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Abstract—This paper presents a novel benchmarking tool,
NMM-StoNED, which identifies the best practices closely located
with each decision making unit (DMU) in the input-output space.
Unlike the conventional techniques such as DEA where the
success recepies of the benchmarks may not be transferable
to all DMUs given their differences in, e.g., the operational
scales, best practices identified by this method do not suffer from
these problems and offer more practical values. NMM-StoNED
is a specific configuration of the clustering and efficiency esti-
mation algorithms in the benchmarking framework previously
presented. This combination is able to cluster DMUs into less
ambiguous groups and model the inefficiencies in a stochastic
semi-nonparametric framework, which produces more accurate
results than conventional benchmarking techniques such as DEA
or other combinations such as the integration of K-means and
StoNED. The performance comparison between NMM-StoNED
and DEA has previously been reported, and the superiorities
of StoNED over other productive efficiency analysis methods
have been thoroughly investigated. Here we focus on showing
the advantages of NMM in the clustering based benchmarking
framework, for which, an empirical study using the Finland
energy regulation data was conducted. This study contributes in
its systematic evaluations on the performance of NMM-StoNED
under various conditions which provide solid specifications on
this algorithm, availing its practical use.

Keywords—benchmarking, normal mixture model (NMM),
data envelopment analysis (DEA), stochastic semi-nonparametric
envelopment of data (StoNED)

I. INTRODUCTION

Benchmarking, the process of comparing the performance
of one decision making unit (DMU) against that of the DMUs
with the ‘best practice’, has multiple applications, including
offering the general insight of a given business sector,
facilitating the manager on decision making, and providing
the backbone of incentive provision for the regulators in
the context of multiple agents [1]. DEA (data envelopment
analysis) is conventionally applied in benchmarking, where the
intensity weights strictly positive from the frontier estimation
are considered as the best practices in benchmarking [2].
However, the success formula of the benchmarks identified
may not be transferrable to a given DMU if they differ
greatly on their, e.g., input and output structure. Also, as a
deterministic method geared towards efficiency estimation,
DEA doesn’t take consider the stochasticity in its modelling
framework. Thus, DEA is sensitive to both the heterogeneity
and random noise of the DMUs in benchmarking.
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We have proposed a clustering based benchmarking frame-
work in [4], where it segments the DMUs into groups based
on user-specified metrics (e.g., the input-output vectors or
their projections on the estimated frontier) using a clustering
technique, and the benchmark(s) are identified according to the
efficiency scores estimated from productive efficiency analysis
within each cluster. We have shown that such a framework
is flexible in choosing the clustering and efficiency analysis
algorithms and these problems could be efficiently solved if
the method at each step is appropriately selected. However, for
what combination this method achieves the best performance
is still left for discussion.

Typical clustering approaches can be classified into three
categories, i.e., the hierarchical methods, the partitioning meth-
ods, and the model-based methods [5]. Hierarchical algorithms
recursively combines or splits a set of objects into bigger or
smaller groups based on a certain distance measurement and
stops when meeting a certain criterion [6]. Methods of this
class are conceptually intuitive and computationally simple
which, however, could not determine the number of groups
automatically, needs expert domain knowledge to define the
distance measurement and is problem-specific. Partitioning
methods iteratively reallocate data points across groups until
no further improvement is obtainable [5], [11], with K-means
being the most representative algorithm of this class [11].
Partitioning methods are widely used due to their computa-
tional simplicity and nonparametric structure which, however,
needs pre-specification of the number of clusters. Model-based
techniques optimise the fitness between the data and the model
where the data is assumed to be generated [14]. Model based
methods are superior over other methods in their automatic
determination of the number of clusters, robustness to outliers,
and probabilistic nature [5]. Among others, NMM (normal
mixture model) is the most widely applied method of this class
since normal distribution is the most commonly encountered
distribution in practice.

