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Abstract—This paper presents evolutionary-based least-

weight optimization procedure for designing truss structures. A 

modified version of Genetic Algorithm with Domain Trimming 

(GADT) is developed and presented herein. The DADT is used 

for solving the nonlinear constrained optimization problems. In 

this optimum design formulation, the objective function is the 

material weight of the truss; the design variables are the cross-

sections of the truss members; the constraints are the stresses 

in members and the displacements of the joints. The 

constraints were handled using non-stationary dynamically 

modified penalty functions. One classical truss optimization 

example is presented herein to demonstrate the efficiency of the 

GADT algorithm. The test problem includes a 10-bar planar 

truss subjected to a given load condition. The result shows that 

the GADT method is very efficient in finding the best 

discovered optimal solutions, which are better of the results of 

other structural optimization methods. 

Keywords—Truss Structural Optimization, Genetic 

Algorithm, Domain Trimming, Constraint Handling. 

I.  Introduction 
Obtaining optimal designs that satisfy multiple 

conflicting criteria, such as minimum cost and maximum 
performance, is one of the most influential factors in modern 
structural design.  Most structural designs are considered 
constrained optimization problems that can be solved to 
identify the design values of structural performance. The 
optimum solutions might be linearly and/or nonlinearly 
constrained in the design space. In the presence of multiple 
optima and non-smooth constraints in the design variable 
space, it is difficult to obtain a set of optimum values using 
local optimization techniques. On the other hand, this 
difficulty has geared the research towards relatively new and 
innovative evolutionary based optimization techniques such 
as the Genetic Algorithm (GA) [1], Ant Colony 
Optimization (ACO) [2], Particle Swarm Optimizer (PSO) 
[3, Shuffled Complex Evolution (SCE) [4], Harmony Search 
[5], and Hybrid Methods [6]-[8]. These approaches are 
investigated and used in recent years for optimizing 
structural designs and are proven superior to local search 
techniques. Many structural optimization problems involve 
problem-specific constraints applicable to the solutions 
limiting the feasible search space Compared to other 
constraint handling techniques the use of penalty functions 
is relatively simple and easy to implement.   
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This study presents the development and implementation 
of the GADT to achieve superior optimization. The 
capabilities of the developed optimization tool are 
demonstrated on two classical truss optimization problems 
being challenging with unknown global and multiple local 
minima. 

II. Genetic Algorithm with 
Domain Trimming (GADT) 

A. Development of the GADT 
Optimization Technique 

To begin GA optimization, a population of solution 

alternatives Np (population size) are randomly generated 

using a uniform probability distribution; each solution of the 

GA consists of a combination of variables (x1, x2, x3, …, 

xn) which has its own fitness value. In cases where the 

optimization is performed to find the minimum weight for a 

given problem, a function F*j(X) = total mass + penalty has 

to be minimized. Solution alternatives that yield low F*j(X) 

values for the objective function would have better fitness as 

long as they are not violating the problem constraints. 

Populations of solutions are represented by chromosomes. 

The design variables stored in the chromosome can be either 

discrete (selected from a pool of defined values) or 

continuous (selected from a continuous range of variables). 

In this research, the vector of variables contains continuous 

values. Once F*j(X) for every solution j in the initial 

population is computed, a fitness value is assigned to each 

solution j using Eq.(1), Solutions with F*j(X) less than 

F*ave of the population are considered unfit and are 

eliminated by assigning them a fitness value of zero:  
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where (X) is the vector of the design variables. 

The three basic operations of a GA, reproduction, 

crossover, and mutation, are used to improve the fitness of 

each population from one generation (iteration) to the next. 

The reproduction operation selects the better fit designs, 

copies them, and places them into a mating pool allowing 

each to mate and reproduce. The roulette wheel selection 

method is used in this study for its simplicity and popularity.  

After the reproduction operation is performed, the 

crossover operation mates the selected designs to create 

more fit offspring solutions.  The uniform crossover 

operation is used to combine genetic information between 

two parent solutions.  Uniform crossover selects two parent 

solutions at a time from the mating pool and swaps variables 

corresponding to zeros in a binary vector known as a mask. 

