
 

International Journal of Advances in Computer Networks and Its Security– IJCNS 
Volume 5: Issue 2   [ISSN : 2250-3757] 

Publication Date : 30 October, 2015 
 

Overcoming Malicious Read/Write Requests in 

Internet File Systems 
 

 

Yosi Ben Asher           Gabriel Mizrahi           Gadi Haber 
 
 
 
 

Abstract—Hashing  of data  blocks  is a  common  approach  in 
peer-to-peer  and  Internet  based  distributed  file  systems  as  a 
way  to  simulate   a  virtual   hard   disk  over   a  set  of  servers. 
We consider  the  case where  a malicious  adversary attempts to 
overload  a server  assuming that  this adversary ―knows‖  how the 
underlying hashing  scheme  works.  We  overcome  this  problem 
by using Universal  hashing  a known  theoretical  solution.  In this 
work  we how  to  port  such  a  complex  hashing  scheme  in  real 
implementations of Internet based  file systems.  In  this  respect 
our  work  also contributes to the  well known  problem  of VOD 
(video on demand)  over  the  Internet. The  implemented  system 
(IFS) supports cooperative  caching and for concurrent read/write 
operations  it supports Weak-Consistency.  Our results suggest that 
Universal hashing based distributed file systems can be extremely 
efficient for driving Internet file systems and file systems for large 
clusters. 

 
I.  INTRODUCTION 

We consider the problem of overcoming ―dense/malicious‖ 

read/write  requests  of  clients  in  multi-servers  file systems 

(MSFSs). Such  a  file system  should  efficiently simulate  a 

shared hard-disk created from many local disks over the 

Internet and support concurrent access to files created/deleted 

and updated by a dynamic set of web clients. IFS was specially 

designed to work with sudden ―dense/malicious pattern‖ of 

requests namely cases where the pattern of client’s requests ei- 

ther deliberately or due to some need could have been mapped 

to a single server had we used current mapping techniques 

of files to servers. Basically, file systems (distributed, multi- 

servers and regular) can be viewed as a way to produce a map 

from the logical entities of files and directories to physical 

blocks  of  a  hard-disk  or  a  set  of  hard-disks.  One  of  the 

main tasks of file systems is to maintain this mapping and 

keep it  consistent for all the users of  the system. Usually 

this mapping is realized by two search trees (also called the 

―meta-data‖), one (the directory tree) to locate a specific file 

in the tree of directories and the other (the I-node tree) to 

locate physical blocks of files on the hard disk. In addition 

to  the  two  search trees  there  is  also  a  list  of  free  blocks 

on the disk and other global information and a cache of the 

most recently used blocks. In MSFS using such search trees 

or even distributed versions of these trees (e.g., XFS [12]) 

may result in large communication delays as MSFS should 

satisfy the  following requirements: A:They should allow a 

dynamic set of unknown clients to access files over the Internet 

concurrently. B: The storage space used to store files should 

be composed of many local disks of remote servers. These 

servers are often geographically dispersed over the Internet 

yielding significant communication delays. C: MSFSs should 

support concurrent read/write operations possibly to the same 

file. This excludes massive replication of data which prevent 

the users from obtaining a consistent view of the files. D: Due 

to the relatively long communication times, each access to a 

file (read/write) should involve very few servers as possible. E: 

It is preferable to let the client do most of the work needed to 

maintain the meta-data. Due to the above factors recent MSFSs 

tend to use hashing to map directories and physical block to 

servers. Basically, hashing based MSFSs view the shared disk 

as a large hash table of blocks partitioned between the disks 

of the servers. To execute read(f ile1, block255) a client may 

compute a hash value hash1 (―f ile1.255‖)  indicating the ad- 

dress of a physical block in the shared disk, and consequently 

the server address where the block can be obtained. 

These potential advantages of  hashing has  been used in 

many  MSFSs. Peer-to-Peer file systems where  clients  also 

play the role of the servers uses hashing in various forms. For 

example, in Freehaven [2] a document is split into n ―shares‖ 

or blocks where any k shares can reconstruct the document. 