Traditional productive efficiency analysis methods can be
grouped based on two properties, i.e., parametric or non-
parametric, and deterministic or stochastic. Many statistical
methods can be used for productive efficiency analysis, with
the most widely applied being DEA and SFA (stochastic fron-
tier analysis), where DEA is non-parametric but deterministic
and SFA is stochastic but parametric [8]. StoNED (stochastic
semi-nonparametric envelopment of data) is a recently de-
veloped technique that melds the merits of DEA and SFA
where the inefficiencies are estimated in a stochastic semi-
nonparametric fashion. Unlike the semiparametric variate of
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SFA, StoNED builds directly on the axioms of the production
theory such as free disposability and convexity instead of
making any assumptions on the functional form or smooth-
ness [9]. On the other hand, StoNED uses information of all
observations in the data set to estimate the frontier rather than
a few influential ones as adopted by DEA, making it less
sensitive to outliers than DEA besides its insensitivity to the
random noise.

Given the advantages of NMM and StoNED in clustering
and efficiency estimation, respectively, we are motivated to fit
these two algorithms in the clustering based benchmarking
framework presented in [4]. This method, named NMM-
StoNED here, detects the heterogeneous structure of the
data, groups similar DMUs into unambiguous clusters, and
ranks them within each cluster by the estimated efficiencies
according to which the best practice is identified for each
group. The superiorities of NMM-StoNED over DEA have
been demonstrated in [4] using Finland energy regulation data
from EMA (Energy Market Authority), and the advantages
of StoNED over other efficiency analysis methods such as
DEA and SFA have been studied in [10]. Here we focus on
evaluating the performance of combining NMM with StoNED
as compared with integrating other clustering techniques with
StoNED in benchmarking. For this, we compared NMM with
K-means, the most widely applied clustering technique due
to its simple yet powerful features, in this clustering based
benchmarking framework with an empirical study.

The rest of paper is organized as ‘Method’, ‘Empirical
study’ and ‘Conclusion’. The technical details of NMM
and StoNED are described in the ‘Method’ section. In the
‘Empirical study’, the ‘Data and methods’ and ‘Results and
discussion’ are described by sub-sections. The ‘Conclusion’
section finalizes this paper by summarizing the work and main
contributions, and pointing out the future direction.

II. METHOD

The proposed method, NMM-StoNED, combines the NMM
and StoNED into a unified framework. One can either measure
the efficiencies of all DMUs using the whole data set before
clustering, or compute the efficiencies using segment frontier
after clustering if the number of DMUs in each cluster is
sufficiently large [4]. The first alternative was used here given
the limited size of our empirical data. The estimation process
comprises of 1) estimating the efficiencies of all DMUs from
the whole data set using StoNED; and 2) clustering DMUs
using NMM and identifing the best practices in each group.

A. Efficiency estimation using StoNED

Given the standard multiple-input ri, single-output yi, cross-
sectional productive efficiency analysis model yi = f(ri) −
ui + vi,∀i = 1, . . . , N. where f satisfies monotonicity and
concavity, ui > 0 is an asymmetric inefficiency term and vi is
a stochastic noise term, StoNED uses a two-stage strategy in
efficiency estimation [9]. In Stage 1, the shape of the function
f is estimated by convex nonparametric least squares (CNLS)
regression. In Stage 2, the inefficiency u is computed from

the variances (σ2
u, σ2

v), which are estimated based on the
skewness of the CNLS residuals (obtained from Stage 1) using,
e.g., the method of moments. In the second stage, additional
distributional assumptions are typically assumed, including,
e.g., the asymmetric distribution for ui with positive mean µ
and finite variance σ2

u, and a symmetric distribution for vi with
zero mean and constant finite variance σ2

v .
Mathematically, the first stage is equivalent to (1) to (4) [9],

min
v,α,β

n∑
i=1

ε
2
i such that (1)

yi = αi + β
′
iri + εi (2)

