

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 2 [ISSN : 2250-3757]

Publication Date : 30 October, 2015

Overcoming Malicious Read/Write Requests in

Internet File Systems

Yosi Ben Asher Gabriel Mizrahi Gadi Haber

Abstract—Hashing of data blocks is a common approach in
peer-to-peer and Internet based distributed file systems as a
way to simulate a virtual hard disk over a set of servers.
We consider the case where a malicious adversary attempts to
overload a server assuming that this adversary ―knows‖ how the
underlying hashing scheme works. We overcome this problem
by using Universal hashing a known theoretical solution. In this
work we how to port such a complex hashing scheme in real
implementations of Internet based file systems. In this respect
our work also contributes to the well known problem of VOD
(video on demand) over the Internet. The implemented system
(IFS) supports cooperative caching and for concurrent read/write
operations it supports Weak-Consistency. Our results suggest that
Universal hashing based distributed file systems can be extremely
efficient for driving Internet file systems and file systems for large
clusters.

I. INTRODUCTION

We consider the problem of overcoming ―dense/malicious‖

read/write requests of clients in multi-servers file systems

(MSFSs). Such a file system should efficiently simulate a

shared hard-disk created from many local disks over the

Internet and support concurrent access to files created/deleted

and updated by a dynamic set of web clients. IFS was specially

designed to work with sudden ―dense/malicious pattern‖ of

requests namely cases where the pattern of client’s requests ei-

ther deliberately or due to some need could have been mapped

to a single server had we used current mapping techniques

of files to servers. Basically, file systems (distributed, multi-

servers and regular) can be viewed as a way to produce a map

from the logical entities of files and directories to physical

blocks of a hard-disk or a set of hard-disks. One of the

main tasks of file systems is to maintain this mapping and

keep it consistent for all the users of the system. Usually

this mapping is realized by two search trees (also called the

―meta-data‖), one (the directory tree) to locate a specific file

in the tree of directories and the other (the I-node tree) to

locate physical blocks of files on the hard disk. In addition

to the two search trees there is also a list of free blocks

on the disk and other global information and a cache of the

most recently used blocks. In MSFS using such search trees

or even distributed versions of these trees (e.g., XFS [12])

may result in large communication delays as MSFS should

satisfy the following requirements: A:They should allow a

dynamic set of unknown clients to access files over the Internet

concurrently. B: The storage space used to store files should

be composed of many local disks of remote servers. These

servers are often geographically dispersed over the Internet

yielding significant communication delays. C: MSFSs should

support concurrent read/write operations possibly to the same

file. This excludes massive replication of data which prevent

the users from obtaining a consistent view of the files. D: Due

to the relatively long communication times, each access to a

file (read/write) should involve very few servers as possible. E:

It is preferable to let the client do most of the work needed to

maintain the meta-data. Due to the above factors recent MSFSs

tend to use hashing to map directories and physical block to

servers. Basically, hashing based MSFSs view the shared disk

as a large hash table of blocks partitioned between the disks

of the servers. To execute read(f ile1, block255) a client may

compute a hash value hash1 (―f ile1.255‖) indicating the ad-

dress of a physical block in the shared disk, and consequently

the server address where the block can be obtained.

These potential advantages of hashing has been used in

many MSFSs. Peer-to-Peer file systems where clients also

play the role of the servers uses hashing in various forms. For

example, in Freehaven [2] a document is split into n ―shares‖

or blocks where any k shares can reconstruct the document.

The shares are mapped to different servers according hashing

values of the shares. In a read requests, all the servers holding

shares of the document will send the share to the reader. Many

other systems use hashing including: Peer-to=peer systems

such as IVY [8] using Chord for lookup services, Pastry [11]

and CAN [10] simulating a distributed hash table over the

Internet; and hashed based storage/file systems such as Venti

[9], CFS [1], LBFS [7] and Farsite [4] and OceanStore [6].

One problem not addressed by current hashing techniques

used by the above systems is overcoming sudden ―Dense

Pattern‖ of read/write requests (DPR) that are mapped to a

small subset of servers:

Definition 1.1: Consider a given set of k servers, n blocks

and a mapping of these blocks to the k servers (possibly using

a constant number of copies of each block). Let A be an

adversary trying to find a ―bad‖ pattern of k blocks that are

all mapped to a small subset of servers. In each try A submit

k requests and learns the resulting load at each server. Can we

find a mapping of the n blocks that would require many tries

of A before a ―bad‖ pattern can be computed.

