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Abstract— Pedestrian detection and tracking remains a 

popular issue in computer vision, spawning many applications in 

robotics, surveillance and security, biometrics and human-

computer interaction. In this paper we present a biological 

framework for detecting and tracking pedestrians by using a 

monocular moving camera. This framework is based on visual 

cortex cells, namely complex and end-stopped cells, the last being 

used to extract keypoints. By employing a modified HOG 

descriptor combined with the responses of complex cells and a 

linear SVM, pedestrians can be detected. By combining the above 

information with keypoints, motion information and tracked 

features, persons can be tracked in complex scenarios where 

partial occlusions exist. 
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I.  Introduction 
Pedestrian detection is a very challenging task due to the 

large variability caused by different clothing and poses, 

abundant partial occlusions, complex/cluttered backgrounds 

and frequent changes in illumination. If it is also pretended to 

track persons with a moving camera in a dynamic 

environment, the problem is even more difficult because of the 

combined effects of scene activity and egomotion. 

In recent years, considerable progress in the development of 

approaches and applications has been obtained concerning 

object detection and class-specific segmentation in tracking 

scenarios, pedestrian detection being of particular interest 

[5][13][15]. Several of those approaches have used either 

global models with full-body appearance [18], silhouettes [10] 

and assembly of local features [27], or part detectors [16]. 

Many descriptor-based detectors have been used in this 

problem. Among the popular ones is the Dalal and Triggs 

Histograms of Oriented Gradients (HOG) descriptor [3], 

which extends the idea of the popular local Scale Invariant 

Feature Transform (SIFT) descriptor  [14] to represent entire 

objects. 

Other authors have proposed additional features to improve 

the visual representation of the descriptor, such as the use of 

color through self-similarity features (CSS) [28], texture 

through block-based Local Binary Patterns (LBP) [29], and 

the design of efficient gradient-based features via integral 

channels [4]. On the other hand, cortical cells [19] have been 

used for several applications [8][21][23][24], including face 

[19][20] and hand [22] detection.   
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This paper presents an extension of a biologically inspired 

model based on cortical cells to pedestrian detection and 

tracking in crowded environments with partial occlusions and 

using a moving camera. The model employs responses of 

cortical complex cells as HOG-like descriptors to code a 

pedestrian's shape, within a detection window to be classified 

as either pedestrian or non-pedestrian with a linear SVM. 

After detection, the detection window and features (keypoints) 

from detected pedestrians are tracked using the camera's and 

keypoints' motions during a few frames. This two-step process 

helps to reduce the tracking problems due to classification 

errors of the classifier, and alleviates the computational burden 

of detecting pedestrians in every frame, speeding up the 

overall process. The proposed method was trained and 

evaluated on the well-known INRIA pedestrian dataset [3], 

and compared to Dalal and Triggs' popular HOG-based 

pedestrian detector for performance comparison.  

The main contribution of the paper is the bio-inspired 

model, i.e., the model for the detection and tracking of 

pedestrian in crowded environments. 

II. Model overview 
The model is divided into two main steps: detection and 

tracking. For detection, HOG-like features based on cortical 

complex cell responses [19] are used and coded in a multiscale 

fashion, and then classified by a linear SVM inside a detection 

window. A non-maximum suppression (NMS) filter is applied 

to discard multiple detections. For tracking, the detection 

windows with several scales are tracked by estimating the 

windows' trajectories. This is achieved by estimating the 

pedestrians' motions using keypoints extracted from cortical 

cells inside the detection windows (regions) and by 

eliminating the camera's egomotion effect, also by projecting a 

window's location in a frame to the next one. 

 

Figure 1. Model overview. The detection and motion estimation blocks are 

independent from each other, and later combined for tracking. 

Figure 1 illustrates the model scheme. At the top, the 

pedestrian detector consists of three main consecutive steps: 

(a) HOG-like feature detection; (b) classification with a linear 

SVM; and (c) NMS filtering in detection windows (Pedestrian 

Detector block). At the bottom, the tracker is composed of 

four processing steps: (a) keypoint extraction and (b) 

matching, (c) egomotion estimation (Egomotion estimation 
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 block) and (d) window prediction and keypoint tracking. Note 

that the pedestrian detector and egomotion estimation blocks 

are independent, which permits parallel processing to speed up 

the system. The diagram blocks will be explained in detail in 

the following sections. 

