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Abstract— Recent developments in embedded processors 

have enabled heterogeneous computing on mobile devices using 

open-access general-purpose computing languages. Following 

the MPEG CDVS standard, this paper presents an efficient 

feature computation phase, completely implemented on 

embedded devices supporting the OpenCL framework. 

Following our contribution to the MPEG-CDVS standard, we 

present the new born CDVS detector and its design for multi-

core parallel GPUs. We show how to adjust  algorithmic 

choices and implementation details to target the intrinsic 

characteristics of the embedded platforms selected. We 

compare our GPU implementation of the ALP keypoint 

detector with the CPU based implementation of the CDVS 

standard. We present data on different GPUs showing that our 

solution is up to 7x faster than the CPU version. To sum up, 

one of the main feature of our algorithm is to be fast enough to 

be able to open new visual search scenarios exploiting entire 

real-time on-board computations with no data transfer. 

Keywords— image processing, visual search, feature 

detection, compact descriptor, general purpose GPUs, 

embedded systems 

I. Introduction 
Smart camera phones and tablet PCs have shown great 

potential in mobile visual search, thanks to the integrated 
functionality of high resolution color camera, powerful SoC 
and pervasive 3G wireless connection. Most of the existing 
mobile visual search systems are deployed in client-server 
architectures. In on-line applications, the client takes the 
picture and transfer it to the server. The server maintains a 
duplicate or near-duplicate visual search system, and 
employs approximate visual matching techniques. In other 
words is the server that identifies the most similar images, 
and returns visual objects information to mobile users. 

Unfortunately, in 3G wireless environments, the 
upstream delivery of a visual query is subject to the network 
constraint of unstable or limited bandwidth. Latency from 
query delivery may degenerate the user experience in a 
significant way. However, with fast growing processing 
power in mobile devices using Graphical Processing Units 
(GPUs), sending an entire image seems unnecessary, since 
visual feature extraction and compression can be performed 
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on mobile devices. 

 To reduce the visual query delivery latency, off-line 
applications need compact and discriminative visual 
descriptors [1]. This trend has received dedicated efforts in 
MPEG standardization, i.e., the Compact Descriptor for 
Visual Search (CDVS) [2]. The compact descriptor of an 
image is composed of two main elements, namely a selected 
number of compressed local descriptors and a single global 
descriptor, representing the whole image. 

These two elements are produced by a series of 
processing steps: 

 Keypoint detection: Identification of "Low 
Polynomial degree" (ALP) keypoints. This phase is 
based on the creation of a scale space made by a set 
of Laplacian of Gaussian filtered images and the 
subsequent identification of extreme by means of 
polynomial approximations. 

 Orientation Assignment: In this step, one or more 
orientations are assigned to each keypoint, based on 
local image gradient directions. This is the key 
operation to represent keypoint descriptors as a 
function of their orientations, therefore achieving 
invariance to image rotation. 

 Feature selection: Selection of a limited number of 
keypoints to maximize the quality for subsequent 
matching. 

 Local descriptor computation: Computation of 
local descriptors in correspondence of the selected 
keypoints. Local descriptors are used in the 
pairwise matching phase, i.e., to find out whether 
the query and the reference images depict the same 
scenes or not. For match detection, geometric 
consistency check is performed to determine the 
number of inliers among the keypoint matches 
(correspondences) between the two images. In case 
of a match, localization information is provided, 
i.e., the position of the matching objects in the 
image, where homography estimation is conducted. 

 Local descriptor compression: Scalar 
quantization-based compression of the selected 
local descriptors. CDVS supports different sizes of 
compact descriptor footprint, spanning from a 
maximum of 16KBytes per image, which is the 
fully performing operating mode, down to 
512Bytes, for extremely constrained bandwidth 
scenarios. 

 Coordinate coding: Compression of the 
coordinates of the selected keypoints. 

 Global descriptor aggregation: Aggregation of 
local descriptors, to form a single global descriptor. 
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A. Contributions and Comparisons 
In this paper, we present an efficient and accurate 

OpenCL implementation of the first and the second steps 
listed above, as those steps are among the most critical ones. 
Our approach entails the following major contributions: 

 Presenting the new ALP (A low degree polynomial) 
detector, the latest contribution to the CDVS 
standard. 