Note that this requirement is stronger than a requirement for

average load balancing over all possible k requests. Practically,

the above definition requires that the chosen mapping will be

good for any sequence of requests which is not too large

Yosi Ben Asher, Gabriel Mizrahi, Gadi Haber

University of Haifa
Israel

45

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 2 [ISSN : 2250-3757]

Publication Date : 30 October, 2015

Fig. 1. Two cases of DPRs that are solved by using a different mapping of
blocks to servers.

Though hashing is believed to have good load balancing

properties it is clearly not capable of blocking bad cases of

DPRs. This problem has been studied in a different context,

namely that of simulating shared memory over a set processors

each having a local module of memory. This problem, known

as DMM (Distributed Memory Machines) simulation, was

solved using a complex hashing schemes [3] which will be

described later on. In this work we show that these hashing

schemes can be also used for MSFSs. Intuitively, DMM sim-

ulation uses universal hashing to obtain an almost randomly

mapping among the modules (the disks of remote servers

in our case). In this way the probability that a sequence of

requests will fail (one of them will load some memory module)

is low. Special care was also given to implementing other

aspects of MSFS such as cooperative caches namely fetching

blocks from near clients instead of from remote servers. The

issue of maintaining some notion of consistency had to be

checked as well. This was done in order to verify that using

such complex hashing scheme does not prevent the usage of

cooperative caches and consistency notion.

II. GENERAL MODE OF OPERATION

We describe general features of the IFS and how it works.

We mainly focus on the way hashing can be used to create

a file system which satisfies the requirements given in the

introduction. The IFS consists of the following components:

1) A large virtual hard-disk (VHD) is created over the servers

of the IFS, consisting of equal sized storage areas in each

machine. The blocks of the VHD are distributed among the

local disks of the machines constituting the IFS. Each machine

runs an IFS server that send/receives physical blocks of the

VHD to the clients. There can be several user applications

which access the VHD through the same IFS client. The client

holds suitable data to allow each application to access its

set of opened files. 2) The mapping between logical blocks

f ile × #blockinf ile and physical blocks on the VHD is made
by means of hash functions. This mapping forms the first level
of hashing as described in figure 2. 3) IFS clients can use

local caching; when the cache becomes full, the client flashes

a block from the cache to the suitable servers. The IFS allows

a client to fetch a block from a client’s cache rather than from

a remote IFS server. This mechanism is called ―cooperative

caches‖ and is used to reduce the load of sending complete

blocks from the servers. 4) There is another level of hashing

 Fig. 2. Two clients updating the same block (main stages).

which is responsible for distributing the physical blocks of

the VHD among the IFS servers. This level (refer to as the

second level of hashing in figure 2) is used to generate pseudo-

random distribution of the blocks in the VHD as described

in the introduction. This level of hashing partitions the load

equally among the IFS servers and allows concurrent access

to the VHD. 5) Each physical block is replicated three times,

on three different IFS servers. Each read/write operation of a

block requires fetching/updating two out of these three copies

(also called the ―majority rule‖). Time stamps are used to

determine which of these two copies is the most updated. 6)

Using local caches destroys the consistency of the VHD and

each client can have a different view of the VHD. IFS allow

applications to use a mechanism of ―tokens‖ in order to update

caches with a correct view of the VHD.

Figure 2 depicts the main stages in the execution of two

concurrent write operations w(f, B12, "a ")||w(f, B12, "a")

made by two IFS clients. This involve three IFS servers

holding the three copies of B12. The majority rule of IFS

implies that the result of these two writes is that B12 will

contain "a".

III. DETAILED OPERATION OF THE IFS

Following the basic idea of DMM simulations, the hashing

 scheme used by the IFS to access data works as follows:

• There is a family of universal hash functions H =

{ha,b (x) = ((a · x + b)mod k)mod p where k =

prime(|vhd|), a, b ∈ [1, ..., k] and p is the number of

servers (prime) and |vhd| is the size of the virtual hard

disk (total number of blocks).

• Initially we choose at random three functions h1 , h2 , h3

from H by choosing their coefficients a, b at random, and

store them along with some other information at a common

location. When an IFS server (I FSi) starts to run (our ana-

logue to the mounting operation of regular file systems) it

will access this common location and thus gets the chosen

hash functions and a pointer to its local part in the VHD.

