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Abstract—This paper describes an evolutionary strategy 

called PSOGA-NN, which uses Neural Network (NN) for self-

adaptive control of hybrid Particle Swarm Optimization and 

Adaptive Plan system with Genetic Algorithm (PSO-APGA) to 

solve large scale problems and constrained real-parameter 

optimization. This approach combines the search ability of all 

optimization techniques  (PSO, GA) for stability of convergence 

to the optimal solution and incorporates concept from neural 

network for self-adaptive of control parameters. It is shown to be 

statistically significantly superior to other Evolutionary 

Algorithms (EAs) on numerical benchmark problems and 

constrained real-parameter optimization. 

Keywords—Adaptive Plan, Neural Network, Parallel Genetic 

Algorithm, Particle Swarm Optimization, Real-parameter 

I.  Introduction 
Evolutionary Computation uses iterative process, such as 

growth or development in a population that is then selected in 
a guided random search using parallel processing to achieve 
the desired end. At present, the field of nature-inspired meta-
heuristics is dominated by the Evolution Algorithms (EAs) 
(e.g., Genetic Algorithms (GAs) [1], Evolution Strategies 
(ESs), and Differential Evolution (DE)) as well as the Swarm 
Intelligence algorithms (e.g., Ant Colony Optimization 
(ACO), Particle Swarm Optimization (PSO) [2] [3], Artificial 
Bee Colony (ABC)). The field also extends in a broader sense 
to include self-organizing systems, artificial life, memetic and 
cultural algorithms, harmony search, artificial immune 
systems, and learnable evolution model. 

Unlike most other techniques, GAs maintain a population 
of tentative solutions, which are competitively manipulated by 
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applying various operators to find a global optimum. 
However, this process might requires high computational 
resources such as large memory and search times. To design 
efficient GAs, a variety of advances by new operators, hybrid 
algorithms, termination criteria, and more are continuously 
being achieved. Parallel GAs (PGAs) [4] [5] often leads to 
superior numerical performance, as well as faster algorithms. 
However, the truly interesting observation is that the use of 
structured population, either in the form of a set of islands or a 
diffusion grid, is responsible for these numerical benefits. A 
parallel genetic algorithm (PGA) is similar to a serial GA in 
terms of the representation of the problem parameters, 
robustness, easy customization, and multi-solution 
capabilities. However, a PGA is usually faster, less prone to 
finding sub-optimal solutions only, and capable of cooperating 
with other search techniques in parallel. 

 Particle Swarm Optimization (PSO), first introduced by 
Kennedy and Eberhart [2], is one of the modern meta-
heuristics algorithms. It was developed based on the 
simulation of a simplified social system, and it has been found 
to be robust in solving optimization problems. PSO uses 
simple iterative calculations, so it is easy to create the program 
source. Thus, PSO is applicable to a wide range of 
optimization problems. However, the performance of the PSO 
greatly depends on its parameters and it often becomes trapped 
in local optimum. To resolve this problem, various 
improvement algorithms have been proposed that can solve a 
variety of optimal problems [3]. 

To reduce the cost and to improve the stability, a strategy 
that combines global and local search methods becomes 
necessary. As for this strategy, Hieu Pham et al. developed a 
new approach for Adaptive Plan system of swarm intelligent 
using PSO with GA (PSO-APGA) [6]. 

In this paper, we purposed a new evolutionary algorithm 
called PSOGA-NN, which uses Neural Network (NN) with 
Migration PGA for Self-adaptive control parameters of hybrid 
PSO-APGA to solve large scale optimization problems and 
constrained real-parameter optimization. 

The remainder of this paper is organized as follows. 
Overviews of related works such as PSO-APGA algorithm, 
Migration PGA concept, and a mathematical model of Neural 
Network are provided in Section II. Section III describes the 
algorithm of proposed strategy (PSOGA-NN), and finally 
Section IV discusses about robustness using numerical 
benchmark problems and constrained real-parameter 
optimization.  
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II. Related Work 

A. Formulation of the Optimization 
Problem 
The optimization problem is formulated as follows: 

Design variable: 

  Dxxx ,,1   

Objective function: 

   Minxf   

Modified objective function: 

       MinxPxfxf  *  

Inequality constraint functions: 

    rjxg j ,,1;0   

Equality constraint functions: 

    skxhk ,,1;0   

Design range: 

 UBLB xxx   

where  xf ,  xf * ,  denote objective function, modified 

objective function, and penalty coefficient, respectively. 
,  and D denote the 

lower boundary condition vectors, the upper boundary 
condition vectors and the number of design variable vectors 
(DVs) respectively. r and s are the number of inequality and 
equality constraints, gj and hk are linear or nonlinear real-value 
functions. 