Cortical cell responses: Responses of cortical cells provide 
the basis of the model. The principle for multi-scale 
processing is based on Gabor quadrature filters which provide 
a model of cortical simple cells [19]. In the spatial domain 
      they consist of a real cosine and an imaginary sine, both 
with a Gaussian envelope. Responses of even and odd simple 
cells, which correspond to real and imaginary parts of a Gabor 
filter, are obtained by convolving the input image with the 

filter kernel, and are denoted by     
       and     

      ,   

being the scale,   the orientation (        ) and    the 
number of orientations (here 8) with           . 
Responses of complex cells are modeled by the modulus 
         . In addition, there are two types of end-stopped cells, 

single and double. These are applied to      and combined with 

tangential and radial inhibition schemes in order to obtain 
precise keypoint maps        . For a detailed explanation 
with illustrations see [19]. Here, only one Gabor filter scale ( ) 
is used, which is given by        being the spatial 
wavelength of the Gabor filters expressed in pixels. Figure 2 
(middle) illustrates the responses of complex cells in 8 
orientations. 

III. Pedestrian Detection 
As mentioned above, detection of pedestrians is achieved 

by coding responses of cortical complex cells within a region 

into a feature vector, using a classifier (linear SVM) to predict 

if a pedestrian is inside the detection region or not. The 

detection process employs a single scale (   ), but several 

scales of the HOG-like features (several sizes) over the entire 

image, and then a sliding window (     blocks) to scan all 

blocks inside its region. At each layer, the pooling cell size is 

increased, but the detection window size and the block's size 

remain the same. To this purpose, we use between     and 

      pixels per cell with a stride of 2 pixels. Finally, NMS 

filtering is applied to eliminate multiple detections of the same 

person. By coding the entire image as HOG-like features but 

using only a single scale, a quick pedestrian search is 

performed with a small loss in accuracy (less than 5%). 

We use the INRIA dataset to train our detector and to 

evaluate its performance. Although this dataset is rather small, 

it is widely used in the literature [5] and for comparing the 

performance of different algorithms. The dataset comprises 

2416 positive samples for training and 1126 positive samples 

for testing. For negative samples, a set of 12180 patches 

randomly sampled from a 1218 person-free training image 

dataset provided the initial negative set for training, having an 

additional set comprised of 1126 positive images and 4530 

negative samples from 453 images for testing. We bootstrap 

the detector with additional 10K random false positives as 

hard negatives to train the final detector. 

 

Figure 2. A pedestrian input image in grayscale (left) coded by complex cell 

responses in 8 orientations (middle), which are then combined into HOG-like 
features (right). 

HOG-like features: HOG features have clear advantages for 

object recognition [7]. A modified version of Dalal and Triggs 

HOG features [3] is used here for pedestrian detection. In their 

implementation [3] they used an RGB color space with no 

gamma correction, 1D gradient filters, linear gradient voting 

into 9 orientation bins,      pixel blocks of four     

pixel cells, a Gaussian spatial window with     pixels, L2-

Hys block normalization, a block spacing stride of 8 pixels 

and a        detection window for training the linear SVM 

classifier.  

Here we use an adapted and slightly modified version of 

the previous procedure: (a) we use only grayscale information 

for speed purposes, (b) complex cell responses are used as 

gradient information, (c) no Gaussian window is applied, and 

(d) the L2-norm is used instead of L2-Hys. Complex cell 

responses provide a good alternative for gradient information 

since they are also robust to noise. In addition, the linear 

gradient voting can be skipped because of the cells' oriented 

responses. We use       pixel blocks of sixteen     pixel 

cells with 75% block overlap; see below for parameter 

assessment and evaluation.  This ensures optimal performance 

while complying also with Dalal and Triggs' recommendations 

[3] of having many orientation bins, and moderately sized, 

strongly normalized, overlapping descriptor blocks for good 

performance. See Figure 2 (right) for the bio-inspired HOG-

like features. 

Classification: To detect a person, features in a detection 

window are classified using a linear SVM. The classifier is 

trained using the INRIA dataset with a soft-margin linear 

SVM (C=0.01) using LIBSVM [2]. Similarly to [3], we use a 

       pixel detection window for training the classifier. 

This results in      blocks to be used by the classifier across 

the image at all scales. We found that a detection window of 

       pixels for training constitutes a good trade-off 

between performance and running speed. Increasing the 

detection window's size beyond         although increasing 

the detection performance, has a higher computational cost 

due to more features being used for classification. This has a 

significant impact on processing time and also on the overall 

size of detectable pedestrians (smaller pedestrians cannot be 

detected). 
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Figure 3. HOG-like feature parameter performance. Top: effects of  . Middle: 
effect of number of orientations. Bottom: plot comparing our method (HOG-

like features) with HOG [3].  

Performance evaluation. Several factors have been evaluated 

in the classifier training stage, namely Gabor filter scale ( ), 

number of orientations (  ), cell size, block size and overlap. 

A smaller set of 500 positive and 500 negative random 

samples for training, and 200 positive and 200 negative 

random samples for testing were used for cross-validation and 

parameter optimization. We used detection error trade-off 

(DET) and miss rate (better: 1.0 - Recall) measures to quantify 

the performance.  

