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Abstract— This paper proposes a methodology for robustness-

based design optimization under both aleatory (i.e., natural or 

physical variability) and epistemic uncertainty (i.e., imprecise 

probabilistic information). The proposed formulations 

specifically deal with epistemic uncertainty arising from multiple 

interval data. An efficient likelihood-based approach is used to 

represent the interval uncertainty, which is then used in the 

framework for robustness-based design optimization to achieve 

computational efficiency. The proposed robust design 

optimization methodology is illustrated using a general 

mathematical example problem. 
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I. Introduction 

In engineering applications, it is required to quantify the 

uncertainty in the input random variables. The system or 

process is generally expressed with the response or output 

function f(x). The input random variables x of a response or 

output function f(x) may contain both aleatory and epistemic 

uncertainty. 

In the system or process design, there exist several 

methods, based on the aleatory uncertainty, including Monte 

Carlo simulation, first order reliability method (FORM), 

second order reliability method (SORM) etc. Epistemic 

uncertainty is produced due to lack of information about the 

system or process and due to lack of skill or knowledge for 

extracting data from a system or process. However, 

considering different situations, the epistemic uncertainty can 

be divided into two types: insufficient data with random 

characteristic [1] and insufficient data with deterministic 

characteristic [2]. Epistemic uncertainty can be reduced by 

gathering more information about the system which will tend 

to increase the cost. Therefore, this is important to estimate the 

uncertainty precisely in a cost effective way. This paper 

specifically focuses on epistemic uncertainty arising from 

multiple interval data on input random variables. 
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There exist well-established methods for representation of 

aleatory uncertainty. However, in the complex engineering 

designs or processes, it is always difficult to obtain precise 

point data from the observations. There exists high probability 

of getting deviation in the manufactured data which will 

produce an interval or range of the experimental data. 

Therefore, experts and researchers have developed different 

methods to estimate the response of a system function when 

information on input variables are available in the form of 

interval data (e.g., [3-5]).  

There are various sources of interval data which are 

mentioned in the literatures [4, 5]. Interval data can be 

classified into single and multiple interval data considering 

computational method. In the multiple interval data, each 

interval generally bears equal weight [4]. Considering this 

fact, Empirical p-box can be formulated [7]. The Equi-

probability model is popular for the representation of the 

interval data. This model corresponds to Laplacian principle of 

indifference [8], where each interval is treated using uniform 

distribution [9]. 

Likelihood-based methodology has been popular for the 

probabilistic representation of a random quantity where sparse 

point data and interval data are available [10, 11]. Likelihood-

based methodology can quantify the distribution uncertainty 

for specific distributions (e.g. normal, lognormal, etc.) while 

fitting probability distributions to sparse and imprecise data 

[12]. Maximum likelihood parameter estimation is also used in 

several engineering applications [13-15]. Maximum likelihood 

method is proven to be more efficient than other methods in 

the application with different types of distribution. Type 1 

Extreme Value Distribution of Maxima is used to design 

engineering systems [16].  

The current research is intended to develop a methodology 

that provides decision support to engineers for design and 

analysis of engineering systems for poor amount of data 

considering stochastic epistemic uncertainty. This uncertainty 

prevails in the natural characteristics of a design and observed 

data and this is ignored in the deterministic design 

optimization. Non-deterministic design optimization has 

gained increasing attention in the last few decades due to this 

reason. There are now extensive volume of methods and 

applications available for non-deterministic design 

optimization problems. Robustness-based design [17-21] is the 

prominent field of optimization which considers the 

uncertainty in the design parameters. Robustness is the 

performance criteria for a system to operate continuously over 
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a wide range of operational conditions and will be failed 

outside the conditions [22].Taguchi developed the concept of 

robust design and proposed a method where the product 

performance or the output remains insensitive to the variation 

in design variables in manufacturing process [23]. The 

variation in the design variables was designated as noise 

which could be created from various factors in the 

manufacturing process. As engineering models are becoming 

more and more complex day by day, application of statistical 

design tools in Taguchi‟s method is not well enough to 

calculate optimal feasible solution for multiple measurements 

of performance and design constraints [24]. Due to application 

of nonlinear programming in the robust design, it became 

possible to achieve robustness in both performance outputs 

and design constraints [18]. 