The shares are mapped to different servers according hashing 

values of the shares. In a read requests, all the servers holding 

shares of the document will send the share to the reader. Many 

other  systems use  hashing including: Peer-to=peer systems 

such as IVY [8] using Chord for lookup services, Pastry [11] 

and CAN [10] simulating a distributed hash table over the 

Internet; and hashed based storage/file systems such as Venti 

[9], CFS [1], LBFS [7] and Farsite [4] and OceanStore [6]. 

One problem not addressed by current hashing techniques 

used by the above systems is overcoming sudden ―Dense 

Pattern‖ of read/write requests (DPR) that are mapped to a 

small subset of servers: 

Definition 1.1:  Consider a given set of k servers, n blocks 

and a mapping of these blocks to the k servers (possibly using 

a constant number of copies of each block). Let A  be an 

adversary trying to find a ―bad‖ pattern of k blocks that are 

all mapped to a small subset of servers. In each try A submit 

k requests and learns the resulting load at each server. Can we 

find a mapping of the n blocks that would require many tries 

of A before a ―bad‖ pattern can be computed. 

Note that this requirement is stronger than a requirement for 

average load balancing over all possible k requests. Practically, 

the above definition requires that the chosen mapping will be 

good for any sequence of requests which is not too large
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Fig. 1.    Two cases of DPRs that are solved by using a different mapping of 
blocks to servers. 

Though hashing is believed to have good load balancing 

properties it is clearly not capable of blocking bad cases of 

DPRs. This problem has been studied in a different context, 

namely that of simulating shared memory over a set processors 

each having a local module of memory. This problem, known 

as DMM (Distributed Memory Machines) simulation, was 

solved using a complex hashing schemes [3] which will be 

described later on. In this work we show that these hashing 

schemes can be also used for MSFSs. Intuitively, DMM sim- 

ulation uses universal hashing to obtain an almost randomly 

mapping  among  the  modules  (the  disks  of  remote  servers 

in our case). In this way the probability that a sequence of 

requests will fail (one of them will load some memory module) 

is low. Special care was also given to implementing other 

aspects of MSFS such as cooperative caches namely fetching 

blocks from near clients instead of from remote servers. The 

issue of maintaining some notion of consistency had to be 

checked as well. This was done in order to verify that using 

such complex hashing scheme does not prevent the usage of 

cooperative caches and consistency notion. 
 

II.  GENERAL MODE OF OPERATION 
 

We describe general features of the IFS and how it works. 

We mainly focus on the way hashing can be used to create 

a file system which satisfies the requirements given in the 

introduction. The IFS consists of the following components: 

1) A large virtual hard-disk (VHD) is created over the servers 

of the IFS, consisting of equal sized storage areas in each 

machine. The blocks of the VHD are distributed among the 

local disks of the machines constituting the IFS. Each machine 

runs an IFS server that send/receives physical blocks of the 

VHD to the clients. There can be several user applications 

which access the VHD through the same IFS client. The client 

holds  suitable data  to  allow  each  application to  access its 

set of opened files. 2) The mapping between logical blocks 

f ile × #blockinf ile and physical blocks on the VHD is made 
by means of hash functions. This mapping forms the first level 
of hashing as described in figure 2. 3) IFS clients can use 

local caching; when the cache becomes full, the client flashes 

a block from the cache to the suitable servers. The IFS allows 

a client to fetch a block from a client’s cache rather than from 

a remote IFS server. This mechanism is called ―cooperative 

caches‖ and is used to reduce the load of sending complete 

blocks from the servers. 4) There is another level of hashing 

 

 
               

 

 

 

 
 

 

 

 

 

 Fig. 2.    Two clients updating the same block (main stages). 