 Re-engineering the Gaussian Scale Space (GSS) 
computation, i.e., the most expensive step of the 
keypoint detection phase. 

 Optimizing all sequential steps of the CDVS 
standard to concurrently run on many-cores general 
purpose graphical processor units. 

 Using new approaches to store all required data on 
proper GPU data structures to reduce the memory 
accesses and efficiently distribute the OpenCL 
kernels workload. 

We present experimental results on standard benchmarks, 
comparing accuracy and efficiency of our GPU 
implementation with respect to its state of the art CPU 
counterpart. 

Notice that, previous work (for examples, see references 
[3, 4, 5, 6]) present different implementation of the well 
known SIFT algorithm. Conversely, we concentrate on the 
novel CDVS ALP detector and on embedded platforms. Our 
target is to write an efficient and accurate ALP parallel 
implementation running on embedded systems. As far as we 
know, a few of those contributions are presented for the first 
time. 

B. Roadmap 
Section II and Section III describe our parallel 

implementation of the keypoint detector and orientation 
assignment algorithms, respectively. Section IV presents our 
experimental evidence. We run our experiments on standard 
images, and we present time performance as well as 
precision accuracy. Finally, Section V concludes the paper 
with some summarizing remarks. Notice that there is no 
explicit background section as background notions are 
reported in each section whenever required. 

II. Parallel ALP Keypoint Detector 
The ALP (A Low-degree Polynomial) [7] detector 

identifies interest points finding local extrema in the scale 
space by approximating the scale-space [8] using 
polynomials. In the scale space-representation, the images 
that result from the Laplacian-of-Gaussian filtering are 
functions of the scale parameter. ALP approximates these 
functions with polynomials of low degree. The algorithm 
works by subdividing the scale space in octaves in order to 
maintain a low complexity. 

In the following sections (from Section II.A to Section 
II.F) we present the overall process for a single octave 
focusing on our GPU implementation of each step. 

A. Gaussian Scale Space Computation 
In order to compute Gaussian Scale Space (GSS) it is 

necessary to create a representation of the image 
frequencies. This is achieved using a scale space pyramid as 
introduced by Witkin [9]. The scale-space pyramid is 
constructed by taking a gray-scaled version of the original 
image and applying a Gaussian filtering repeatedly with 
kernels of increasing size. The most blurred image from this 
pyramid is down-scaled by a factor of two, and, afterwards, 
convolved with the same set of Gaussian kernels to create 
the next pyramid. 

We implemented 2D Gaussian filtering using two 1D 
Gaussian horizontal filters. The process implies filtering the 
image with an 1D Gaussian, taking the transpose of the 
result, convolving (again) with the same filter, and 
transposing the result. We decided to use just horizontal 
filters due to the OpenCL data structure we consider. We 
used RGBA OpenCL textures in order to reduce the number 
of memory accesses. In fact, working with OpenCL textures 
drastically reduces memory access latency, whereas using 
OpenCL global memory is very time consuming. Moreover, 
most modern GPUs have a separate texture cache. When a 
specific pixel in the texture is requested, the GPU stores the 
data in a special buffer that is close to where the actual 
computations are performed. In our scenario, we work with 
gray scale images. As a consequence, we store 4 gray level 
pixels in one item of the RGBA texture, reducing the 
number of memory accesses. In this way we also reduce the 
original image width by 4 times as each OpenCL kernel

1
 

instance computes the convolution considering 4 gray level 
pixels at the same time. We also implemented a branch-less 
OpenCL code, as loops in OpenCL kernel functions are fully 
unrolled without branch (“if” statement) operations. 

 

 

Fig. 1. Gaussian Filtering: Performing Convolution using 

OpenCL kernels. 
 

