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Abstract— The structural design and development of Solid 

rocket motor (SRM) is currently based on method of casting solid 

propellant grain into a metallic or composite casing. In general, 

SRM is subjected to diverse loading conditions during 

transportation, storage and firing, due to which cracks may be 

developed in solid propellants because of excessive loads. Finite 

element analyses (FEA) based on displacement method, were 

conducted in order to determine the integrity and the ultimate 

service life of solid rocket motors. The displacement based finite 

elements have the limitation of evaluating the distribution of 

stress and strain on the solid propellants which are viscoelastic in 

nature. In this paper, a finite element study based on Herrmann 

formulation is discussed to overcome this limitation in which 8-

node quadrilateral,9-node quadrilateral and 6-node triangular 

axisymmetric finite elements have been developed and analyzed 

for stress and strain distribution for head and mid segments of 

solid propellant rocket motor subjected to thermal loading. 

Results obtained from present study are compared to that 

obtained using MARC, commercial FEA software.  

Keywords— Solid Rocket Motor, Herrmann Formulation, 

Thermal loads.  

I. Introduction 

  Solid rocket motor (SRM) structural design is currently 

based on concept of a mechanically weak solid propellant grain 

cast into a stronger metallic or composite case. The outer case 

provides the essential structural resistance against service and 

operational loads, and the inner propellant grain’s low strength 

is used for transmission of loads from grain surface to outer 

case. In general, solid rocket motors are subjected to diverse 

loading during transportation, storage and firing. It is well 

known that under these loading conditions, cracks can develop 

in solid propellants because of excessive loads. Therefore, in 

order to determine the integrity and the ultimate service life of 

solid rocket motors, studies were conducted to evaluate the 

significance of the value and distribution of stress and strain 

[1]. The finite element method has the capability to deal with 

complex loading conditions, material behaviour and practical 

geometries. Commercial codes (viz., MARC, NASTRAN, 

NISA, ANSYS, etc.) are available to solve structural problems. 

Based on the nature of the final matrix equations the finite 

element methods are classified as Displacement Method [2], 

Force method [3] and mixed method [4]. The major structural 

components in rocket motor are: motor case, incompressible 

liner and propellant. The analysis of a viscoelastic  structure 

may be reduced to elastic analysis by following the concept of 

Schapery [6] described in detail  by Kanakaraju et al. [8]. 

 

       Finite elements developed by displacement method have 

been the subject of extensive research for many years [2]. 

Shortcomings of this model are evident in situations involving 

nearly incompressible materials like solid propellants used in 

rocket motors. For incompressible materials (Poisson’s ratio ≈ 

0.5), the six components of strain are no longer independent, 

hence the principle of minimum potential energy and the 

corresponding displacement method experience locking, and 

the resulting solutions are erroneous [7]. Locking occurs when 

the element formulation is not sufficient for capturing the 

appropriate displacements. In these materials, the volumetric 

strain is nearly zero, hence using displacement method based 

finite elements results in zero displacement and the calculated 

stresses are under predicted and unreliable when low order 

displacement interpolations are used. Although, higher order 

interpolations, such as biquadratic interpolation or mesh 

refinement may be used, the displacement solution is generally 

not accurate.  The solution to element locking in case of 

incompressibility is to break the strain field down to its 

fundamental components. In the case of any deformation, there 

are deviatoric and volumetric strain components. Deviatoric 

strains determine the shape change of the body and volumetric 

strains determine the volume change (dilatation) of the body. 

The volume change occurs due to a hydrostatic pressure. The 

trouble caused by the displacement based finite element 

formulation for the incompressible material can be understood 

by examining the familiar elasticity relationship, 

 

   3 1 2 2 1 2

E E
where K and G

 
 

 

 

Where E is the Young’s modulus and ν is the Poisson’s ratio. 

For nearly incompressible materials, the Bulk modulus 

becomes large relative to the Shear modulus. In the limit, when 

the material is completely incompressible (ν=0.5), all 
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hydrostatic deformations are precluded. In this limiting case it 

is therefore not possible to determine the complete state of 

stress from strain alone. Therefore special formulations are 

required to account for the hydrostatic deformations as well as 

to predict the actual state of stress for such materials. Thus, in 

this paper, a finite element study based on Herrmann 

formulation is discussed to overcome this limitation in which 

8-node quadrilateral, 9-node quadrilateral and 6-node 

triangular axisymmetric finite elements have been developed 

and analyzed for stress and strain distribution for head and mid 

segments of solid propellant rocket motor subjected to thermal 

loading. 