which is responsible for distributing the physical blocks of 

the VHD among the IFS servers. This level (refer to as the 

second level of hashing in figure 2) is used to generate pseudo- 

random distribution of the blocks in the VHD as described 

in the introduction. This level of hashing partitions the load 

equally among the IFS servers and allows concurrent access 

to the VHD. 5) Each physical block is replicated three times, 

on three different IFS servers. Each read/write operation of a 

block requires fetching/updating two out of these three copies 

(also called the ―majority rule‖). Time stamps are used to 

determine which of these two copies is the most updated. 6) 

Using local caches destroys the consistency of the VHD and 

each client can have a different view of the VHD. IFS allow 

applications to use a mechanism of ―tokens‖ in order to update 

caches with a correct view of the VHD. 

Figure 2 depicts the main stages in the execution of two 

concurrent write operations w(f, B12, "a ")||w(f, B12, "a") 

made  by  two  IFS  clients.  This  involve  three  IFS  servers 

holding the three copies of B12.  The majority rule of IFS 

implies that the result of these two writes is that B12  will 

contain "a". 
 

III.  DETAILED OPERATION OF THE IFS 
 

Following the basic idea of DMM simulations, the hashing 

       scheme used by the IFS to access data works as follows: 

• There  is  a  family  of  universal  hash  functions  H   = 

{ha,b (x)   =  ((a  · x + b)mod  k)mod   p  where  k   = 

prime(|vhd|), a, b  ∈  [1, ..., k]  and  p  is  the  number  of 

servers (prime) and |vhd| is the size of the virtual hard 

disk (total number of blocks). 

• Initially we choose at random three functions h1 , h2 , h3 

from H  by choosing their coefficients a, b at random, and 

store them along with some other information at a common 

location. When an IFS server (I FSi ) starts to run (our ana- 

logue to the mounting operation of regular file systems) it 

will access this common location and thus gets the chosen 

hash functions and a pointer to its local part in the VHD. 

Note that the same machine can host several separate IFSs. 

Each server(IFSi ) is responsible for storing every block 

Bx  of f for which either h1 (Bx ) = i,h2 (Bx ) = i  or h3 

(Bx ) = i  consequently there will be three copies of 

each block. For fault tolerance ability, one should resolve 

the rare case where h1 (Bx )= h2 (Bx )= h3 (Bx ) so that 

not all three copies will be stored on the same machine.
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• When a client wants to access (read/write) a block Bx 

which is not present in its local cache it sends requests to 

two servers. Fetching a block Bx  to the cache of client 

C Li requires fetching two copies B1 , B2   out of the three 

every server; each entry points to a physical block on the 

local storage of the current server. Each entry contains a bit 

indicating if this block is free or being used by a file. This is 

needed due to the fact that the hashing can cause collisions
x     x

possible. This is done using the three functions h1 , h2 , h3
 

in a random order to fetch two copies. Of the two copies, 

we select the one with the highest global time tag, and 

store it in the cache. The global time tag indicates the last 

global time that this block. has been updated. Finally, the 

list of clients associated with Bx in the two servers from 

which Bx  was fetched is updated to include the fact that 

the initiating client has the most recent copy of Bx in its 

cache. 

• When a client’s cache becomes full the least recently used 

blocks are ―flashed‖ to the servers to be stored. Assume 

that a client wants to flash Bx : we choose (at random) two 

hash functions (out of h1 , h2 , h3 ) and send two copies of 

Bx  to the suitable servers. The list of clients associated 

with Bx  (in the two servers from which Bx  was flashed 

to) is updated to include the fact that the initiating client 

does not have a copy of Bx  in its cache. Note that the 

list of clients associated with Bx  in one of the servers 

can point to a client that does not have a copy of Bx , in 

case this client has already flashed Bx to a different server 

from the one it was originally fetched from. Finally, the 

current version does not support ―diffs‖, so when a block 

is flashed to a server it overwrites the old version of the 

block at that server. Consequently, for the current version 

the consistency unit is a block. 