The mask is the same length as all variable vectors and 

consists of a preselected percentage of randomly arranged 

zeros (%c). This percentage has an impact on the speed of 
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convergence to an optimum solution. Each mask within a 

population is different, so the number of unique, randomly 

generated masks is equal to half of the number of solutions 

(parents) in the population multiplied by the total number of 

generations (populations). 

Since GA mimics the natural selection of the fittest treats 

through multiple generations, it is inherently vulnerable to 

Genetic Drift (continuous survival of “unfit” but “lucky” 

individuals, and their genes, from one generation to the 

next). The mutation operation is used to minimize the effect 

of genetic drift and add diversity to the search space by 

randomly changing a variable in a design solution. During 

mutation the value of any chromosome variable may be 

changed to a randomly selected variable. Another counter 

measure of genetic drift used for continuous variables is to 

use blending techniques [12], a general blending formula 

would be of the form: 

           (   )                         (2) 

Where, xnew = the nth variable of the offspring chromosome 

of the crossover, β = random number on the interval [0,1], 

xmn = the nth in the mother chromosome, and xdn = the nth in 

the father chromosome.  

One of the main advantages for the GA optimization is its 

relative insensitivity to local minima (not very susceptible to 

being trapper in local minima). However, this may also be 

considered as one of its limitations: being a “low-

resolution” technique especially if the population size is 

relatively limited. i.e. convergence may sometime occur to 

points in the neighborhood of, but not exactly at, global 

minima. The reason for this is that initially, the solution 

variables are randomly selected from a pre-specified range 

(domain); those variables do not change (except for 

mutation, which occurs at small probability) but rather 

change place from one solution to another. In addition, a 

poor choice of the solution domain (e.g.: [1, 1000] while the 

optimal value is at a value of 2) further aggravates the issue. 

Blending techniques, while acting to reduce this 

disadvantage, introduce a new random parameter (β), it may 

also have a negative effect as it may negate the strong traits 

of the parents. 

In this study, a new technique is developed to alleviate this 

inherent limitation of GA. The technique involves trimming 

the domain then re-initiating the GA so that the probability 

of selecting the optimal solution is improved. For example, 

trimming a domain from [1, 1000] to [1, 10] then re-

initiating GA would increase the initial probability of 

selection of the optimal solution by 200 times, when 

everything being constant. Trimming is done as a percentage 

of original domain size, and continuous trimming then GA 

re-initiation goes on until the optimum solution is found. 

One can think of trimming in terms of evolution theory as 

when a catastrophe occurs in nature eliminating the majority 

of the population leaving only the elite survivals to restart 

the evolution process. Fig.4 simulates this technique on a 

single variable chromosome (taking trimming as 90% of 

domain size):  

1- After the GA converged to a certain objective function 

value, the elite 10 chromosomes (in this case, variables) are 

taken regardless of which generation they‟re in, since the 

range between the minimum and maximum variable  is more 

than 90%, no trimming occurs. 

2- As the GA converged for the second time, the range of 

values are now less than 90% and trimming will happen, but 

rather than being centered, the trimming range is biased 

toward the mean by a ratio: (max-mean)/(max-min), the 

trimmed domain is now less than 90% of the original as 

some of the trimming range lies outside the original domain. 

3,4,5 - Because the domain has been trimmed, the chances 

of getting to the global optimum are higher, resulting in the 

elite values getting closer to each other, trimming will stop 

when range of values exceeds 90% of the domain or if the 

GA found the optimum solution to a satisfactory precision.  

 

 

Fig. 4: Illustration of the domain trimming method on a single variable 
(trimming is 90%) 

 

A question arises that how can it be sure that the optimal 

solution is inside the trimmed domain; the answer is that it 

doesn‟t guarantee that, however, the worst case scenario is 

that it will get results comparable to conventional GA since 

trimming doesn‟t happen until GA converges. 