First, the scale of the cortical cells was analyzed in order to 

determine the optimal  . Figure 3 (top) shows the overall 

performance of seven different scales         . Smaller 

scales yield better performance than bigger scales, mainly due 

to lines and edges being better encoded by smaller filters. This 

complies with the findings of [3]. Moreover, by choosing a 

smaller   the processing time decreases. Here,     

performed best. Figure 3 (middle) shows the performance 

impact of the number of orientations used in the HOG-like 

feature bins. From the nine orientations tested, increasing the 

number of orientations beyond 8 does not improve 

performance significantly. Therefore, for the final classifier 

we chose      orientations which gave a 2.69% miss rate. 

Figure 3 (bottom) shows our method (HOG-like features) vs.\ 

HOG [3] performance comparison. HOG performed better 

than our method: a 4.35% miss rate difference at a false alarm 

rate of     . For comparison purposes, the HOG model was 

trained with the INRIA dataset using grayscale information 

only, with the same parameters as in [3].  

Three other key factors taken into account were the block size 

vs. cell size vs. block overlap. From all tested combinations of  

0%, 25%, 50% and 75% block overlap with block sizes 

ranging from     to 5   and pooling cell sizes from     

to      , block sizes of     with     pooling cells and 

75% overlap gave the best performance with a 3.8% miss rate. 

Non-maximum suppression: Now, the detection window is 

applied to the entire image using a sliding window approach, 

where multiple detections of the same person often occur. To 

remove multiple detections due to the sliding window, a non-

maximum suppression technique is used to discard 

overlapping windows: when two windows overlap at least 

50%, the window with the weakest classification response is 

discarded. To this purpose we use the unsigned SVM 

classification output in order to determine the window's 

classification response. 

IV. Pedestrian Tracker 
Hardware processing speed has greatly increased over the 

past years and many pedestrian detectors have become quite 

efficient [5]. However, tracking after detection remains a key 

element in any real-time application. Here, pedestrian tracking 

after detection is achieved by tracking keypoints inside the 

detection window and by predicting the window's location 

using both camera and pedestrian motion information.  

Periodically (every 5th frame), the detector is used over the 

image to detect new pedestrians to track and to update the 

existing window positions. In the following sections, we 

address the estimation of the camera's egomotion for the 

prediction of the detection window's shift from one frame to 



 

412 

 

International Journal of Business and Management Study – IJBMS 
Volume 2 : Issue 2      [ISSN : 2372-3955] 

Publication Date: 19 October, 2015 
 the next, and the tracking of keypoints within the detection 

window for estimating a pedestrian's trajectory. 

Egomotion estimation: This process is done by two main 

modules: (a) extraction, classification and matching of 

keypoints; and (b) egomotion estimation from keypoint 

correspondences. 

(a) Keypoint extraction and matching. As already 

mentioned, keypoints are based on cortical end-stopped cells 

(Section II). They provide important information because they 

code local image complexity and have many applications 

[19][20][22]. In our application, keypoints are used for 

tracking features of pedestrians inside the detection window 

and to determine camera and pedestrian motion. We refer to 

[19] and [25] for a detailed explanation of the multi-scale 

keypoint detection. Figure 4 (top) shows one example of 

detected keypoints (+) in two consecutive frames at    . 

      For each keypoint position we use the FREAK descriptor 

[1], which provides a fast and robust binary descriptor for 

complex scenarios where pedestrians move and tend to 

occlude others and themselves. Concerning keypoint 

descriptor matching, we use the Muja and Lowe matching 

algorithm [17], which provides good correspondence results 

(Figure 4 bottom-left). 

 

Figure 4. Egomotion estimation.  Detected keypoints (green +) in frames     

(top-left) and   (top-right) are matched (bottom-left) and egomotion is 
estimated using epipolar geometry (bottom-right). Here, only 30 sampled 

keypoints (red boxes) plus epipolar lines (red lines) are displayed for 
illustration.  

 (b) Egomotion. In order to predict the correct location of a 

pedestrian's detection window in a frame in scenarios where a 

moving camera is used, it is necessary to remove the 

egomotion effect, i.e., the global motion of the camera needs 

to be estimated so that the rigid transformation (rotation and/or 

translation) between two frames can be obtained.  Here, 

camera egomotion is determined by using keypoint 

correspondences between two frames (current and previous) to 

estimate the fundamental matrix  . The fundamental matrix 

provides a general representation of the egomotion captured in 

two views by a projective camera, without knowledge of the 

camera's calibration [9][11]. To compute the fundamental 

matrix we use the 8-point algorithm (see [12] for details). 

When computing the fundamental matrix, outliers typically 

arise from gross errors (such as correspondence mismatches) 

or from movement which is inconsistent with the real 

egomotion (moving objects or shadows, occluding contours, 

etc.). To cope with such impairments we use the random 

sample consensus (RANSAC) algorithm to filter out outliers. 