Note that the same machine can host several separate IFSs.

Each server(IFSi) is responsible for storing every block

Bx of f for which either h1 (Bx) = i,h2 (Bx) = i or h3

(Bx) = i consequently there will be three copies of

each block. For fault tolerance ability, one should resolve

the rare case where h1 (Bx)= h2 (Bx)= h3 (Bx) so that

not all three copies will be stored on the same machine.

46

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 2 [ISSN : 2250-3757]

Publication Date : 30 October, 2015

• When a client wants to access (read/write) a block Bx

which is not present in its local cache it sends requests to

two servers. Fetching a block Bx to the cache of client

C Li requires fetching two copies B1 , B2 out of the three

every server; each entry points to a physical block on the

local storage of the current server. Each entry contains a bit

indicating if this block is free or being used by a file. This is

needed due to the fact that the hashing can cause collisions
x x

possible. This is done using the three functions h1 , h2 , h3

in a random order to fetch two copies. Of the two copies,

we select the one with the highest global time tag, and

store it in the cache. The global time tag indicates the last

global time that this block. has been updated. Finally, the

list of clients associated with Bx in the two servers from

which Bx was fetched is updated to include the fact that

the initiating client has the most recent copy of Bx in its

cache.

• When a client’s cache becomes full the least recently used

blocks are ―flashed‖ to the servers to be stored. Assume

that a client wants to flash Bx : we choose (at random) two

hash functions (out of h1 , h2 , h3) and send two copies of

Bx to the suitable servers. The list of clients associated

with Bx (in the two servers from which Bx was flashed

to) is updated to include the fact that the initiating client

does not have a copy of Bx in its cache. Note that the

list of clients associated with Bx in one of the servers

can point to a client that does not have a copy of Bx , in

case this client has already flashed Bx to a different server

from the one it was originally fetched from. Finally, the

current version does not support ―diffs‖, so when a block

is flashed to a server it overwrites the old version of the

block at that server. Consequently, for the current version

the consistency unit is a block.

• Each server is multi-threaded and thus can handle several

requests from different clients simultaneously. The load

per server is thus the number of active requests that are

being served in a given time unit.

IV. METADATA AND COMMANDS IN THE IFS

We describe briefly how the metadata is organized in the

clients and the servers and how the basic commands of

the IFS are executed. As explained in the introduction, the

metadata used in the IFS system should be fully distributed

and accessing it should never cause communication among the

servers or among the clients. Due to the direct access property

of the hashing the metadata in IFS does not include any search

trees as in other DFS systems but is mainly focused to manage

the files generated by the clients as follows:

Filezero- is a special file in which each block describes a

given file (e.g., filenumber (fnum), name, size, last update,

permissions, etc.). Thus the information on existing files is

kept on the VHD and is accessed when we mount a set of

servers. A special property of filezero is that there is only

one copy of each block (only one hash function is used to

access it), and its blocks are not accessed through the cache.

Consequently, only one client can access a given block of file

zero at any given time, so that filezero is always consistent

with all the clients.

Table of blocks- is a hashed list of all the blocks used in

and we have to prevent overwriting blocks on the VHD due

to collisions. In addition, in the current version we associate

with each block a pointer to the last client that requested this

block.

Table of open files- Each server has a table of all the opened

files (opened by clients so far). For each such file there is

a counter counting the number of clients that have opened

this file so far. Each entry in this table points to the entry

of this file in the table of blocks. The client has also such a

table, but with a more complex structure since it has to support

several processes/applications which read/write from different

locations in a given file.

The set of commands of the IFS include:

create(f num, params...)- creates a new file with file number

f num. A client executing this command has to access the

server that holds the suitable entry in filezero and to update

it if necessary. Note that since the blocks of filezero are not

replicated, there is only one server that needs to be updated.

delete(f num)- deletes a file making its blocks on VHD free

so that they can be used by future write operations. The delete

is never executed until all the clients that have opened this

file have closed it (using the counters in the tables of open

files). Since there is only one server which ―owns‖ the entry

of f num in filezero, only one client can delete a file at any

given time (i.e., future delete operations will be directed to

that server and will be rejected). Similarly, it is not possible to

open or create a file which is currently being deleted. After the

server that owns the suitable block in filezero acknowledges

the delete, the initiating client sends a ―free‖ instruction to

all the servers indicating that they should mark all the blocks

allocated to this file as free. When all the servers acknowledge

that all the blocks of the deleted file have been marked as

free (searching in the table of blocks) the client can instruct

the master server to modify the entry of that file in filezero.