Experimenting on sample problems showed that the 

technique gives better results than conventional GA. Fig. 5a-

d illustrates the logical steps for the GADT technique via 

flowcharts. 

To demonstrate the GADT algorithm performance, one of 

the standard test functions in optimization problems is 

considered: the Six-Hump Camelback function problem: 

  (   )  (         
 

 )       (      )  (3) 

With boundaries: x ∈ [-1.5, 1.5] and y ∈ [-2, 2]. The 

function takes the form shown in Fig. 6; it has six minima, 

two of them are global minima with a value of: -1.0316 

located at the two points: (-0.0898, 0.7126) and (0.0898, -

0.7126). Initially, the GA starts off with the domain 

provided by the user and iterates until there is a 

convergence, i.e. the fitness values are close to each other 

and the improvement in best fitness in subsequent iterations 

is less than a specified value, say, 1%. At this stage, the GA 

has identified a number of local minima and further 

iterations will have little effect on finding the global 

minimum. Convergence to a series of “not necessarily most 

fit” solutions means that the GA is approaching the vicinity 

of the global optimum but cannot discover the fittest 

solution. This may be due to elimination of some of the 

fittest solutions as they are combined with lesser-fit 

solutions, or inclusion of residual unfit solutions within the 

available solution domain. 
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Fig. 5a: Flow chart of general GADT optimization 
 

 
 
 

 

 
 

 

 
 

 
 

 

 
 

Fig. 5b: Flow chart of Reproduction, Crossover and Mutation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5c: Flow chart of Roulette wheel selection 

At this point, refinement of the available solution domain 

improves the chances of discover the fittest solution. GADT 

technique removes the most unfit solutions from the domain 

and re-initiates GA within the trimmed domain. 

Occasionally, some fittest solutions are dismissed as unfit as 

result of being combined with lesser-fit solutions. To 

minimize the probability of this potential pitfall, two 

measures are incorporated in the GATD: (a) the initial 

domain considers a large enough population to allow higher 

probability for discovering the most combinatory 

possibilities, and (b) the domain trimming limited to a high  

percentage (e.g. 90%)  of the domain from the previous step. 

This means that while some values are clearly identified as 

unfit, they are still retained in the domain for the subsequent  

Fig. 5d: Flowchart of Domain Trimming 

GA re-initiation. The motivation for this retention it exhaust 

all possibilities of producing fit solutions before completely 

eliminating part of the domain. The impact on speed of 

discovery of optimum solutions is obvious. However, it is 

justified by the significantly improved successful discovery 

rate. The method can also be helpful to identify what range 

of variables to look for in subsequent searches. 

Fig.7 shows the fittest 100 overall solutions throughout the 

GADT; the box drawn on the contour map represents the 

updated (trimmed) domain, eliminating 10% of the original 

domain at each step. The continuation of domain trimming 

results in identifying new local minima. As more local 

minima are identified, they begin to compete with each 

other. Eventually, the trimming technique will exclude the 

values of low fitted local minima and will deem them as 

unfit results. This helps the GA to focus more on only the 

top-fitted solutions ultimately enhance the discovery rate 

(precision) of global optima solutions. Fig.7d shows the 

final domain after 20 domain trimming iterations; it is noted 

that the domain cannot get trimmed further as the two global 

minima reside on the trimmed boundaries of the last step. It 

is worth mentioning that the final domain is only 3.5% of 

the initial full domain in more precise (virtually exact) 

optimum solution: f(x, y) = -1.0316284533464 

(0.000000014% error). 

 

 
 
 

 

 
 

 
 

 

 
 

 

Fig. 6: Six-hump Camelback function. a) 3D plot b) Contour plot 
 

B. GADT Technique Robustness 
To ensure GADT robustness, domain trimming is subject 

to further criteria preventing any potential adverse 

consequences. Domain trimming will not resume in any of 

the following scenarios: (a) if the range of values that yield  
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Fig.7: Illustration of the GADT algorithm applied to the Six-hump 

Camelback function at different iterations of domain trimming. 