αi + β
′
iri ≤ αh + β

′
h
ri, ∀h, i = 1 . . . n (3)

βi ≥ 0.∀i = 1 . . . n (4)

where αi and βi are coefficients specific to observation i
and vi captures its random noise. In Stage 2, the inefficiency
is computed using the distribution of the CNLS residuals ε̂i
(note that ε = vi + ui). Assuming that the inefficiency and
noise terms follow the half-normal and normal distributions,
respectively, the 2nd and 3rd central moments of the composite
error distribution are

M2 = [
π − 2

π
]σ

2
u + σ

2
v, M3 = −(

√
2
π

)[ 4
π
− 1]σ3

u, (5)

which can be estimated using the CNLS residuals

M̂2 =

n∑
i=1

(ε̂i − ε)
2
/n, M̂3 =

∑n

i=1
(ε̂i − ε)

3/n. (6)

The standard deviations of the inefficiency and error term are
then computed from

σ̂u = 3

√
M̂3

(

√
2
π

)[ 4
π
− 1]

, σ̂v =

√
M̂2 − [

π−2
π

]σ̂2
u. (7)

The conditional distribution of the inefficiency ui given
εi is a zero-truncated normal distribution with mean µ? =
−εiσ2

u/(σ
2
u + σ2

v) and variance σ2
? = σ2

uσ
2
v/(σ

2
u + σ2

v).
Let φ and Φ represent the standard normal density function
and the standard normal cumulative distribution function,
respectively, the inefficiencies are computed by E(ui|εi) =

µ? + σ?[
φ(−µ?/σ?))

1−Φ(−µ?/σ?) ].

B. Cluster-specific benchmark identification using NMM

In this step, the metrics dominating the heterogeneity of
the data and following (or convertible to) normal distribution
were specified and used as the input of NMM. If the input
does not follow normal distribution or is a composite of
multiple distributions, the mixture model of the corresponding
distribution or a joint mixture model [3] would be required.

Assume that each observation r is drawn from g mixed
normal distributions where, for each normal distribution
fi, it has the prior probability πi and parameters θi,
NMM optimises the fitness between the data and model
f(r; Θ) =

∑g
i=1 πifi(r;θi). Note that Θ = {(πi,θi) : i =

1, . . . , g} denotes all unknown parameters, 0 ≤ πi ≤ 1
for any i and

∑g
i=1 πi = 1. Expectation Maximization

(EM) algorithm is used to iteratively estimate the param-
eters by maximising the data log-likelihood logL(Θ) =∑N
j=1 log([

∑g
i=1 πifi(rj ;θi)]), where R = {rj : j =

1, . . . , N} and N is the total number of observations. The
problem is casted in the framework of incomplete data using a
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dummy variable Iji to indicate whether rj comes from compo-
nent i. Thus, logLc(Θ) =

∑N
j=1

∑g
i=1 Iji log (πifi(rj ;θi)).

At the mth iteration of the EM algorithm, the E (expectation)
step computes the expectation of the complete data log-
likelihood Q

Q(Θ; Θ
(m)

) = E
Θ(m) (logLc|R)

=

N∑
j=1

g∑
i=1

τ
(m)
ji

log (πifi(Ij ; θi)), (8)

and the M (maximisation) step updates the parameter esti-
mates to maximize Q. The algorithm is iterated until con-
vergence. Note that I’s are replaced with τ ’s in (8), where
τji = E[Iji|rj , θ̂1, . . . , θ̂g; π̂1, ..., π̂g]. The set of parameter
estimates

{
θ̂1, . . . , θ̂g; π̂1, ..., π̂g

}
is a maximizer of the ex-

pected log-likelihood for given τji’s, and each rj is assigned
to its component by {i0|τji0 = maxi τji}. In NMM, the
probability density function of fi is defined as fi(rj ; θi) =

1

(2π)
p
2 |V |

1
2

exp
(
− 1

2 (rj − µi)
TV −1(rj − µi)

)
. Note that

V = diag(σ2
1 , σ

2
2 , . . . , σ

2
p), |V | =

∏p
v=1 σ

2
v and p is the

dimension of the observations, whose parameters are estimated
iteratively over the following equations [12].