The open/close instructions work in a similar way, updating

the counter of opened files in the table of opened files in the

server that owns the entry of the underlying file in filezero.

write(f num, buffer, #bytes)- writes #bytes from the

buffer at the ―end‖ of the file f num. The write operation

verifies that the file has been opened by the initiating client.

The client has suitable data-structures (similar to those used

in common file systems) allowing a set of processes on the

client’s machine to write at the end of the files which they have

opened. The data is written to the local cache to be flashed

later on to two servers when the cache becomes full. The read

instruction works in a similar way. IFS also supports seek

operations which are basically local operations of the client.

V. CONSISTENCY

We now discuss consistency problems in the IFS and how

they have been addressed. Consistency problems are basically

generated when clients can have different views of the vhd.

47

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 2 [ISSN : 2250-3757]

Publication Date : 30 October, 2015

 more reasonable not to use the tokens frequently but instead to
200

limit the cache size to a small number of blocks. In this way 150

no.
 re

cie
ved
 bl

ock
s

S=1
-C=

1

S=1
-C=

2

S=1
-C=

5

S=2
-C=

5

S=3
-C=

5

S=5
-C=

5

S=5
-C=

6

S=5
-C=

7

S=5
-C=

8

S=5
-C=

9
 S=5

-C=
10

 S=5
-C=

13

This can happen when the local caches of two or more clients

have different values of the same block.

We consider two main types of consistency models: Strict

consistency: This requires that a read operation will return the

value written by the most recent write operation according to

a global clock (all Unix file systems and many other obey this

semantic). Implementing strict consistency in a DFS implies

that before every update of a block, all the copies of this

block in the caches of other clients must be invalidated. These

invalidations are too costly, so most Distributed file systems

do not implement Strict consistency. In AFS, for example,

Strict consistency is implemented only at the granularity of

complete files. Release consistency: Introduced in [5], this

allows multiple copies of a block in several clients to be

updated concurrently without any invalidation. It assumes an

explicit synchronization instruction of exchanging a token

between two machines, such that after receiving the token the

local cache of one machine is made consistent with the cache

of the machine from which the token was received. This is a

very efficient form of consistency, but requires the programmer

explicitly to use the token mechanism.

We currently approximate strict consistency by using the

local clock for time stamps and leave it to the application

fail the system as this property is theoretically proved in the

DMM simulation problem. We only focus on showing that

the system work efficiently in spite of the underlying complex

hashing scheme. We used a cluster of about 16 PC machines

connected by two fast Ethernet switches to approximate an IFS

setting over the Internet. Each client read consecutive blocks

from a small set of files that where written on the VHD before

the experiments took place. A central monitor was used to

measure the amount of block that each client received and

each server sent in a given time interval.

To test the expected slowdown caused by serving too many

clients running a video player, one must use significantly more

machines than those available to us. For example, we tested

a system with one server and several video players clients

and still observed reasonable display rates and reasonable

video images. Evidently, such a small number of machines

is not sufficient to produce meaningful loads the IFS such

that viewing a video movie is damaged (as frequently happens

when video movie is watched over the Internet). We therefore

used in some cases an artificial client which just read the

blocks of a video file but did not display them and by so

obtained clients which can ―load‖ the system (each such client

represents several read VOD clients watching movies over the

ing/storing blocks. Release consistency in IFS is supported via

a token mechanism, which works as follows. Each server has

a unique token which can be held by at most one client. A

client that tries to acquire a token is blocked until the token is

released by another client or by the server that owns the token.

A list of updates is associated with every token; each update

in the list describes a modification of some block made by a

client to a cached copy of that block when this client acquired

the token. Thus, accessing the vhd can be serialized if all the

writes to a given file or block are executed under the scope of

acquiring and releasing a pre-designated token. By acquiring a

token, a client updates its cache using the update list. Similarly,

when a token is released the updates made by the client while

holding the token are added to the update list of that token.