 

II. Formulation 
 

In this paper, the Herrmann formulation code is written 

using visual C++ language and validated with analytical 

solutions available in the literature.  The elements developed 

are 8-node and 9-node quadrilaterals and 6-node triangular 

elements having linear pressure variation. The efficiency of 

these elements is examined by comparing the results obtained 

utilizing the MARC software package [14]. 

 

Energy expression for compressible material includes both 

strain energy and work done due to external forces. This 

formulation is modified in such a way that the volume of the 

body remains the same before and after loading. To bring this 

behaviour in the body the volumetric strain constraint is 

imposed. Mathematically volumetric strain is written as 

 

 
0

dV

V


                                                                        
 

Assuming V=rzθ  (for axisymmetric analysis) 

Where r is the radius, z is the element height, and θ is the 

rotational angle. 

 

 

From theory of elasticity, the stress strain relation is 

 

 
 

We get 

 
This can be rewritten as 

                                                                                                                                    
Where K=E/3(1-2ν) is the bulk modulus, εv=εr+εz+εθ is the 

volumetric strain given and P=(σr+σz+σθ)/3  

  

Writing the total potential energy with imposing εv=P/K    as a 

constraint will make the volume of the body remain constant 

before and after loading as K→∞ .  

 

The modified total potential for incompressible materials is 

given by  
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Strain and Stress vectors for axisymmetric body are given by 
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Where {εd}  is the deviatoric strain, and {σd}={σ-P}. 

Substituting for {ε} and {σ} in (5), the potential energy 

equation is modified as 
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By substituting 
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And taking variation with respect to u and p results in the 

following matrices 
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 Where {q} – elemental displacement vector,   {p} – elemental 

hydrostatic pressure, {FM} – load vector due to mechanical 

load, {FT} – load vector due to thermal load, α – linear 

coefficient of thermal expansion, ΔT  – difference in 

temperature, [Kuu] – element stiffness matrix corresponding to 

element displacement, [Kpp] – element stiffness matrix 

corresponding to element pressure, [Kup] – element stiffness 

matrix corresponding to the cross coefficient {q} and {p}. If 

the displacement is assumed as quadratic variation then the 

(4) 

(5) 

(6) 

(2) 

(3) 



 

251 

 

International Journal of Civil and Structural Engineering– IJCSE 
Volume 2 : Issue 2         [ISSN : 2372-3971] 

Publication Date: 19 October, 2015 
 

pressure is assumed as bilinear variation. In general, the 

pressure variation is assumed one order lower than the 

displacement variation.  

 The displacements are used to get the elemental strains, 

stresses at the Gauss point and then it is extrapolated to the 

nodal points. The Gauss point stresses and strains are 

extrapolated to the nodal points by the bilinear extrapolation 

matrices as given in [Hinton et. al., 1975]. The stresses and 

strains for 8-node and 9-node quadrilateral elements are 

computed at 2x2 gauss points and extrapolated to 4 corner 

nodes of the element [Hinton et.al., 1975]. Stresses and strains 

at rest of the nodes are obtained by averaging the corner nodal 

values. 

  

III. Case study: Solid Rocket Motor 
Subjected to Thermal Load 

Solid rocket motor consists of a solid propellant grain which 

is viscoelastic in nature embedded into a stronger metallic or 

composite case with an insulator material and a liner between 

the case and the grain. The motors which are mainly utilized in 

defence and space technologies are generally stored for a long 

time and transported from one place to another before their 

ignition processes. During its lifetime the rocket motor may 

encounter various environmental effects, in particular 

temperature variations due to change in climate of storage or 

regions they are transported to. Since the mechanical properties 

of solid propellants are very sensitive to temperature changes, 

the  effects of thermal loads on the performance of the rocket 

motor should be carefully examined before firing. Thermal 

loads during the standby position and pressure load during the 

operation may result in stress and strain values exceeding 

material capabilities [15], [17], hence leading to failure of the 

motor.  