µ̂
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i

=
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(m)
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rj/

N∑
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(m)
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)
T
/

N∑
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(m)
ji

/N τ
(m)
ji

=
π

(m)
i

fi(rj ;θ
(m)
i

)∑g

i=1
π

(m)
i

fi(rj ;θ
(m)
i

)

Bayesian information criterion (BIC) [13], the most widely
used model selection method, was used here to determine the
best fitting model as well as the optimal number of clusters
if not particularly specified BIC = −2 logL(θ̂) + d log(pN),
where d represents the number of free parameters.

Once the DMUs are properly segregated, we rank the
DMUs within each cluster by their efficiencies, and the best
practice(s) within each cluster are considered the benchmarks
of other units belonging to this group. As pointed out in [4],
the ‘best practice’ may not achieve 100% efficiency, and is
called the ‘relative benchmark’ to differentiate it from the
‘absolute benchmark’ which achieves, and more than one ‘ab-
solute benchmark’ may exist for one group if multiple DMUs
achieve 100% efficiency. Relative benchmark is defined as
h = {i|max

NGj
i=1 ζi},max

NGj
i=1 ζi < 1, and absolute benchmark

is h = {i|ζi ≥ 1},max
NGj
i=1 ζi ≥ 1, where h denotes the

frontier, ζi represents the efficiency of DMU i (i ∈ 1 . . . NGj
in group Gj), N is the number of DMUs, g is the number of
groups identified, and Gj has NGj DMUs.

III. EMPIRICAL STUDY

A. Data and methods

Our empirical data comes from the Energy Market Authority
(EMA) website (www.emvi.fi), which consists of 85 electricity

suppliers and are the six-year average over the period 2005-
2010 [4], [7]. Recently, EMA has replaced the conventional
DEA and SFA by StoNED after a rigorous evaluation pro-
cess [7]. Also, provided with the advantages of StoNED in
overcoming the pitfalls of DEA and SFA [10], we fitted
StoNED in this framework, and focused on evaluating the
performance of NMM in improving the accuracy of efficiency
estimation when combined with StoNED. For the purpose of
comparison, K-means, a simple yet powerful and most widely
applied clustering technique, was chosen.

We used the cost frontier model, xi = C(yi) · exp(δzi +
ui + vi), as adopted by EMA [7], in this empirical study,
where C denotes the frontier cost function. This model adds
a contextual variable z and its weight δ to the conventional
cost frontier model. The variable z is the proportion of the
underground cables in the total network length which captures
the heterogeneity of the electricity suppliers in Finland, since
the underground cables are widely used in urban and suburban
regions but not in rural areas. In this model, the total cost (x)
is used as the single input, and three variables, i.e., ‘Energy
transmission’ (GWh of 0.4 kV equivalents, y1), ‘Network
length’ (km, y2), and ‘Customer number’ (y3) are specified
as the outputs (y). We used the three output-input ratios from
productive efficiency analysis as the input variables for clus-
tering, i.e., ‘Energy transmission/Efficient cost’ (r1), ‘Network
length/Efficient cost’ (r2), and ‘Customer number/Efficient
cost’ (r3), where the efficient cost is computed as the estimated
cost frontier ‘C(yi)’ to take into account the efficiencies in
segmentation. In addition, the actual cost was used in the
inputs, i.e., ‘Energy transmission/Actual cost’ (r1), ‘Network
length/Actual cost’ (r2), and ‘Customer number/Actual cost’
(r3), to exclude the influence of the efficiencies in the analysis
as a comparison. Note that the efficient cost is computed as
the actual cost multiplied by the firm efficiency. We used the
descriptive statistics of the clustered groups to evaluate the
clustering accuracy, assuming that better clustering results in
more distant inter-group means, less cross-group overlaps and
lower within-group standard deviations.