There exist a few methods that develop robustness-based 

design optimization methodology under data uncertainty (i.e., 

using sparse point data and interval data on input random 

variables). Zaman et al. [20] proposed a decoupled approach 

for robustness-based design optimization using both sparse 

point and interval data. They achieved computational 

efficiency by un-nesting the design optimization from the 

uncertainty analysis of the epistemic variables. This is a 

sequential approach, where two optimization formulations are 

solved iteratively until convergence. In this paper, an 

optimization approach is proposed where the epistemic 

analysis is completely eliminated from the design optimization 

framework by estimating the distribution parameters of the 

epistemic variables using a likelihood-based uncertainty 

representation of interval data [25]. 

The rest of this paper is organized as follows. In section 2, 

a nested optimization-based methodology is presented that 

estimates the distribution parameters of input random 

variables under interval uncertainty using maximum 

likelihood-based approach. Section 3 illustrates the 

formulation of the robustness-based design optimization 

model for the MLE-based approach. Section 4 illustrates 

numerical example for the proposed MLE-based robust design 

optimization. Section 5 provides conclusions and suggestions 

for future work. 

II. Likelihood-based approach to 
epistemic uncertainty 

representation 

Likelihood-based approach has versatile applications, 

however, most of them are developed for point data. In this 

section, a maximum likelihood-based approach is discussed 

that estimates the uncertainty in input variable x described by 

multiple interval data. Maximum likelihood estimation (MLE) 

constructs an estimator to estimate the unknown distribution 

parameters (P). The „likelihood‟ term was first introduced by 

an English mathematical statistician named R. A. Fisher in 

1921. The likelihood for a parameter „P‟ is a quantity 

proportional to the probability of the parameter P quantified 

for a specific population where variable x consists the 

observed data as a sample [26].  

A Likelihood-based methodology has been developed to 

estimate the epistemic uncertainty from the interval data for 

any distribution in [25]. In this paper, we use this likelihood 

approach in robustness-based design optimization framework. 

The likelihood-based approach for representation of 

epistemic uncertainty developed in [25] uses the following 

nested optimization formulation: 

     

niforubxlbts

xLxf

iii

px

,...,2,1..
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We can estimate the parameters of the distribution of a 

random variable described by interval data by solving the 

optimization problem in Eq. (1). In the numerical example, we 

have used normal distribution for the sake of illustration.  

Zaman et al. [5] formulated a method using nonlinear 

programming for calculating the moments from the different 

combination of multiple interval data. The bounds of the 

moments help to verify the parameters estimated from the 

maximum likelihood estimation method through producing 

bounds on parameters.  

III. Robustness-based design 
optimization under epistemic 

uncertainty 

The variables in the designs and processes are considered 

as fixed in the deterministic optimization formulation without 

considering any stochastic characteristics or data uncertainty 

in the variables. This deterministic design optimization could 

be used to get an optimal point which might be applied as an 

initial guess in the robustness-based optimization problem.  

In real engineering applications, the robust design 

optimization must consider the stochastic characteristics of the 

data which may make it complex in nature. In the robustness-

based design optimization, objective robustness is achieved by 

measuring the variation in the objective function through the 

variance or standard deviation. Feasibility robustness is 

achieved by feasible region reduction method. First order 

Taylor series expansion is used to estimate the mean and 

variance of the objective function. Weighted sum method is 

used to trade off the multiple objectives in the performance 

function of the robust design optimization [20].  