Figure 1 shows a convolution step (with 4 gray pixels, a 
texture item), performed by a kernel. Boxes in the image 
represent different items of a texture. Each item is composed 
by 4 elements (x, y, z, w) representing 4 gray scale pixels. 
The size of the Gaussian filter is 15, then for each gray pixel 
the 14th adjacent pixels take part in the computation. In 
order to read the adjacent pixels, we need to perform just 5 
memory accesses because, we read 4 gray pixels at the same 
time. The neighboring kernels can use this data to avoid 
further accesses to the texture memory. Furthermore, the 
kernels at the border of the image also apply padding, and 

                                                           
1  OpenCL kernels can be seen as entry points to the device 

program, i.e., the only functions that can be called from the host. A 

single kernel execution can run on all or many processing elements 

in parallel. 
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consider padded pixels in the convolution computation. We 
didn’t use OpenCL work-groups

2
 to perform convolutions, 

because in this case the work-group setup is very expensive. 
We save about 10% of time avoiding work group usage in 
the convolution step. The Test Model (TM) implementation 
of the CDVS [2] performs the Gaussian Filtering using a 1D 
horizontal filter and a 1D vertical filter without transposing 
the result. Using a Gaussian filter of size 15, the standard 
approach implies 15 memory accesses, whereas our solution 
needs just 5 memory accesses. Even though we have to 
perform a matrix transposition, our solution has been proved 
to be much faster than the CDVS TM one. 

B. Laplacian Computation 
The Laplacian of an image highlights regions of rapid 

intensity change. The Laplacian operator is applied to an 
image that has first been smoothed by a Gaussian filter. The 
operator takes a single gray-level image as input and 
produces another gray-level image as output. We 
implemented OpenCL kernels able to apply the Laplacian 
operator to 4 gray pixels. 

 

 

L.x += V0.w + V1.y 

L.y += V1.x + V1.z 

L.z += V1.y + V1.w 

L.w += V1.z + V2.x 

L += V3 + V4 – V1 – V1 – V1 – V1 

Fig. 2. Laplacian computation considering 4 gray pixels at 

the same time. 
 

Figure 2 shows which input image pixels (left-hand side) 
are used to compute the output pixels (right-hand side). 
Boxes in the image represent different texture items. Each 
item is composed by 4 elements (x, y, z ,w) representing 4 
gray scale pixels. The formulas at the bottom of the figure 
represent the computation of Laplacian for each pixel (L.x, 
L.y, L.z, L.w). Each kernel computes the Laplacian for 4 
pixels at the same time accessing the memory 5 times. We 
run (width/4 ∙ height) kernels, where (width ∙ height) is the 
size of the source image. In the CDVS Test Model 
implementation Laplacian operators are applied sequentially 
on each pixel, whereas in our solution they are run at the 
same time on all image pixels. 

C. Scale-space function approximation 
For each pixel in the image, a polynomial approximation 

of the scale-space function is searched for a local extrema 
over a certain interval. The coefficients of the polynomial 
are obtained by computing weighted sums of the Laplacian 
images. The scale is the parameter value where the 
polynomial assumes the extrema. The pixel candidates are 
subject to a comparison with the adjacent 8 pixels. Those 

                                                           
2 Work-groups are collections of related work-items executing on a single 

computation unit. Work-items in the group execute the same kernel, and 

share local memory and work-group barriers. 

having extreme polynomial values exceeding their neighbors 
are kept as candidates, all others are discarded. 

In our OpenCL implementation we defined two different 
kind of kernels. The first one computes the coefficients as 
linear combination of Laplacian. The second one evaluates 
the roots of the first derivative of the polynomial, and it also 
stores the minimum and maximum polynomial values (used 
in next steps) of each pixel. For both kernel types, (width/4 ∙ 
height) instances work in parallel. Unlike the Gaussian and 
Laplacian computation, where also neighboring pixels are 
considered, in this case each kernel performs just one 
memory access to process 4 gray pixels. 

D. Coordinate refinement to subpixel 
precision  
The previous stages compute data that are refined as 

follows: 

 The position of candidates (see Section II.C) is 
refined to sub-pixel precision using a different 
polynomial. Variables in this polynomial are the two 
values that influence the displacement from the 
integer pixel position. 

 Displacements are detected on polynomial local 
maximum or minimum. 

 Points are discarded if the detected displacement is 
larger than a threshold. 