B. Results and discussion

The 85 firms were grouped into four clusters, which consist
of 26, 33, 24 and 2 DMUs, respectively, for clusters 1 to
4. The descriptive statistics, including mean, standard devia-
tion and parameter ranges of r1 . . . r3 and ‘Energy transmis-
sion/Network length’, are summarized for groups clustered by
NMM and K-means in Table 1. Efficient and actual costs are
used as the denominator of the inputs in the upper and lower
panel of Table 1, respectively.

Let’s first analyze the scenarios where efficient cost is used
for computing the clustering inputs. It is seen that the groups
clustered using NMM are characteristic of the four types of
electricity networks in Finland, but with K-means the statistics
are not as representative as such especially for the 4th cluster
(the industrial network). Specifically, the rural area consumes
less energy than the other regions given its sparse population in
Finland and there is no significant difference among suburban,
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urban and industrial customers. This property is represented by
r1, and better captured in NMM-clustered groups than those
clustered by K-means, since the distance between cluster 1 and
the average of the other clusters is (0.124+0.158+0.156)/3-
0.075=0.071 in NMM-clustered groups which is larger than
that of K-means, i.e., (0.137+0.162+0.124)/3-0.095=0.046 (Ta-
ble 1). The distance between the customer and electricity
producer decreases from the rural to the industrial group,
leading to a declining trend in the ‘Network length’ from
clusters 1 to 4. This is well-captured by r2 in NMM-clustered
groups but is violated by the industrial cluster when the groups
are clustered by K-means (i.e., the distance is 0.735 in the
industrial group which is bigger than 0.529, the distance in
the urban cluster). The number of customers increases from
the rural to urban regions, and only a few industrial customers
exist in Finland. This property is captured by r3 in both NMM
and K-means clustered groups. However, as the standard
deviation of the group means is slightly larger in NMM-
clustered groups than that in the K-means case, we’d say that
groups are more clearly separated by NMM than K-means
regarding this parameter. Here, we also examined the ‘Energy
transmission/Network length’, since it merges r1 and r2 (the
parameters that capture the principle differences between
NMM and K-means in separating these groups given their
statistics) and should represent the major distinction between
the four groups as well as different clustering techniques. As
seen from Table 1, the standard deviation of the group means
is much larger in NMM-clustered groups (0.623) than that in
the case of K-means (0.288), the average standard deviation of
the groups is lower in case of NMM (0.209) compared with
K-means (0.285), and there is no adjacent group overlap in
NMM separated clusters but is 0.323 on average in the case
of K-means. Thus, it is concluded that NMM could separate
the four types of electricity suppliers into more appropriate
groups compared with K-means in this empirical study.

The same conclusions can be drawn when the actual cost
is used in the inputs as seen from Table 1. Thus, NMM
performs better than K-means in this real case application
regardless of whether the efficiencies are taken into account
in computing the clustering inputs. However, using efficient
cost in the inputs indeed groups the DMUs into more distant
clusters than using the actual cost no matter whether NMM or
K-means is used. For example, the averages of the standard
deviation and overlapping range are lower in most cases when
the efficient cost is used than those computed using the actual
cost, indicating a higher within-group homogeneity and a
larger inter-group distance when efficiencies are included in
grouping. Also, the standard deviations of the group means
are mostly larger when the efficient cost is used in the inputs
than those computed using the actual cost, which again shows
a larger inter-group distance among the four clusters.

