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Abstract— During last decades the stochastic simulation 

approach, both via MC and QMC has been vastly applied and 

subsequently analyzed in almost all branches of science. Very 

nice applications can be found in areas that rely on modeling via 

stochastic processes, such as finance. However, since financial 

quantities -- opposed to natural processes -- depend on human 

activity, their modeling is often very challenging. Many scholars 

therefor suggest to specify some parts of financial models by 

means of fuzzy set theory. In this paper we formulate a fuzzy-

stochastic model to be solved by Monte Carlo simulation. The 

application possibility is shown on the case of Value at Risk 

estimation of a single position, though it can be easily generalized 

to deal with more complex problem. 

Keywords— fuzzy random variable, fuzzy quantile, fuzzy 
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I.  Introduction 
During last decades the stochastic simulation approach, 

both via MC and QMC has been vastly applied and 
subsequently analyzed in almost all branches of science. Very 
nice applications can be found in areas that rely on modeling 
via stochastic processes. For example, in finance it is usually 
assumed that returns of almost all assets − riskless bond is an 
exception − can be described by stochastic differential 
equation based on random term with a suitable probability 
distribution. However, opposed to processes in nature 
financial processes crucially depend on human behavior and 
are rather imprecise (vague) than random. Modeling is 
therefore more challenging. More importantly, it is often 
difficult to provide reliable parameter estimates for particular 
models. 

As an alternative, many researchers suggest to specify a 
financial model or at least its parameters as a fuzzy number, 
ie. instead of real variables with a suitable distribution 
function we assume potentially infinite number of intervals, 

each with its membership function as given by particular  
(see Section 2 for more detailed description). 

The application of fuzzy set theory in finance usually 
restricts to basic "analytic" operations with fuzzy and crisp 
inputs and includes Black and Scholes or binomial model type 
option pricing problem (see eg. Simonelli (2001) or Zmeškal 
(2001)), Value at Risk estimation (Zmeškal, 2005), portfolio 
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selection process (Tanaka et al., 2000), time series analysis 
(Li and Cheng, 2006) or insurance problems (Huang et al, 
2008). However, it is well known that many problems in 
finance cannot be solved analytically even if simple 
(geometric) Brownian motion is assumed (eg. exotic option 
valuation). It is therefore surprising that there are just a few 
papers on MC simulation of fuzzy random models and usually 
with quite inadequate treatment of the simulation approach 
(see eg. Nowak and Romaniuk, 2010). 

In our previous research, we have focused on option 
pricing (Holčapek and Tichý, 2011, 2013). By contrast, in this 
paper we analyze the impact of various input data on Value at 
Risk estimation. In the following sections we utilize recent 
knowledge of fuzzy numbers and their approximation and 
suggest simulation approach to their modeling. We also 
provide distinct types of the results after fuzzyfication − due to 

the -cut and defuzzified quantile. 

II. LU-fuzzy numbers 
 

Let R denotes the set of real numbers. A fuzzy number is 
usually called a mapping A : R −> [0,1] which is normal (i.e. 

there exits an element x0 such that A(x0) = 1), convex (i.e. A( 

x + (1− ) y) ≥ min (A(x), A(y) for any x, y in R and  in [0,1]), 
upper semicontinuous and supp A is bounded, where sup A = 
cl{x in R | A(x) > 0} and cl is the closure operator (see Klir 
and Yuan, 1995 and Dubois and Prade, 1978). The most 
popular models of fuzzy numbers are the triangular and 
trapezoidal models investigated by Dubois and Prade (1980). 
Their popularity follows from the simple (fuzzy) calculus as 
addition or multiplication of fuzzy numbers which can be 
established for them. This is also a reason why we can find 
many recent papers on the approximation of fuzzy numbers by 
the mentioned models (see e.g. Ban (2009a,b) and the 
references therein). 

In order to model fuzzy numbers we will use a more 
advanced model of fuzzy numbers based on the interpolation 
of given knots using rational splines that was proposed by 
Guerra and Stefanini (2005) and developed in Stefanini et al. 
(2006). This model generalizes the triangular fuzzy numbers 
and gives a broad variety of shapes enabling more precise 
representation of fuzzy real data, nevertheless, the calculus is 
still very simple. 

It is well known that each fuzzy number has a 

representation using -cuts. Recall that -cut of a fuzzy 

number A is the common set A= {x in R | A(x) ≥ } and 
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 Since the fuzzy numbers are upper semicontinuous real 

functions, then each -cut may be replaced by its endpoints, 

say u
-
() for the left endpoint and u

+
() for the right endpoint. 

Hence, each fuzzy number can be completely represented by 
two functions u, v: [0,1] −> R such that 

 (i) u
−
 is a bounded monotonic non-decreasing function 

which is left-continuous on ]0,1] and the right-continuous for 

= 0, 

 (ii) u

 is a bounded monotonic non-increasing function 

which is left-continuous on ]0,1] and the right-continuous for 

 = 0, 

 (iii) u
−
() ≤ u


() for any in [0,1]. 