 

Input   : Coefficient, Min and Max Res, Min and Max Scale Textures 

Output: Keypoints 

    01: maxDispl = 1.0; 

    02: i = getXPixelPosition () 

    03: j = getYPixelPosition () 

    04: A = readPixelImage (CoeffcientATexture, i, j); 

    05: B = readPixelImage (CoeffcientBTexture, i, j); 

    06: C = readPixelImage (CoeffcientCTexture, i, j); 

    07: D = readPixelImage (CoeffcientDTexture, i, j); 

    08: minRes = readPixelImage (MinResponseTexture, i, j); 

    09: maxRes = readPixelImage (MaxResponseTexture, i, j); 

    10: minScale = readPixelImage (MinScaleTexture, i, j); 

    11: maxScale = readPixelImage (MaxScaleTexture, i, j); 

    12: IsExtrema = Extrema (minRes, maxRes, minScale, maxScale); 

    13: if (isExtrema) then 

    14:       p = ComputePolynomial (A, B, C, D); 

    15:       deltaX = ComputeDeltaX (p); 

    16:       deltaY = ComputeDeltaY (p); 

    17:       if ((|deltaX|<=maxDispl) && (|deltaY| <= maxDispl)) then 

    18:             isKeypoint = true; 

    19:       end if 

    20: end if 

Algorithm 1: Keypoint detection considering 4 gray pixels. 
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We implemented a kernel able to perform all steps listed 
above. The kernel processes 4 gray pixels in parallel. It 
reads the values computed in previous steps and select the 
keypoints. Finally, it stores the keypoints in a texture as 
described in Section II.E. 

Algorithm 1 shows the implementation of the kernel that 

detects keypoints. Functions getPixelPosition (lines 2÷3) 

return the positions of the current texture item (4 gray level 
pixels). Then, in lines 4÷11, we read the corresponding 
coefficients, responses and scale values computed in the 

previous steps. The Extrema function (line 12) is used to 

figure-out whether a texture item contains candidate pixels. 
For each candidate, the algorithm converts its position from 
the scale space domain to the coordinate domain. Notice 
that, unlike the reference Test Model implementation of the 
CDVS standard, we perform all tasks described above 
concurrently, considering 4 gray pixels at the same time. 

E. Adapting coord inates and scale to 
image resolution  
Candidates are detected one octave at a time, and the 

analyzed images in each octave have half the size of those in 
the previous octave. The coordinates and scales are referred 
to the coordinate system of the octave in which they are 
detected. A further step is therefore necessary to map 
coordinates and scale to the resolution of the converted 
image [2]. 

Once coordinate are mapped, we need to store the 
keypoints. We store the keypoints in OpenCL texture, 
instead of saving it on temporary CPU data structures. This 
drastically reduces the memory access latency of the other 
kernels for the next computation. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. OpenCL implementation: A Keypoint Structure. 

 
Figure 3 shows the OpenCL texture used to store the 

computed keypoints. The maximum size of this texture is 
1024 ∙ 8. Each keypoint is stored in 4 elements, and each 
element is composed by 4 float numbers. Then, the total 
number of float elements per keypoint is 16. The first 9 float 
numbers (from ix to curvRatio) represent the position, the 
scale and others keypoints characteristics. The last 7 
elements (from nAngles to the last element) represent the 
keypoint orientation (which will be introduced in Section 
III). As the maximum number of keypoints that can be 
stored in a row is 256, the total number of keypoints per 
octave that can be stored in the texture is 2048 (256 ∙ 8). To 
fill the keypoint texture described above, we use the 
approach described in Section II.D. Essentially, we run a 
kernel instance for each candidate, and this kernel checks 
whether the candidate is actually a keypoint. In the 

affirmative case, the kernel has to access the keypoint 
structure and increment the total number of keypoints. As 
the keypoint structure is shared by several kernels, proper 

synchronization has to be adopted. We used the OpenCL 
atomic_inc function to perform atomic increments on 

global keypoint counters. The keypoint texture will be also 
used in the orientation stage (see Section III). 

F. Elimination of Duplicates 
When all octaves are completed, the next step has to 

eliminate interest points duplicates derived from 
independent processing of each octave. Each candidate 
detect in the previous octave q is compared with each 
candidate detected in octave q − 1. If the coordinates and the 
scale of the two candidates are below two given thresholds, 
they are subject to the following elimination process: 

 If the polynomial values associated with the two 
candidates have opposite signs, both of them are 
kept. 

 If the polynomial values have the same sign, then 
the candidate with the smallest absolute value is 
eliminated. 