• Each server is multi-threaded and thus can handle several 

requests from different clients simultaneously. The load 

per server is thus the number of active requests that are 

being served in a given time unit. 

 
IV.  METADATA AND COMMANDS IN THE IFS 

 

We describe briefly how the metadata is organized in the 

clients  and  the  servers  and  how  the  basic  commands  of 

the IFS are executed. As explained in the introduction, the 

metadata used in the IFS system should be fully distributed 

and accessing it should never cause communication among the 

servers or among the clients. Due to the direct access property 

of the hashing the metadata in IFS does not include any search 

trees as in other DFS systems but is mainly focused to manage 

the files generated by the clients as follows: 

Filezero- is a special file in which each block describes a 

given file (e.g., filenumber (fnum), name, size, last update, 

permissions, etc.). Thus the information on existing files is 

kept on the VHD and is accessed when we mount a set of 

servers. A special property of filezero is that there is only 

one copy of each block (only one hash function is used to 

access it), and its blocks are not accessed through the cache. 

Consequently, only one client can access a given block of file 

zero at any given time, so that filezero is always consistent 

with all the clients. 

Table of blocks- is a hashed list of all the blocks used in 

and we have to prevent overwriting blocks on the VHD due 

to collisions. In addition, in the current version we associate 

with each block a pointer to the last client that requested this 

block. 

Table of open files- Each server has a table of all the opened 

files (opened by clients so far). For each such file there is 

a counter counting the number of clients that have opened 

this file so far. Each entry in this table points to the entry 

of this file in the table of blocks. The client has also such a 

table, but with a more complex structure since it has to support 

several processes/applications which read/write from different 

locations in a given file. 

The set of commands of the IFS include: 

create(f num, params...)- creates a new file with file number 

f num.  A client executing this command has to access the 

server that holds the suitable entry in filezero and to update 

it if necessary. Note that since the blocks of filezero are not 

replicated, there is only one server that needs to be updated. 

delete(f num)-  deletes a file making its blocks on VHD free 

so that they can be used by future write operations. The delete 

is never executed until all the clients that have opened this 

file have closed it (using the counters in the tables of open 

files). Since there is only one server which ―owns‖ the entry 

of f num  in filezero, only one client can delete a file at any 

given time (i.e., future delete operations will be directed to 

that server and will be rejected). Similarly, it is not possible to 

open or create a file which is currently being deleted. After the 

server that owns the suitable block in filezero acknowledges 

the delete, the initiating client sends a ―free‖ instruction to 

all the servers indicating that they should mark all the blocks 

allocated to this file as free. When all the servers acknowledge 

that all the blocks of the deleted file have been marked as 

free (searching in the table of blocks) the client can instruct 

the master server to modify the entry of that file in filezero. 

The open/close instructions work in a similar way, updating 

the counter of opened files in the table of opened files in the 

server that owns the entry of the underlying file in filezero. 

write(f num, buffer, #bytes)-   writes   #bytes   from   the 

buffer at the ―end‖ of the file f num.  The write operation 

verifies that the file has been opened by the initiating client. 

The client has suitable data-structures (similar to those used 

in common file systems) allowing a set of processes on the 

client’s machine to write at the end of the files which they have 

opened. The data is written to the local cache to be flashed 

later on to two servers when the cache becomes full. The read 

instruction works in a similar way. IFS also supports seek 

operations which are basically local operations of the client. 
 

V.  CONSISTENCY 

We now discuss consistency problems in the IFS and how 

they have been addressed. Consistency problems are basically 

generated when clients can have different views of the vhd.
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This can happen when the local caches of two or more clients 

have different values of the same block. 