The arithmetic operations between two fuzzy numbers A 
and B represented by pairs of functions (u

−
A, u

+
A) and (u

−
B, 

u
+

B), respectively, can be introduced using a suitable 
manipulation of the functions u and v. For example, A + B can 
be simply obtained by (u

−
A + u

−
B, u

+
A + u

+
B). For further 

definitions of arithmetic operations, we refer to Stefanini et al. 
(2006). Since the modeling of fuzzy numbers and the 
manipulation with them is not so simple in general, we use the 
parametric representation of fuzzy numbers proposed by 
Stefanini et al. (2006). 

A piecewise rational cubic Hermite parametric function P 

in C
1
[0, n], with parameters vi, wi, i = 0, …, n−1, is defined 

for in [i, i+1], i = 0, …, n−1 by 

 

where the notations fi and di are, respectively, the real data 

values and the first derivative values (slopes) at the knots 0 < 

1 < … < n, hi = i+1−i, = (− i) / hi and vi, wi ≥ 0. The 
parameters vi and wi are called the tension parameters. In the 
case vi = wi = 3, we obtain the ordinary cubic spline.  For 
details, we refer to Gregory (1986), Sarfraz (2000). One can 

see that each parametric function P in C
1
[0, n] may be 

expressed in the matrix form consisting of parameters 

 

for a partition 0 < …< n of the interval [0, n]. We use 0 
for vn and wn, since these parameters do not play any role in 
the derivation of the function P. We will write P = P, if P is 
determined by the matrix P. 

 Now we may define so-called LU-fuzzy number 
introduced in Guerra and Stefanini (2005). Note that our 

definition is slightly different than the original one, but the 
idea remains the same. 

Definition 1.  A fuzzy number A determined by (u
−
, u

+
) is an 

LU-fuzzy number, if there exist a partition 0 = 0 < … < n = 1 
and 4n + 1 matrices U

−
 and U

+
 such that 

(i)  u
−
 = U

−
 and u

+
 = U

+
, 

(ii)   f
−
(i+1) ≥ f

−
(i) and f

+
(i+1) ≤ f

+
(i) for any i = 0,…, 

n, 

(iii)  d
−
(i) ≥ 0 and d

+
(i) ≤ 0 for any i = 0, …, n, 

(iv)  f
−
(n) = f

+
(n), 

(v)  v
−
(i), v

+
(i), w

−
(i), w

+
(i) ≥ 0 for any i = 0, …, n − 

1 and v
−
(n), v

+
(n), w

−
(n), w

+
(n) = 0$, 

(vi)  if f
−
(i) = f

-
(i+1) (or f

+
(i) = f

+
(i+1)), then d

−
(i) = 

d
−
(i+1) = v

−
(i) = w

−
(i) = 0 (or d

+
(i) = d

+
(i+1) = 

v
+
(i) = w

+
(i) = 0). 

The set of all LU-fuzzy numbers will be denoted by FLU. 

 Note that one can define a fuzzy interval, if the equality in 

(iv) is replaced by f
−
(n) < f

+
(n). Further, the last condition is 

more or less technical and the simple consequence of this is 

u
−
() = f

−
(i) = f

−
(i+1) for any in [i, i+1]. For example, a 

real number $r$ can be naturally expressed as the LU-fuzzy 
number with the matrices 

 

Obviously, higher number n may be used for a better 
approximation of a complex fuzzy number obtained, for 
example, from the data observation. A simplification of LU-
fuzzy numbers can be done by the determination of the vectors 
v

±
 and w

±
 from the f

±
 and d

±
. Here, we use notation ± to 

express an assertion for − and + together. This is mainly 
profitable when the arithmetic operations are defined. In this 
work, we will also use a global monotonicity setting (see 
Stefanini et al., 2006): 

 

One can simply check that formulation above is correct 
and we obtain vi

±
, wi

± 
≥ 0. 

Example 1. Let us consider 

 

and 
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The LU-fuzzy number about 6.5 determined by U
+
 and U

−
 

is illustrated in Fig. 1. 

 

Figure 1: Fuzzy number determined by the matrices U
+
 and 

U
−
 from Ex. 1. 

III. Fuzzy random variable 
We follow the approach to fuzzy random variable 

proposed by Kwakernaak  (1978, 1979) and later formalized in 
a clear way by Kruse and Meyer (1987). In this approach, a 
fuzzy random variable is viewed as a fuzzy 
perception/observation/report of a classical real-valued 
random variable. The model is stated as follows (we use the 
LU-fuzzy numbers to represent the values of fuzzy random 
variables). 

Definition 2. Given a probability space (, P), a mapping 

X : FLU (v, w) is said to be a fuzzy random variable if for 

all  in [0, 1] the two real-valued mappings inf X:  −> R, 

sup X:  −> R (defined so that for all in  we have that 

X() = [inf X(), sup X() ]) are real-valued random 
variables. 

Since each LU-fuzzy number is representable by matrices 
U

−
 and U

+
, we can define fuzzy random variable using random 

matrices as follows. 

