and nKeypoints q−1 are the numbers of computed
keypoints of the octave q and q−1, respectively. To check
whether a keypoint k, of the octave q, is a duplicate a kernel
instance compares k with all keypoints of the q−1 octave.

III. Orientation Assignment
To allow rotation invariance for the subsequent feature

description, a dominant orientation is assigned to each
keypoint. Given an interest point detected in a Gaussian-
filtered image, within an octave, with certain location and
detection scale, the gradient magnitude and direction is
computed for every pixel in the interest point’s neighboring
region. In order to accomplish this task, we implemented a
kernel that computes, for each pixel, the gradient magnitude
and direction. Another kernel computes an orientation
histogram from the computed gradient orientations. We run
(N ∙ N) instances of the last kernel, where N is number of
neighboring pixels of the gradient texture involved in the
computation. Each pixel within the circular patch is added to
its nearest two histogram bins based on its orientation. In
this way, histogram bin values are accumulated by the
increment values of specific functions multiplied by a
Gaussian weighted window with a radius of 1.32 times the
detection scale (histogram smoothing). We use OpenCL
kernel work-groups in order to smooth the orientation
histogram. A work-group must consist of at least one work-
item (kernel). The maximum number of work-items is
platform dependent. The work-items within a work-group
must be synchronized to share local memory with each
other.

37

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

Fig. 4. Orientation histogram for our OpenCL

implementation: Work-group shared memory.

Figure 4 shows the work-group shared memory; i.e., a

buffer composed by (2048 ∙ 36) integer elements, where
2048 is the maximum number of keypoints per octave, and
36 is the length of the histogram of each keypoint. Dominant
orientations are determined by locating the peaks in the
orientation histogram. The bin corresponding to the highest
peak (as well as the bins with a value greater than 80% of
the highest value) is selected as the dominant orientations of
the interest point. To find the peak, 4 kernels belonging to
our work-group are run together. Each kernel computes the
peak on 9 histogram elements, then the first kernel of the
group computes the final peak value. Once the peak is
selected, a quadratic interpolation between the peak and its
two neighboring bins is performed to obtain more accurate
orientation.

IV. Experimental Results
The target of this section is to evaluate results accuracy

(precision), and computation efficiency (speed), of our
OpenCL implementations of the CDVS Detector (ALP) on
embedded GPU platforms. We selected two widely used
devices: The Samsung Galaxy Note 3, and the Arndale Octa
board. Samsung Galaxy Note 3 embeds a CPU quad-core
ARM Cortex A15, and an Adreno 330 GPU. The Arndale
octa board adopts a Cortex A15 CPU, and a Mali T628
GPU. We proceed as follows. Section IV.A compares our
ALP OpenCL detector with the CDVS Test Model
implementation, in terms of time efficiency, on a selected
number of images. Section IV.B compares the same
detectors in terms of accuracy, presenting an intensive set of
experiments on pairwise-matching object recognition.

A. Efficiency
In this section we compare detectors in terms of

efficiency by selecting 12 representative images from the
CTurin180 [10] test set. Table 1 compares run times of
CDVS detector (ALP) Test Model (TM) implementation
(CPU column) with our OpenCL implementation (GPU
column) for Galaxy Note 3 and Arndale Octa board devices
respectively. We measured the wall-clock time

3
 between the

start and the end of the kernels using OpenCL events. We
wait for the end of the kernel using OpenCL function

clWaitForEvents. Results clearly shows that our solution

3
 The wall clock time is the time necessary to the (mono-thread or

multi-thread) process to complete the tack, i.e., the difference

between the time at which the task finished and the time at which

the task started. For this reason the wall clock time is also known

as elapsed time.

is up to 7 times faster than the TM one for the selected
embedded devices.

In order to perform an in-depth analysis of our detector,
we present a breakdown of the total time into three main
stages. The first step, i.e., the Gaussian Scale Space
computation stage (see Section II.A), is strongly influenced
by the image size. It approximately needs the 28% of the
total time, on average. The following stage, including the
phases analysis in Sections II.B, II.C, II.D, and II.E, needs
about 50% of the total time. The last stage, see Section III,
requires the 22% of the total time on average, and strongly
depends on the number of detected keypoints. Overall,
detection is the most time consuming step, due to the huge
number of branches (i.e., “if” statement) present in this
stage.

B. Accuracy
In this section, we compare detectors in term of

accuracy. Our benchmark set is taken from [10] and [11].
Following the CDVS standard computation scheme [2], we
present pairwise matching test results. Pairwise image
matching establishes correspondence between two images
and it assesses whether they depict the same objects or
scenes. The matching test is performed by computing the
keypoints and the descriptors of two images (Query and
Reference). We then compare the descriptors, i.e.,
computing the distance between them, in order to compute
the matching score.

 We work on about 2500 images, generating about 10000
matching-pairs and about 5000 nonmatching pairs.

Fig. 5. Comparing GPU and CPU results using a Receiver

Operating Characteristics (ROC).

Figure 5 shows the Receiver Operating Characteristic
(ROC)

4
 curve [12] for the CPU and GPU implementations

on the same benchmark set. Even if we performed the test
on both GPUs mentioned above, we report results for just
one of them, because the data are identical in both cases.
Essentially, the x axis reports the complemented value of the
true negative matching rate (1 − True Negative, i.e., 1 − TN),
while the y axis reports the true positive matching rate (TP).