The superiority of NMM over K-means in separating the
rural, urban, suburban and industrial electricity networks in
Finland is also illustrated in Figure 1. In this figure, each color
represents one type of electricity supplier. There is a clear
trend from the rural to urban areas (colored in black, red,

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

2
0

5

10

15

20

r1

NMM−StoNED (Efficient cost)

r2

r3

(a) NMM (Efficient)

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

2
0

5

10

15

20

r1

Kmeans−StoNED (Efficient cost)

r2

r3

(b) K-means (Efficient)

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

2
0

5

10

15

20

r1

NMM−StoNED (Actual cost)

r2

r3

(c) NMM (Actual)

0

0.1

0.2

0.3

0.4

0

0.5

1

1.5

2
0

5

10

15

20

 

r1

Kmeans−StoNED (Actual cost)

r2
 

r3

(d) K-means (Actual)

Figure 1. Comparison of NMM and K-means using EMA data. The
efficient cost (a and b) and actual cost (c and d) are used in the inputs.
The filled dots are the best performing unit for each cluster. ‘Black’,
‘red’, ‘blue’ and ‘green’ represent ‘rural’, ‘suburban’, ‘urban’ and
‘industrial’ networks, respectively.

and blue, respectively) along the three axes and the industrial
cluster (shown in green) is distinctively separated from the
other groups in NMM clustering, regardless of whether the
efficiency is taken into account; yet when K-means is used,
the boundaries become ambiguous especially for the industrial
group where a few units are scattered into the rural cluster.
More importantly, notice that the filled dots (representing the
best performing DMU in a given cluster) may differ when
different clustering techniques are used, resulting in different
benchmarks for a given DMU. Take the industrial group as an
example, its best performing unit is within the rural area in
K-means clustering when efficient cost is used in the inputs
which, once chosen as the benchmark for the industrial group,
will become an unrealistic goal for this cluster given their large
differences in, e.g., the input-output space.

IV. CONCLUSIONS

We present a combination of the NMM based clustering
and the StoNED efficiency estimation technique in the bench-
marking framework previously presented in [4]. It inherits
the advantages of NMM such as automatic determination of
the number of clusters and insensitivity to random noise, and
the benefits of StoNED in its stochastic and semi-parametric
modelling. With one empirical application we show that the
DMUs could be clustered into groups having less ambigu-
ous boundaries than other clustering techniques such as K-
means. The superiorities of StoNED over other productive
efficiency analysis methods such as DEA and SFA have been
previously studied in [10]. Further, the benefits of combining
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Efficient cost NMM K-means
Mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean) Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean)
r1 0.075 0.124 0.158 0.156 0.034 0.095 0.137 0.162 0.124 0.024
r2 1.403 1.110 0.550 0.117 0.497 1.273 0.911 0.529 0.735 0.273
r3 5.961 8.219 11.846 0.265 4.204 6.504 9.785 13.227 1.986 4.149
ET/NL 0.054 0.114 0.314 1.583 0.623 0.080 0.174 0.341 0.827 0.288
STD Mean(STD) Mean(STD)
r1 0.016 0.026 0.020 0.012 0.019 0.027 0.022 0.020 0.041 0.028
r2 0.083 0.131 0.153 0.043 0.103 0.196 0.268 0.177 0.628 0.317
r3 0.977 1.776 2.281 0.228 1.316 1.015 0.784 1.707 1.729 1.309
ET/NL 0.014 0.026 0.108 0.686 0.209 0.039 0.090 0.113 0.898 0.285
[min, max] Mean(OL) Mean(OL)
r1 [0.038,0.102] [0.096,0.168] [0.120,0.210] [0.144,0.168] 0.026 [0.038,0.168] [0.084,0.174] [0.135,0.210] [0.059,0.168] 0.052
r2 [1.226,1.611] [0.785,1.374] [0.221,0.801] [0.074,0.161] 0.055 [0.642,1.611] [0.357,1.374] [0.221,0.923] [0.074,1.506] 0.667
r3 [3.651,8.410] [3.763,11.954] [8.009,18.491] [0.038,0.493] 2.864 [4.552,8.085] [8.297,11.302] [11.612,18.491] [0.038,3.763] 0
ET/NL [0.023,0.078] [0.079,0.169] [0.177,0.612] [0.897,2.269] 0 [0.023,0.237] [0.064,0.489] [0.153,0.612] [0.039,2.269] 0.323