 

fit results in the current domain is more than 90% of the 

previous domain; in other words, domain trimming will not 

commence until the feasible values get condensed into less 

than 90% of the domain. 

And (b) if after trimming, the GA yields solutions worse 

than previous GA initiation. Although the latter was not 

encountered during any of the algorithm testing sessions for 

any of the presented problems here, the criterion is set in 

place for potential future problem-specific complications. 

The effect of initial domain size is discussed in a subsequent 

section.  

C. Constraints Handling 
The use of penalty functions is very popular in handling 

constraints enabling the solution of constrained problems as 

unconstrained. The solutions that violate any constraints are 

penalized in order to characterize non-feasible solutions by 

high objective function values. Non-stationary (dynamic) 

penalty functions typically exhibit superior performance to 

stationary (static) penalty functions. In its generality, a non-

stationary penalty function is defined as: 

( ) ( ) ( , , )pn pnf X F X p X c e 
                              (4)                                                                        

Where F(x) is the original objective function of the 

constrained optimization problem; p() is a dynamically 

modified penalty value, defined as: 

 (         )  {
(     )

   
    

     
                         (5)                                                                

Where,    is the individual member‟s performance criteria 

(in a structural design problem, this is often taken as the 

demand-to-capacity ratio, or utilization ratio to the 

satisfaction of the relevant design code); while cpn and epn 

are the penalty coefficient and exponent, respectively. As 

their name implies, they provide means to penalize the 

optimization objective if the     exceeds unity. Both cpn and 

epn, with different severity, will penalize unfit solutions 

minimizing their probability of re-appearing subsequent 

generation and feasible solution domain.  

D. Truss Structural Optimization 
  The mathematical form of the optimization problem for 

truss structure can be expressed as follows:  

       

 1 2

1

Find                   , , ...........                         (6)

To Minimize     = ( )                                       (7)

Subject to        ( ) 2,...       
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min max

                (8)

    and            2,...                         (9)i i iA A A  i = 1, n          

Where Ai = the design variable i (member i cross-sectional 

area), n = the number of the design variables, W(A) = the 

objective function (the structural weight),  = the material 

density, Li = the member length, m = the number of 

inequality constraints (g), 
min

iA  
and 

max

iA are the lower and 

the upper bound of the i
th

 variable respectively.  The lower 

and upper bounds posed by Eq.(8) on the constraints   

  include truss member stresses and joint displacements.  

E. Example: Cantilever 10-Bar 
Planar Truss Structure  

The GADT is tested against a classical global 

optimization problem: the Cantilever 10-Bar Planar Truss 

Structure optimization problem. This 10-dimensional 

problem has been investigated by many researchers, and has 

been well-established as an optimization benchmark 

problem known for being challenging with unknown global 

and multiple local minima. A schematic of the cantilever 10-

bar planar truss structure can be found in Fig.8. The 

assumed material density is 0.1 lb/in
3 

(2767.990 kg/m
3
), the 

length L is 360 in (914.4 cm) and the modulus of elasticity 

is 10,000 ksi (68,950 MPa). The stress and deflection 

limitations on the members are ±25.0 ksi (172.375 MPa) and 

± 2.00 in (5.08 cm), respectively. Cross-sectional areas are 

allowed to vary between 0.1 in
2
 and 35 in

2 
(0.6452 cm

2
 and 

225.806 cm
2
). No member grouping is utilized, resulting in 

each member having a potentially unique cross-sectional 

area (A1 to A10).  One loading case is studied when P1 = 100 

kips (444.8 kN) and P2 = 0. Table 1 gives the best 

discovered optimum solutions along with the corresponding 

minimum weight benchmarked against optimal designs by 

other published studies. It should be noted that the best 

discovered solution was found after 10000 iterations and the 

initial population size, prior to trimming, is taken as 500 

solutions. The optimal solutions found by the GADT meet 

all of the problem constraints and the comparisons in Tables 

1 show that the GADT provides superior results. Fig.9 

shows the convergence history to the optimum solution for 

GA with and without domain trimming for a population size 

of 500 going through 2000 iterations. Notice that 

convergence plateaus after around 800 iterations; at which 

point, the trimming has progressed such that it has little 

further effect on the GA signifying the elimination of most 

or all unfit values. Also, notice that in some subsequent 

iterations, the conventional GA identifies a higher minimum 

weight as the best discovered solution, as compared to a 

previous iteration. 