4
 A ROC curve is a graphical plot which illustrates the performance of a

binary classifier system while its discrimination threshold is varied. Please,

see the reference for further details.

38

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 2 [ISSN : 2319-7498]

Publication Date : 30 October, 2015

Benchmark

Galaxy Note 3 Arndale

CPU
[ms]

GPU
[ms]

Speed Up CPU
[ms]

GPU
[ms]

Speed Up

Object001 460.35 80.42 5.72 461.12 112.77 4.08
Object002 471.62 73.19 6.44 477.14 100.82 4.73
Object003 469.56 71.49 6.56 467.87 102.24 4.57
Object004 530.64 94.80 5.59 532.80 132.08 4.03
Object005 472.33 92.22 5.12 470.33 118.19 3.97
Object006 467.90 94.62 4.95 468.16 129.69 3.60
Object007 441.68 101.56 4.35 440.10 133.51 3.29
Object008 433.66 96.18 4.51 433.91 115.27 3.76
Object009 430.68 101.23 4.25 433.98 129.02 3.36
Object010 439.54 100.04 4.39 440.44 136.40 3.22
Object011 432.88 96.46 4.49 432.45 124.09 3.48
Object012 451.66 92.28 4.89 448.38 118.10 3.79

Table 1: Analysis of the ALP CDVS detector. GPU times versus standard CPU times (and relative speed-ups) on the

Samsung Galaxy Note 3 and the Arndale octa board embedded platforms.

Those values are plotted for several matching and non-

matching thresholds varying along the curves. The graph

shows a sharp knee after which it remains stable around a y-

value of about 0.8. This means that, for a wide range of

threshold values, the number of true positives (i.e., correct

matching results) remains around 80% (y-value), while the

number of wrong negatives (i.e., wrong non-matching

results) stays below 12% (x-value). In other words, the

graph proves that the two visual matching systems under test

have similar behaviors in terms of accuracy, and the exact

response (i.e., the pair is matching or non-matching) is given

with a very high probability

V. Conclusions
In this paper, we present an efficient OpenCL GPU-

based implementation of the CDVS ALP detector. We
discuss strategies and recommendations to implement
parallel CDVS algorithms on GPUs. Experimental results on
standard images show that our implementations have a
speed-up up to 7x over the CDVS Test Model CPU
implementation. Moreover, pairwise-matching experiments
clearly show that our implementation is very close to the
Test Model one in terms of accuracy.

References
[1] Ling-Yu Duan and Feng Gao and Jie Chen and Jie Lin and Tiejun

Huang, “Compact descriptors for mobile visual search and MPEG
CDVS standardization,” in ISCAS’13, 2013, pp. 885–888.

[2] MPEG, “Text of ISO/IEC CD 15938-13 Compact Descriptors for
Visual Search,” 2013.

[3] M. S. Mohammadi and M. Rezaeian, “Towards Affordable
Computing: SiftCU a Simple but Elegant GPU-based Implementation
of SIFT,” International Journal of Computer Applications, vol. 90, no.
7, pp. 30–37, March 2014.

[4] Guohui Wang, Blaine Rister, and Joseph R. Cavallaro, “Workload
analysis and efficient OpenCL-based implementation of SIFT
algorithm on a smartphone,” in Proc. IEEE Global Conference on
Signal and Information Processing (GlobalSIP). IEEE, Dec. 2013, pp.
759 – 762.

[5] Seung Heon Kang, Seung-Jae Lee, and In Kyu Park, “Parallelization
and optimization of feature detection algorithms on embedded GPU,”
2014.

[6] Anton I. Vasilyev, Andrey A. Boguslavskiy, and Sergey M. Sokolov,
“Parallel sift-detector implementation for images matching,” 2011.

[7] G. Francini M. Balestri and S. Lepsoy., “CDVS: Telecom Italia’s
Response to CE1 - Interest point detection,” Tech. Rep. ISO/IEC
JTC1/SC29/WG11 Doc. M31369, MPEG-7 Video Subgroup:
Compact Descriptors for Visual Search, http://wg11.sc29.org/,
Geneva, Switzerland, 2013.

[8] Tony Lindeberg, “Discrete derivative approximations with scale-
space properties: A basis for low-level feature extraction,” Journal of
Mathematical Imaging and Vision, vol. 3, no. 4, pp. 349–376, 1993.

[9] A. P. Witkin, “Scale-space Filtering,” in Proceedings of the Eighth
International Joint Conference on Artificial Intelligence - Volume 2,
San Francisco, CA, USA, 1983, IJCAI’83, pp. 1019–1022, Morgan
Kaufmann Publishers Inc.

[10] Telecom Italia, “CTurin180, http://pacific.tilab.com/www/datasets/”
2012.

[11] Computer Vision Laboratory, “Zurich Building Image Database,
http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html” 2003.

[12] F. Oberti, A. Teschioni, and C. S. Regazzoni, “ROC curves for
performance evaluation of video sequences processing systems for
surveillance applications,” in IEEE International Conference on
Image Processing (ICIP), Oct. 1999, pp. 949–953.