Definition 3. Given a probability space (, P), a mapping 

X : FLU (v, w) is said to be a fuzzy random variable 

(FRV) if there exist a partition 0 =0 < … < n = 1 of the 
interval [0,1] and mappings 

F
−
, F

+
, D

−
, D

+ 
:  −> R

n+1 

such that pi ◦
 
F

−
, pi ◦

 
F

+
, pi ◦

 
D

−
, pi ◦

 
D

+
, where pi denotes i-th 

projection, are real-valued random variables for any i = 1,…, n 

+ 1 and X() is determined by 

 

Definition 3. We say that two FRVs X and Y are independent 
(identically distributed), if pi ◦

 
FX

−
, pi ◦

 
FX

+
, pi ◦

 
DX

−
, pi ◦

 
DX

+
 and 

pi ◦
 
FY

−
, pi ◦

 
FY

+
, pi ◦

 
DY

−
, pi ◦

 
DY

+
 are independent (identically 

distributed), respectively, for any i = 1,…, n + 1. 

Note that using the interpolation we obtain random 

variables u
-
() and u

+
() under the probability space (, A, P).  

Hence, the FRVs introduced above are FRVs in the Kruse-
Meyer sense. 

 
Figure 2: Pseudorandom LU-fuzzy numbers 

On Fig. 2 we can see five pseudo-randomly generated LU-
fuzzy numbers defined under the normal distribution (the 
kernels, i.e., the points with the membership degree equal to 1, 
are determined from N(0,4), further values are determined in 

such way that the difference between f(i) and f(i+1) is a 
random value from N(0,2)). 

 

IV. Financial models with 
imprecise data 

Finally, in this section we apply the fuzzy theory that give 
us the possibility to deal with imprecisely specified input data 
(fuzzy data). For this purpose we assume modified standard 
market model, ie. Brownian motion, with crisp volatility 
parameter replaced by fuzzy parameter. 

A. Standard market model 
Assume a standard market model, ie. Brownian motion 

with drift  and standard deviation : 

X(t) =  t +  √t , 
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 where e is from N[0,1] (ie. it is of standard normal 

distribution). This is a standard market model for (log-returns) 
returns of financial asset prices, such as stocks, commodities 
or exchange rates. Since it can be difficult to obtain a reliable 

estimate of standard deviation , we can define it as an LU-
fuzzy number: 

X(t) =  t + LU √t , 

There exist several ways how LU can be obtained. For 
example, we can split historical time series into several 

subperiods and obtain several distinct volatilities , which can 
be related to particular stage of the economy or risk attitude of 
investors. Alternatively, for asset prices without long history, 
we can take volatility estimates of similar securities.  

 

B. VaR estimation 
In finance, it is often important to know the quantiles, ie. 

what is the limit result (return, loss, price, etc.) for a given 
probability, or alternatively, what is the probability of a given 
limited value of return or price. The estimated quantiles are 
commonly used within riskmangement (internal, capital 
regulation, etc.) and are referred to as Value at Risk (VaR). 
Next, the quantiles can be used to calculation of expected 
shortfalls or even option price.  

As an illustration let us suppose time horizon of one year 
(which might be related to capital requirements in insurance 
sector), drift term of 10% and LU-stochastic volatility built up 
over 30% (ie. the most common value).  

First, on Fig. 3 we present estimation of various quantiles 

for all -cuts, i.e. we can see how is the quantile spread for 
particular membership levels. In particular, we assume 
quantiles for the following probabilities: 0.001, 0.01, 0.05, 0.1. 
These quantiles can be easily transferred into Value at Risk by 

inverting the sign. Thus, assuming -cut of 0.95, that is, very 
good knowledge about the input volatility, the estimation of 
VaR would be: 

VaR(0.001) = (−12.3333,−7.3838), 

VaR(0.01) = (−9.643, −5.96852), 

VaR(0.05) = (−7.36809, −4.77178), 

VaR(0.1) = (−6.18046, −4.14701). 

 

 

 
Fig 3: Quantile formulation due to the membership function 
assuming four distinct probability levels (q = 0.001, q = 0.01, q 
= 0.05, and q = 0.1) 

As an alternative form of presentation we can consider the 
projection into 2D spectrum. Such projection can give us 
simple picture about both, the quantile estimation and 
membership function. In Fig. 4 we provide the results 
assuming the same input as above (left), as well as the fuzzy-
distribution for volatility cut by 50% (right). 

 
Fig. 4: 2D projection of original data and after rescaling of 
volatility by 50% 

V. Conclusion 
Many issues of financial modeling and decision making 

require some knowledge about the future states. However, 
sometimes it is very difficult to get reliable parametrization of 
stochastic models. In this contribution we have formulated 
alternative approach to modeling of financial quantities based 
on fuzzy random values. This approach includes interval and 
crisp approach as a special case. 

Suggested models of financial returns can be incorporated 
into classic problems of financial modeling, such as portfolio 
VaR estimation and option valuation. However, depending on 
the type of the problem, additional operations with LU-fuzzy 
numbers might be useful. 
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