The robustness-based design optimization was initially 

designed only considering aleatory uncertainty. However, the 

design methodology includes complexity in the robust design 
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due to epistemic uncertainty. Therefore, the design variables d 

and the input random variables z might have a high chance for 

having epistemic uncertainty in the form of multiple interval 

data. Normally, the designer has no control on the non-design 

epistemic variables z. Hence, the optimization method has to 

employ a search among the possible values of the epistemic 

variables in order to find an optimal solution in the nested 

formulation of robustness-based design optimization. This 

nested formulation is a very expensive formulation and does 

not provide any guarantee for convergence.  

Therefore, another design optimization algorithm is 

developed which is un-nested from the epistemic analysis with 

the computational accuracy. The decoupled approach [20] can 

achieve computational efficiency by un-nesting the design 

analysis from the epistemic analysis. We can achieve further 

computational efficiency if the uncertainty analysis for the 

epistemic variable is carried out outside the design 

optimization framework. In the following subsection, we have 

proposed an efficient approach for robustness-based design 

optimization, where epistemic analysis is done based on the 

likelihood-based approach described in section 2. 

The proposed formulation of nonlinear MLE-based robust 

design optimization can be expressed as: 

    

        
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(2) 

In the Eqn. (2), design variables are denoted by d which is 

a vector and z is the vector of the non-design epistemic 

variables.   zdgE i ,  is the mean and   **
,, zzi dg   is 

the standard deviation of the i‟th constraints. LB and UB are 

the lower and upper bounds of the constraints gi’s, respectively 

where lb and ub are the vectors of the lower and upper bounds 

of the design variables. Here, the values of „w≥0‟ and „v≥0‟ 

are the weighting coefficients which represent the relative 

importance of the objectives µf and σf where k ensures the 

feasibility robustness in the constraints. The standard deviation 

(σd) or variance of the design variables, the mean (µz) and 

standard deviation (σz) of the non-design epistemic variables 

are provided as fixed values for robust design optimization. 

The estimated uncertainty of the non-design variables can be 

provided through the likelihood-based method.  

The uncertainty representation method is shown with the 

illustration of normal distribution in section 2. The MLE-

based approach estimated the parameters which can be used to 

provide the mean (µz) and standard deviation (σz) of the non-

design epistemic variables.  

The mean (µ) and standard deviation (σ) of the 

performance function in Eqn. (2) can be obtained by first order 

Taylor series expansion method. If there is a response variable 

Y which is represented by a non-linear performance function f 

consists a set of random variables  nxxx ,...,, 21 then the 

response variable can be represented as, 

 nxxxfY ,...,, 21  (3) 

The first-order approximate mean of Y : 

   
nxxxfYE  ,......,,

21
  (4) 

The first-order variance of Y can be written as: 
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Using Eqns. (4) and (5), based on approximation method, 

the moments of the performance function can be estimated. 

These procedures are followed to estimate the mean and the 

standard deviation of the performance function in the 

robustness-based design optimization.

 

IV. Numerical example 

In this paper, maximum likelihood-based estimation 

(MLE) approach has been proposed for robustness-based 

design optimization. The MLE-based robust design 

optimization is illustrated with normal distribution. A 

mathematical design problem is illustrated which includes an 

objective function of three random variables and four 

coefficients. The observed data of the coefficients are multiple 

intervals which are overlapping or non-overlapping in nature.  

The example problem has two nonlinear constraints. There 

are three design variables x and four coefficients (a, b, c and l) 

in the performance function. The variables xi (where, i = 1,2,3) 

are treated as design variables where the coefficients are 

treated as the non-design epistemic variables and denoted as zi.    

The performance function with the nonlinear constraints of 

the mathematical model: 

3
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(6) 

The coefficients of the objective function consist of 

multiple interval data. The parameters of the log likelihood 

density function are estimated. The interval data including 
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overlapping, non-overlapping and mixed of the coefficients 

are presented in Table 1.  