 

 

 

 

 

 

 

 

 

 

 

 

S

olid 

propellant grain segments are cast and cured separately at 

elevated temperatures for the required number of 

days and then cooled to the room temperature before storage. 

Thermal stresses and strains are developed due to the cooling 

from the stress-free temperature to the storage temperature. 

[18]. In order to simulate the stress and strain of solid rocket 

motors (SRMs), a finite element analysis model was 

established. Due to difference in the coefficients of thermal 

expansion of the propellant and the casing, thermal stresses and 

strains are developed. Fig. 2 shows the finite element model of 

a typical SRM with discretisation and boundary conditions, 

which is analysed for applied thermal load, ΔT= -35°C using 

the elements developed using Herrmann Formulation. The 

material properties are given in Table I. 

 

 

 
TABLE 1: MECHANICAL PROPERTIES OF THE SOLID PROPELLANT 

ROCKET MOTOR SUBJECTED TO THERMAL COOLING OF -35°C. 

 

Material 

 

Modulus      

( Kg/mm2 ) 

Poisson’s 

Ratio 

Coefficient 

of thermal 

expansion 

α( /°C) 

Propellant 0.20 0.499 8.6E-5 

Insulation 1 0.5 0.0001 

Casing 2.08E+4 0.3 1E-5 

 

IV. Results and Discussion 
             The results of the analysis are shown in the deformed and un-

deformed shapes (Fig. 3) and the contour plots (Fig. 4). The 

variation of resultant displacement, hoop strain at the inner port 

of propellant and the shear stress at the outer port is presented in 

path plots (Fig. 5 to Fig. 7). The results shows higher 

displacements at the head section of the rocket motor and at the 

lower end of the mid-section due to thermal shrinkage, which 

results in higher shear stresses. It is observed from the results 

obtained based on Herrmann formulation finite elements 

(present study) are in close agreement with those results 

obtained from MARC software.  

 

 

 

 

 

 
Figure 2: Finite element discretization and boundary condition for SRM 

subjected to thermal load 

 

 
Figure 1: A typical rocket motor; A. Chamber; B. head end 

zone; C. nozzle; D. Igniter; E. Port; F. Inhibitor; G. 
Insulation; H. Propellant. 
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Figure 3: Undeformed shape and deformation due to thermal shrinkage 

 

 
 

 

                      v. Conclusions. 
Axisymmetric finite elements based on Herrmann formulation 

has been developed and validated by comparing the results with 

the eight-node quadrilateral axisymmetric Hermann element of 

MARC. The results obtained from the present study are in good 

agreement with the results obtained using MARC. It should be 

noted that while using MARC software package, the casing 

material (which is compressible in nature) is idealized using the 

standard eight-node isoparametric quadrilateral axisymmetric 

element having two degrees of freedom (w,u), while the 

propellant grain (which is nearly incompressible in nature) is 

idealized using the Hermann element having three degrees of 

freedom (w,u, σmean). Here σmean is the hydrostatic pressure 

known as the mean pressure. For the present case bonded 

cylindrical solid propellant grain, the nodes at the interface 

should be connected using tying option to take care of the 

mismatch between two degrees of freedom of casing element 

 

PRESENT STUDY 

 

FEAST MARC 

 

FEAST MARC 
 

 

Figure 4: Resultant deformation contour comparison 
between the developed finite elements and MARC 

 

 

8 node 

6 node 

9 node 

 
Figure 5: Variation Resultant displacement along the inner 

port of the propellant 

 

 

 

8 node 

6 node 

9 node 

 
Figure 6: Variation of hoop strain along the inner port of the 
propellant 

 

 

8 node 

6 node 

9 node 

 
Figure 7: Variation of shear stress along the outer port of the 

propellant 
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and three degrees of freedom of nearly incompressible 

propellant element [18]. Present study does not require tying of 

the nodes. Whether the structure is made of compressible or 

nearly incompressible materials, the present study does not 

require tying option for the nodes at the interface. It can be 

concluded from the above-considered numerical problems that 

the present axisymmetric element can be used for examining the 

structural behaviour of rocket motors having nearly 

incompressible and incompressible materials. 
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