The OpenCL kernel implemented to accomplish this task 
works with the keypoint textures described in Section II.E. 
We run (nKeypointsq ∙ nKeypointsq−1) kernel instances where 
nKeypointsq and nKeypoints q−1 are the numbers of computed 
keypoints of the octave q and q−1, respectively. To check 
whether a keypoint k, of the octave q, is a duplicate a kernel 
instance compares k with all keypoints of the q−1 octave. 

III. Orientation Assignment 
To allow rotation invariance for the subsequent feature 

description, a dominant orientation is assigned to each 
keypoint. Given an interest point detected in a Gaussian-
filtered image, within an octave, with certain location and 
detection scale, the gradient magnitude and direction is 
computed for every pixel in the interest point’s neighboring 
region. In order to accomplish this task, we implemented a 
kernel that computes, for each pixel, the gradient magnitude 
and direction. Another kernel computes an orientation 
histogram from the computed gradient orientations. We run 
(N ∙ N) instances of the last kernel, where N is number of 
neighboring pixels of the gradient texture involved in the 
computation. Each pixel within the circular patch is added to 
its nearest two histogram bins based on its orientation. In 
this way, histogram bin values are accumulated by the 
increment values of specific functions multiplied by a 
Gaussian weighted window with a radius of 1.32 times the 
detection scale (histogram smoothing). We use OpenCL 
kernel work-groups in order to smooth the orientation 
histogram. A work-group must consist of at least one work-
item (kernel). The maximum number of work-items is 
platform dependent. The work-items within a work-group 
must be synchronized to share local memory with each 
other. 
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Fig. 4. Orientation histogram for our OpenCL 

implementation: Work-group shared memory. 

  
Figure 4 shows the work-group shared memory; i.e., a 

buffer composed by (2048 ∙ 36) integer elements, where 
2048 is the maximum number of keypoints per octave, and 
36 is the length of the histogram of each keypoint. Dominant 
orientations are determined by locating the peaks in the 
orientation histogram. The bin corresponding to the highest 
peak (as well as the bins with a value greater than 80% of 
the highest value) is selected as the dominant orientations of 
the interest point. To find the peak, 4 kernels belonging to 
our work-group are run together. Each kernel computes the 
peak on 9 histogram elements, then the first kernel of the 
group computes the final peak value. Once the peak is 
selected, a quadratic interpolation between the peak and its 
two neighboring bins is performed to obtain more accurate 
orientation. 

IV. Experimental Results 
The target of this section is to evaluate results accuracy 

(precision), and computation efficiency (speed), of our 
OpenCL implementations of the CDVS Detector (ALP) on 
embedded GPU platforms. We selected two widely used 
devices: The Samsung Galaxy Note 3, and the Arndale Octa 
board. Samsung Galaxy Note 3 embeds a CPU quad-core 
ARM Cortex A15, and an Adreno 330 GPU. The Arndale 
octa board adopts a Cortex A15 CPU, and a Mali T628 
GPU. We proceed as follows. Section IV.A compares our 
ALP OpenCL detector with the CDVS Test Model 
implementation, in terms of time efficiency, on a selected 
number of images. Section IV.B compares the same 
detectors in terms of accuracy, presenting an intensive set of 
experiments on pairwise-matching object recognition. 

A. Efficiency 
In this section we compare detectors in terms of 

efficiency by selecting 12 representative images from the 
CTurin180 [10] test set. Table 1 compares run times of 
CDVS detector (ALP) Test Model (TM) implementation 
(CPU column) with our OpenCL implementation (GPU 
column) for Galaxy Note 3 and Arndale Octa board devices 
respectively. We measured the wall-clock time

3
 between the 

start and the end of the kernels using OpenCL events. We 
wait for the end of the kernel using OpenCL function 

clWaitForEvents. Results clearly shows that our solution 

                                                           
3
 The wall clock time is the time necessary to the (mono-thread or 

multi-thread) process to complete the tack, i.e., the difference 

between the time at which the task finished and the time at which 

the task started. For this reason the wall clock time is also known 

as elapsed time. 

is up to 7 times faster than the TM one for the selected 
embedded devices. 