Several techniques can be used to keep the update list from

becoming too big (the current version of the IFS supports one

of them). Using the tokens is an expensive operation because

the update list must be sent through the Internet. It thus seems

Figure 3 describes the average number of received blocks

of one client, in a time unit, as a function of different number

of clients (C =) and servers (S =)used in the IFS test

configuration. For example, the results for five clients show a

clear speed up when more servers where used, e.g. 500 blocks

with five servers compared with 125 blocks with two servers.

In general, these results verify the expectation that the hashing

scheme balances the load among the servers. However, some

non-linear effects are also revealed by these results, e.g., using

more clients (8 . . . 13) with five servers did not decreased the

average number of received blocks as expected. We assume

that these are only negligible effects caused by the average

operation of the number of packets received by each client.
500

450

400

350

300

250

the servers are frequently updated by blocks that are being

flashed by the clients, yielding relatively consistent view of

the VHD.

100

50

VI. EXPERIMENTAL RESULTS

Two experiments where designed to test two premises of

the IFS: A: For a fixed number of clients, using more servers,

should increase the quantity of blocks that each client can

receive in a time unit. B: The DMM simulation scheme used

in the IFS successfully distributes the load among the servers

for sufficiently large sequences of requests. Note that we do

not test the system against a malicious adversary trying to

 #servers-#clients
Fig. 3. Average number of received blocks in a time unit for a single client.

We were thus ready to check more closely the distribution of

non-balanced situations. We set a monitor which synchronized

all the servers and the clients in the system to work syn-

chronously by waiting for acknowledgment from the monitor

after each message sent to a client or to a server. The monitor

measured the number of servers that were not serving any

client (called ―empty‖ servers) in a time unit of two steps of

48

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 2 [ISSN : 2250-3757]

Publication Date : 30 October, 2015

the monitor. The results in figure 4 show that in most of the

units (samples in the figure) there were no empty servers. This,

verify the premise of using DMM simulations to distribute

the load among the servers. Observe that using more clients

than servers improves the distribution. Thus the fluctuations

of the previous chart can also be attributed to the fact that

in these experiments the number of clients was less than the

number of servers. Other similar experiments also verified the

premise of the DMM simulation even for the relatively small

number of servers and clients used in our experiments. It is

of course reasonable to assume that since we are dealing with

a probabilistic process, much better results would have been

obtained for large numbers of clients and servers. Finally,

we also measured the difference in the number of requests

(called max difference) between the most loaded server and

the least loaded server. The max difference was measured

against various number of samples, i.e., the max difference in

k samples is the maximal number of requests a server received

in k samples minus the minimal number of requests a server

received in those k samples. Clearly, the probability of finding

larger differences the is related to the size of the sample. There

were up to 13 clients in this experiment so that the maximal

difference is always ≤ 13 ·k Where k is the size of the sample.

The results in figure 5 show that in most of the samples the

maximal difference was relatively small, 2 − 6.

[3] M. Ditzfelbinger and F. Meyer auf der Heide. Efficient shared memory
simulations. In In Proceedings of the 5th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 110–119, 1993.

[4] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer. Reclaim-
ing space from duplicate files in a serverless distributed file system. In
International Conference on. Distributed Computing Systems ICDCS,
2002.

[5] K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. L. Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proc. of the 17th Annual Int’l Symp.
on Computer Architecture, pages 15–26, May 1990.

[6] John K., D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In Proceedings of ACM
ASPLOS. ACM, November 2000.

[7] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth
network file system. In Symposium on Operating Systems Principles,
pages 174–187, 2001.

[8] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write
peer-to-peer file system. In Proceedings of 5th Symposium on Operating
Systems Design and Implementation, 2002.

[9] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. In First USENIX conference on File and Storage Technologies,
Monterey,CA, 2002.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content addressable network. In Proceedings of ACM SIGCOMM
2001, 2001.

[11] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, November 2001.

[12] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck. Scalability in the XFS file system. In Proceedings of the
USENIX 1996 Technical Conference, pages 1–14, San Diego, CA, USA,
22–26 1996.

Fig. 4. Histogram of idle servers per step.

 Fig. 5. Histogram of max difference (5 servers).

REFERENCES

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-
area cooperative storage with CFS. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles (SOSP ’01), Chateau Lake
Louise, Banff, Canada, October 2001.

[2] R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project:
Distributed anonymous storage service. In Workshop on Design Issues
in Anonymity and Unobservability, number 2000 in LNCS, pages 67–95,
2000. 49