Actual cost NMM K-means
Mean Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean) Cluster 1 Cluster 2 Cluster 3 Cluster 4 STD(Mean)
r1 0.093 0.137 0.163 0.156 0.027 0.097 0.133 0.163 0.105 0.026
r2 1.269 0.887 0.600 0.117 0.421 1.246 0.903 0.600 0.907 0.229
r3 6.658 9.494 12.915 0.265 4.643 6.572 9.806 12.915 3.105 3.653
ET/NL 0.081 0.188 0.318 1.583 0.607 0.087 0.183 0.318 0.663 0.218
STD Mean(STD) Mean(STD)
r1 0.027 0.023 0.021 0.012 0.021 0.030 0.023 0.021 0.043 0.029
r2 0.228 0.289 0.238 0.043 0.200 0.233 0.306 0.238 0.647 0.356
r3 1.549 1.885 2.278 0.228 1.485 1.307 1.600 2.278 2.437 1.906
ET/NL 0.045 0.109 0.128 0.686 0.242 0.050 0.111 0.128 0.867 0.289
[min, max] Mean(OL) Mean(OL)
r1 [0.038,0.150] [0.095,0.174] [0.135,0.210] [0.144,0.168] 0.053 [0.038,0.168] [0.095,0.174] [0.135,0.210] [0.059,0.168] 0.048
r2 [0.542,1.611] [0.331,1.296] [0.221,1.102] [0.074,0.161] 0.508 [0.542,1.611] [0.331,1.374] [0.221,1.102] [0.074,1.506] 0.828
r3 [3.651,10.579] [5.393,12.803] [8.981,18.491] [0.038,0.493] 3.003 [3.763,9.478] [6.913,12.803] [8.981,18.491] [0.038,5.700] 2.129
ET/NL [0.023,0.266] [0.073,0.489] [0.128,0.612] [0.897,2.269] 0.185 [0.023,0.266] [0.073,0.489] [0.128,0.612] [0.039,2.269] 0.346

Table 1. Descriptive statistics of groups clustered using efficient (upper panel) and actual (lower panel) costs in the inputs. ET/NL is Energy
transmission/Network length. ‘STD(Mean)’ represents the standard deviation of the mean. ‘Mean(STD)’ is the average of the standard
deviation. Overlap is computed between every adjacent 2 ranges, ‘Mean(OL)’ is the average length of 3 overlaps among 4 clusters.

NMM and StoNED as compared with the traditional DEA
in benchmarking has been previously demonstrated by an
empirical application in [4]. Thus, the performance of the
proposed configuration in the clustering based benchmarking
framework [4], i.e., NMM-StoNED, has been well-surrounded
and is suggested to use if no specific needs to meet.

With the metrics selected as the input of clustering, we
obtained four mutually exclusive clusters, each corresponds to
a well-defined type of energy supplier. It is worth mentioning
that with different metrics as the inputs, the clustering results
may differ. Thus, one need to identify the principle statistics
dominating the heterogeneity of the DMUs if not otherwise
specified before clustering. If the input metrics do not follow
or are not convertible to the normal distribution, a mixture
model of the corresponding distribution or a joint mixture
model [3] need to be used. Also, the computational complexity
increases with the number of inputs. Therefore, techniques
such as principle component analysis are needed to capture
the main properties needed for clustering.

This paper successfully applies NMM-StoNED to energy
regulation data which, however, is not restricted to such an
area. It is applicable to any problems where the distribution of
the evaluating metric is or convertible to normal distribution.
Here we focus on applying NMM-StoNED in the cross-section
setting, which could be used for panel data as well. To solve
more practical benchmarking problems especially those that
are problematic using conventional methods, more applications
are worthwhile to explore.
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