In order to perform an in-depth analysis of our detector, 
we present a breakdown of the total time into three main 
stages. The first step, i.e., the Gaussian Scale Space 
computation stage (see Section II.A), is strongly influenced 
by the image size. It approximately needs the 28% of the 
total time, on average. The following stage, including the 
phases analysis in Sections II.B, II.C, II.D, and II.E, needs 
about 50% of the total time. The last stage, see Section III, 
requires the 22% of the total time on average, and strongly 
depends on the number of detected keypoints. Overall, 
detection is the most time consuming step, due to the huge 
number of branches (i.e., “if” statement) present in this 
stage. 

B. Accuracy 
In this section, we compare detectors in term of 

accuracy. Our benchmark set is taken from [10] and [11]. 
Following the CDVS standard computation scheme [2], we 
present pairwise matching test results. Pairwise image 
matching establishes correspondence between two images 
and it assesses whether they depict the same objects or 
scenes. The matching test is performed by computing the 
keypoints and the descriptors of two images (Query and 
Reference). We then compare the descriptors, i.e., 
computing the distance between them, in order to compute 
the matching score.   

 We work on about 2500 images, generating about 10000 
matching-pairs and about 5000 nonmatching pairs. 

 

Fig. 5. Comparing GPU and CPU results using a Receiver 

Operating Characteristics (ROC). 

 
Figure 5 shows the Receiver Operating Characteristic 
(ROC)

4
 curve [12] for the CPU and GPU implementations 

on the same benchmark set. Even if we performed the test 
on both GPUs mentioned above, we report results for just 
one of them, because the data are identical in both cases. 
Essentially, the x axis reports the complemented value of the 
true negative matching rate (1 − True Negative, i.e., 1 − TN), 
while the y axis reports the true positive matching rate (TP). 

                                                           
4
 A ROC curve is a graphical plot which illustrates the performance of a 

binary classifier system while its discrimination threshold is varied. Please, 

see the reference for further details. 
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Benchmark 

Galaxy Note 3 Arndale 

CPU 
[ms] 

GPU 
[ms] 

Speed Up CPU 
[ms] 

GPU 
[ms] 

Speed Up 

Object001 460.35 80.42 5.72 461.12 112.77 4.08 
Object002 471.62 73.19 6.44 477.14 100.82 4.73 
Object003 469.56 71.49 6.56 467.87 102.24 4.57 
Object004 530.64 94.80 5.59 532.80 132.08 4.03 
Object005 472.33 92.22 5.12 470.33 118.19 3.97 
Object006 467.90 94.62 4.95 468.16 129.69 3.60 
Object007 441.68 101.56 4.35 440.10 133.51 3.29 
Object008 433.66 96.18 4.51 433.91 115.27 3.76 
Object009 430.68 101.23 4.25 433.98 129.02 3.36 
Object010 439.54 100.04 4.39 440.44 136.40 3.22 
Object011 432.88 96.46 4.49 432.45 124.09 3.48 
Object012 451.66 92.28 4.89 448.38 118.10 3.79 

 

Table 1: Analysis of the ALP CDVS detector. GPU times versus standard CPU times (and relative speed-ups) on the 

Samsung Galaxy Note 3 and the Arndale octa board embedded platforms.
 

Those values are plotted for several matching and non-

matching thresholds varying along the curves. The graph 

shows a sharp knee after which it remains stable around a y-

value of about 0.8. This means that, for a wide range of 

threshold values, the number of true positives (i.e., correct 

matching results) remains around 80% (y-value), while the 

number of wrong negatives (i.e., wrong non-matching 

results) stays below 12% (x-value). In other words, the 

graph proves that the two visual matching systems under test 

have similar behaviors in terms of accuracy, and the exact 

response (i.e., the pair is matching or non-matching) is given 

with a very high probability 

V. Conclusions 
In this paper, we present an efficient OpenCL GPU-

based implementation of the CDVS ALP detector. We 
discuss strategies and recommendations to implement 
parallel CDVS algorithms on GPUs. Experimental results on 
standard images show that our implementations have a 
speed-up up to 7x over the CDVS Test Model CPU 
implementation. Moreover, pairwise-matching experiments 
clearly show that our implementation is very close to the 
Test Model one in terms of accuracy. 
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