TABLE I. Multiple interval data of the coefficients 

Coefficient Multiple Interval Data [lbi-ubi] 

a
 

[1.5 - 2.2; 1.8 – 2.3; 2.0 – 2.5; 2.1 – 2.6; 2.2 – 2.7] 

b
 

[2.8 – 3.2; 3.3 – 3.9; 4.0 – 4.5; 4.7 – 5.0; 5.2 – 6.0] 

c  [2.7 – 3.1; 2.9 – 3.2; 2.8 – 3.2; 3.5 – 3.8; 4.0 – 4.5] 

l  [4.8 – 5.1; 5.3 – 5.9; 6.0 – 6.8; 6.5 – 6.9; 6.6 – 7.0] 

The parameters of the coefficients (a, b, c and l) are 

estimated from Eqn. (1) through nested optimization which are 

given in Table 2. 

TABLE II. Parameters of normal distribution for the 

coefficients 

Coefficient z  z
 

a
 

2.2200
 

0.4792 

b
 

4.2200
 

1.1565 

c  3.3400 0.7003 

l  6.1600 0.9222 

In the proposed robust design optimization, it requires the 

standard deviations (σx) of the design variables and the 

moments (mean (µz) and standard deviation (σz)) of the 

epistemic non-design variable.  

We have assumed the standard deviation of the random 

variables as,
 

5.0
321
 xxx   

The robust design formulation from Eqn. (2) for the 

mathematical example: 
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The mean (µf) and standard deviation (σf) of the 

performance function are estimated form first order Taylor 

series expansion method. As mentioned previously, „w ≥ 0‟ is 

the weighting coefficient which ranges from 0 to 1 that 

provides the relative importance of the objectives µf and σf. 

The value of „k‟ is assumed to be unity which adjusts the 

robustness of the method against any types of conservatism in 

the solution. The value of „k‟ ensures feasibility robustness in 

the robust design optimization. 

Matlab solver „fmincon‟ is used for solving robust design 

optimization in Eqn. (7). Here, „fmincon‟ uses „Active set 

algorithm‟ for optimization of the performance function. From 

the optimization, mean (µf) and standard deviation (σf) of the 

performance function are obtained for different values of „w‟. 

In order to demonstrate the accuracy and efficiency of the 

proposed methodology, this example problem is also solved 

using the decoupled method developed in Zaman et al. [20]. 

Results obtained from both the approaches are presented in 

Figure 1. 

It is seen in Figure 1 that MLE-based robust design 

generates superior results for this example problem as evident 

from the lower values of both mean and standard deviation of 

the performance function. Since the decoupled approach 

developed in Zaman et al. [20] solved two optimization 

problems (one for robust design under aleatory uncertainty and 

the other for robust design for non-design epistemic variables) 

iteratively until convergence, the computational expense for 

the proposed MLE-based robust design would be 

approximately one-fourth of the former assuming that it 

requires at least two iterations between the two optimization 

formulations for convergence. 

 

Figure 1. Robust design optimization using MLE-based and 

decoupled approaches 

V. Summary and Conclusion 

This paper proposed a likelihood-based robust design 

optimization under epistemic uncertainty arising from multiple 

interval data. The maximum likelihood-based uncertainty 

representation methodology is used in the design optimization 

framework to solve robustness-based design optimization 

problem under epistemic uncertainty. This proposed 

methodology is illustrated for a numerical example.  

The major contribution of this paper is to develop a single 

loop robustness-based design optimization framework using 

the likelihood-based uncertainty representation for the non-

design epistemic variables. The likelihood-based approach of 

epistemic uncertainty representation is able to estimate the 
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parameters of any distributions. The estimated parameters can 

be used to calculate moments of the distributions which are 

required for the robust design optimization.  

The proposed MLE-based robust design optimization 

model is better than the existing robust optimization methods 

including decoupled approach with respect to accuracy and 

computational expense. The proposed MLE-based robust 

optimization can provide most probable solution of the robust 

design where decoupled approach provides the worst case 

scenario due to the use of upper bound of the moment 

(standard deviation). The proposed robust optimization 

methodology reduces the computational cost through a single 

loop formulation.  

This paper developed a robust design optimization 

methodology for single discipline system. However, the 

proposed methodology can easily be extended to solve robust 

design optimization problems for multidisciplinary systems. 
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