  
(a) Initial Domain – User provided 

 

(b) First domain trimming 

  
(c) after 10 domain trimming  (d) Final solution domain 
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Fig.8: 10-Bar planar cantilever truss model 

This primarily a result of the mutation process, which 

eventually is filtered out with enough iterations. This effect 

is not exhibited in presence of domain trimming since the 

mutation is unable to select the excluded/trimmed unfit 

values.  

Since GA optimization is an evolutionary method, it relies 

on generating populations of solutions in order to find the 

optimum amongst them. To promote better discovery of 

optimum results, an adequate population size should be 

selected. Unfortunately, this parameter is problem-specific. 

The number of variables in a solution, diversity of values 

and initial domain selection are some of the factors 

determining the appropriate population size. 

 
Table 2: Optimization results for the 10-bar planar truss  

 

III. Summary and Conclusions  

   A modified version of Genetic Algorithm with Domain 

Trimming (GADT) is developed and presented in this study. 

The innovative technique is used to solve a least-weight 

optimization problem in the design of truss structures. Then, 

the GADT is tested against a well-established challenging 

benchmark problem; the Cantilever 10-Bar Planar Truss 

Structure optimization problem.  

 

 

Fig.10: Path to optimum solution for the 10-bar truss by GA and GADT. 

 

  This benchmark problem is a 10-dimensional optimization 

problem with unknown local and global minima. The GADT 

handles the problem-specified constraints using „non-

stationary penalty functions‟ method. The results show that 

the (GADT) method is efficient in finding the best 

discovered optimal solution. The optimal solutions found by 

the GADT meet all of the problem constraints and the 

comparisons with the published literature show that the 

GADT provides superior results. 

REFERENCES   

[1] Balling RJ, Briggs RR, Gillman K. Multiple Optimum 
Size/Shape/Topology Designs for Skeletal Structures Using a Genetic 

Algorithm. J Struct Eng. American Society of Civil Engineers; 2006; 

132(7):1158–65.  
[2] Perez RE, Behdinan K. Particle swarm approach for structural design 

optimization. Comput Struct. Pergamon Press, Inc.; 2007; 85(19-

20):1579–88.  

[3] Luh G-C, Lin C-Y. Structural topology optimization using ant colony 

optimization algorithm. Appl Soft Comput. Elsevier Science 

Publishers B. V.; 2009; 9(4):1343–53.  
[4] Barakat, Samer A. "Shuffled complex evolution optimizer for truss 

structure optimization." Computing in Civil and Building 

Engineering, Proceedings of the International Conference. Vol. 30. 
2010. 

[5] Lee, Kang Seok, and Zong Woo Geem. "A new structural 

optimization method based on the harmony search 
algorithm." Computers & Structures 82.9, 781-798, 2004. 

[6] Kaveh, A., and S. Malakouti Rad. "Hybrid genetic algorithm and 

particle swarm optimization for the force method-based simultaneous 
analysis and design."Iranian Journal of Science and Technology, 

Transaction B: Engineering 34.B1, 15-34, 2010. 

[7] Csébfalvi, Anikó. "A hybrid meta-heuristic method for continuous 
engineering optimization." Civil Engineering 53.2, 93-100, 2009. 

[8] Kaveh, A., and S. Talatahari. "A hybrid particle swarm and ant colony 

optimization for design of truss structures." Asian Journal of Civil 
Engineering 9.4, 329-348, 2008. 

[9] Schmit Jr LA, Miura H, "Approximation concepts for efficient 

structural synthesis," NASA CR-2552, Washington, DC: NASA, 
1976. 