Here, RANSAC is used not only for its simplicity and speed, 

but also for its robustness against large amounts of outliers 

[26], which often appear in moving scenes populated by 

pedestrians. We use a residual error threshold of       for 

outlier detection, and for speed purposes we set the 

RANSAC's maximum number of iterations to 100. 

Finally, from the fundamental matrix, the rotational and 

translational parameters are estimated and egomotion is 

eliminated by mapping detected keypoint positions to a new 

set of locations according to the transformation. Figure 4 

(bottom-right) shows the focus of expansion (FoE) of the 

estimated camera egomotion while moving forward. The 

residual error   measure used for inlier estimation corresponds 

to the distance between the detected keypoints (represented by 

red squares) and the epipolar lines (red lines) computed using 

the fundamental matrix. Large distances (high residuals) 

denote outliers which are not consistent with the global 

egomotion, while small distances denote motion in line with 

the camera's egomotion.  

 

Figure 5. Sequence showing motion correction. 

(c) Pedestrian tracking: Having a person detected and the 

egomotion effect removed, person tracking is summarized by 

tracking both the detection window (bounding box) and the 

keypoints inside. The procedure is as follows: first, (a) the new 

coordinates of the detection window in frame   are computed 

by transforming the previous frame's coordinates (frame    ) 

with the estimated egomotion parameters; next, the trajectory 

of the pedestrian is computed where (b) if, at least, 2 or more 

positive keypoint-descriptors correspondences exist inside the 

detection windows  in both frames   and    . Then (c) the 

vector for each pair of corresponding keypoints (optic flow) is 
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 determined, and (d) the average flow of all vectors is 

computed (without egomotion); see Figure 5, right column. 

This corresponds to the average trajectory of a person in the 

scene. 

In case that the average motion is not available, i.e., if no 

keypoint correspondence between the two consecutive frames 

  and     exists (no known trajectory information), it is 

assumed that the window has the same trajectory (average 

flow) in frame   as in the previous frame    . To keep 

validating if a person exists inside the detection window, the 

detection of the person will still be repeated every 5th frame 

(small changes of this number does not affect the final result). 

Detection windows (and the person inside) stop being tracked 

and are discarded from the tracking list when the person 

detector classifier (which is also applied every 5th frame) fails 

twice to predict a positive pedestrian. 

V. Results 
Some results on pedestrian tracking are presented using the 

ETH dataset [6]. This dataset contains sequences of moving 

pedestrians using a moving camera with occlusions. For 

display purposes, the calibration information of the cameras 

used was not applied in the final results. The reason concerns 

the generalization of the use of any type of data of pedestrians 

tracking which may not contain information about the 

camera's parameters (e.g., YouTube videos). Figure 6 shows 

results from three sequences of the ETH dataset, namely the 

BAHNHOF (top row), JELMOLI (second row) and 

LOEWENPLATZ (third and fourth rows) sequences. In the 

first two rows, detection of pedestrians in several frames is 

displayed. Here some false detections occur due to training the 

classifier with a small dataset. In addition, missed detections 

also occur due to the fact of the dataset not including training 

images with partially occluded persons. However, more 

pedestrians are correctly detected than missed. The bottom 

rows show the tracking of several pedestrians in four 

consecutive frames, where the tracker correctly followed the 

pedestrians. 

VI. Conclusions 
In this paper we presented a biologically inspired method 

for pedestrian detection and tracking. The model was 

optimized concerning execution time versus accuracy. The 

method works in real time using a 2.4GHz quad core CPU and 

it yields good results despite the fact that it does not use color 

information (as used in [3]). By limiting the number of frames 

where a thorough search for pedestrians is performed with the 

use of keypoint descriptors for tracking, the method achieves 

real-time (5 frames per second) results on         pixel 

images, since the method switches regularly between tracking 

and detection, also achieving robustness to errors in detections 

(false negatives) by keeping tracking records of positive 

detections. The tracker was also able to recover from failures 

due to sudden changes in either shape, motion or partial 

occlusion. Nevertheless, the model is still in the stage of 

prove-of-concept.  

In the future CPU time consumption can decrease even 

more by also using the same information (keypoints, complex 

cells, etc.) for constructing saliency maps for Focus-of-

Attention (FoA) [19], and with this information applying the 

sliding windows only in regions with more saliency. Also by 

combining and coding cortical cells into small overlapping 

blocks (similarly to HOG's features) and varying its size in a 

multiscale way. 

 

Figure 6. Results on the ETH dataset. Top to bottom: BAHNHOF sequence, 

JELMOLI sequence and LOEWENPLATZ sequence results. The top two 

rows show results of pedestrian detection and the bottom rows shows the 
tracking of pedestrians in four consecutive frames. 
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