We consider two main types of consistency models: Strict 

consistency: This requires that a read operation will return the 

value written by the most recent write operation according to 

a global clock (all Unix file systems and many other obey this 

semantic). Implementing strict consistency in a DFS implies 

that before every update of a block, all the copies of this 

block in the caches of other clients must be invalidated. These 

invalidations are too costly, so most Distributed file systems 

do not implement Strict consistency. In AFS, for example, 

Strict consistency is implemented only at the granularity of 

complete files. Release consistency: Introduced in  [5],  this 

allows  multiple copies  of  a  block  in  several  clients  to  be 

updated concurrently without any invalidation. It assumes an 

explicit synchronization instruction of exchanging a token 

between two machines, such that after receiving the token the 

local cache of one machine is made consistent with the cache 

of the machine from which the token was received. This is a 

very efficient form of consistency, but requires the programmer 

explicitly to use the token mechanism. 

We currently approximate strict consistency by using the 

local clock for time stamps and leave it to the application 

fail the system as this property is theoretically proved in the 

DMM simulation problem. We only focus on showing that 

the system work efficiently in spite of the underlying complex 

hashing scheme. We used a cluster of about 16 PC machines 

connected by two fast Ethernet switches to approximate an IFS 

setting over the Internet. Each client read consecutive blocks 

from a small set of files that where written on the VHD before 

the experiments took place. A central monitor was used to 

measure the amount of block that each client received and 

each server sent in a given time interval. 

To test the expected slowdown caused by serving too many 

clients running a video player, one must use significantly more 

machines than those available to us. For example, we tested 

a system with one server and several video players clients 

and  still  observed  reasonable  display  rates  and  reasonable 

video images. Evidently, such a small number of machines 

is not sufficient to produce meaningful loads the IFS such 

that viewing a video movie is damaged (as frequently happens 

when video movie is watched over the Internet). We therefore 

used in some cases an artificial client which just read the 

blocks of a video file but did not display them and by so 

obtained clients which can ―load‖ the system (each such client 

represents several read VOD clients watching movies over the

ing/storing blocks. Release consistency in IFS is supported via 

a token mechanism, which works as follows. Each server has 

a unique token which can be held by at most one client. A 

client that tries to acquire a token is blocked until the token is 

released by another client or by the server that owns the token. 

A list of updates is associated with every token; each update 

in the list describes a modification of some block made by a 

client to a cached copy of that block when this client acquired 

the token. Thus, accessing the vhd can be serialized if all the 

writes to a given file or block are executed under the scope of 

acquiring and releasing a pre-designated token. By acquiring a 

token, a client updates its cache using the update list. Similarly, 

when a token is released the updates made by the client while 

holding the token are added to the update list of that token. 

Several techniques can be used to keep the update list from 

becoming too big (the current version of the IFS supports one 

of them). Using the tokens is an expensive operation because 

the update list must be sent through the Internet. It thus seems 

 

Figure 3 describes the average number of received blocks 

of one client, in a time unit, as a function of different number 

of clients (C =) and servers (S  =)used in the IFS test 

configuration. For example, the results for five clients show a 

clear speed up when more servers where used, e.g. 500 blocks 

with five servers compared with 125 blocks with two servers. 

In general, these results verify the expectation that the hashing 

scheme balances the load among the servers. However, some 

non-linear effects are also revealed by these results, e.g., using 

more clients (8 . . . 13) with five servers did not decreased the 

average number of received blocks as expected. We assume 

that these are only negligible effects caused by the average 

operation of the number of packets received by each client. 
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VI.  EXPERIMENTAL RESULTS 

Two experiments where designed to test two premises of 

the IFS: A: For a fixed number of clients, using more servers, 

should increase the quantity of blocks that each client can 

receive in a time unit. B: The DMM simulation scheme used 

in the IFS successfully distributes the load among the servers 

for sufficiently large sequences of requests. Note that we do 

not test the system against a malicious adversary trying to 

   
                                                           #servers-#clients 
Fig. 3.    Average number of received blocks in a time unit for a single client. 

We were thus ready to check more closely the distribution of 

non-balanced situations. We set a monitor which synchronized 

all the servers and the clients in the system to work syn- 

chronously by waiting for acknowledgment from the monitor 

after each message sent to a client or to a server. The monitor 

measured the number of servers that were not serving any 

client (called ―empty‖ servers) in a time unit of two steps of
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the monitor. The results in figure 4 show that in most of the 

units (samples in the figure) there were no empty servers. This, 

verify the premise of using DMM simulations to distribute 

the load among the servers. Observe that using more clients 

than servers improves the distribution. Thus the fluctuations 

of the previous chart can also be attributed to the fact that 

in these experiments the number of clients was less than the 

number of servers. Other similar experiments also verified the 

premise of the DMM simulation even for the relatively small 

number of servers and clients used in our experiments. It is 

of course reasonable to assume that since we are dealing with 

a probabilistic process, much better results would have been 

obtained for  large numbers of  clients and  servers. Finally, 

we also measured the difference in the number of requests 

(called max difference) between the most loaded server and 

the  least  loaded server. The  max  difference was  measured 

against various number of samples, i.e., the max difference in 

k samples is the maximal number of requests a server received 

in k samples minus the minimal number of requests a server 

received in those k samples. Clearly, the probability of finding 

larger differences the is related to the size of the sample. There 

were up to 13 clients in this experiment so that the maximal 

difference is always ≤ 13 ·k Where k is the size of the sample. 

The results in figure 5 show that in most of the samples the 

maximal difference was relatively small, 2 − 6. 

 

[3]  M. Ditzfelbinger and F. Meyer auf der Heide. Efficient shared memory 
simulations. In In Proceedings of the 5th Annual ACM Symposium on 
Parallel  Algorithms and Architectures, pages 110–119, 1993. 

[4]  J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer. Reclaim- 
ing space from duplicate files in a serverless distributed file system. In 
International  Conference on. Distributed Computing Systems ICDCS, 
2002. 

[5]  K. Gharachorloo, D. E. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and 
J. L. Hennessy.   Memory consistency and event ordering in scalable 
shared-memory multiprocessors. In Proc. of the 17th Annual Int’l Symp. 
on Computer Architecture, pages 15–26, May 1990. 

[6]  John K., D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, 
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An 
architecture for global-scale persistent storage. In Proceedings of ACM 
ASPLOS. ACM, November 2000. 

[7]  A.  Muthitacharoen,  B.  Chen,  and  D.  Mazieres.    A  low-bandwidth 
network file system.  In Symposium on Operating Systems Principles, 
pages 174–187, 2001. 

[8]  A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write 
peer-to-peer file system. In Proceedings of 5th Symposium on Operating 
Systems Design and Implementation, 2002. 

[9]  S.  Quinlan  and  S.  Dorward.     Venti:  a  new  approach  to  archival 
storage. In First USENIX conference on File and Storage Technologies, 
Monterey,CA, 2002. 

[10]  S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal- 
able content addressable network.  In Proceedings of ACM SIGCOMM 
2001, 2001. 

[11]  Antony  Rowstron  and  Peter  Druschel.    Pastry:  Scalable,  distributed 
object location and routing for  large-scale peer-to-peer systems.   In 
IFIP/ACM International  Conference on Distributed Systems Platforms 
(Middleware), pages 329–350, November 2001. 

[12]  A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and 
G. Peck.   Scalability in the XFS file system.   In Proceedings  of the 
USENIX 1996 Technical Conference, pages 1–14, San Diego, CA, USA, 
22–26 1996.

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.    Histogram of idle servers per step. 

 
                   Fig. 5.    Histogram of max difference (5 servers). 

 

REFERENCES 
 

[1]  F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide- 
area cooperative storage with CFS.  In Proceedings of the 18th ACM 
Symposium on Operating Systems Principles (SOSP ’01), Chateau Lake 
Louise, Banff, Canada, October 2001. 

[2]  R. Dingledine, M. J. Freedman, and D. Molnar. The free haven project: 
Distributed anonymous storage service. In Workshop on Design Issues 
in Anonymity and Unobservability, number 2000 in LNCS, pages 67–95, 
2000. 49 