B. Hybrid PSO-APGA 
1) Algorithm. 

 

PSO-APGA aims at getting the direction from PSO to 
adjust in to adaptive system of APGA. This method introduces 
a design variable (DV) generation formula using the velocity 
update from PSO operator and sensitivity analysis. Adaptive 
plan (AP) generates next values of DVs by using control 
variables (CVs), response variables (RVs), velocity PSO and 
current values of DVs in the adaptive system (AS) of 
optimization process. The DV generation process generates a 

new DV from the current search point via AP according to the 
formula: 

  GiGiGiGi RCAPxx ,,,1, ,
 

where AP(), x, C, R, and G denote a function of AP, DVs, 
CVs, RVs and generation, respectively. 

The flowchart of PSO-APGA is shown in Fig. 1. In this 
approach, PSO and APGA run individually. The iteration is 
run by PSO operator for local search, the velocity update is 
given as initial parameter for APGA process and procedure 
offspring. As the new population, choose the best position as 
the global by estimating their fitness. The best scoring 
individual in the population is taken as the global optimal 
solution. 

Figure 1.  Flow-chart of PSO-APGA. 

2) Adaptive Plan. 
 

It is necessary that the AP realizes a local search process 
by applying various heuristics rules. In this paper, the plan 
introduces a DV generation formula using velocity update 
from PSO operator that is effective in the convex function 
problem as a heuristic rule. This plan uses the following 
equation: 

   )(, ,, RANRRCAP GiGi   

   PSOscaleNRANR Gi  ,
 


 
 

GijGj

GijGijGijGij

xgbestrc

xpbestrcvvPSO

,,22

,,11,1,



  
 
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where R denote sensitivity of RVs, ANR is adaptive 

factor defined by multiplying from neighborhood ratio NR 

with constriction factor scale and velocity update PSO.  is 
inertia weight; c1 and c2 are cognitive acceleration and social 
acceleration, respectively; r1 and r2 are random numbers 
uniformly distributed in the range [0.0, 1.0]. pbest

 
is best 

solution has been achieved so far and gbest is the best solution 
of all particles (where j = [1,...,D], D is the dimension of the 
solution vector) 

; 0.10.0 ,  jic  is used so that it can 

change the direction to improve or worsen the objective 
function, and C is encoded into a chromosome by 10 bit 
strings (shown in Fig. 2). In addition, i, j and p are the 
individual number, design variable number and its size, 
respectively. 

 

Figure 2.  Step size that defined by CVs. 

 

C. Migration PGA 
 

Parallel processing has been promoted into evolutionary 
algorithms due to changes in resources such calculations [4] 
[5]. This approach can be applied to GA in many different 
ways, and the literature contains many examples of successful 
parallel implementations. The classification of parallel GA 
includes three main different types as global single population 
master-slave PGA, single population fine-grained PGA, and 
multiple population coarse-grained PGA [7]. 

Multiple-population (or multiple-deme) are more 
sophisticated, as they consist on several sub-populations which 
exchange individuals occasionally. First, the population is 
divided into a plurality of sub-populations. Next, in the 
respective sub-population, the GA repeats selection operators, 
such as crossover. Then, several search points are drawn from 
several sub-populations, and then moved to another 
population. This operation of individuals is called immigration 
(migration). There are two methods of immigration, where two 
types of asynchronous population are migrated to other 
asynchronous source and all subpopulations simultaneously 
perform the migration, which requires certain conditions. It is 
necessary to set the migration rate as the path of a number of 
search points to emigrate or move to a sub-population, which 

must be synchronous, and the migration interval generation 
time of the migration period (Fig. 3). 

Multi-deme parallel GA are known as distributed GA, 
because they are usually implemented on distributed 
computers. Since the high communication ratio, they are 
occasionally called coarse-grained GAs. Finally, they 
resemble the ''island model'' in population genetics which 
considers relatively isolated demes. 

 

Figure 3.  Migration PGA. 

 

III. New Evolution Strategy 

A. Migration PGA in PSOGA-NN 
Migration PGA, such as that described earlier in Section II, 

is reported compatibility information, a stable design and low 
computational cost because it deals with GA in parallel. In 
PSOGA-NN, optimization is conducted by applying GA and 
PSO in each sub-population. The control variables adjust the 
vicinity of the output factor NR between the sub-populations. 
The candidate control variables and the new solution come 
from the other sub-population at the time of immigration, so a 
diversity of solutions can be expected because the migration 
destination is determined at random. A schematic diagram of 
PSOGA-NN with Migration PGA is shown in Fig. 4. 

 

Figure 4.  Migration PGA in PSOGA-NN. 
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B. Self-adaptive using Neural Network 
The self-adaptive of neighborhood factor NR is used for 

data clustering of GA control variables using NN, which have 
been uniquely determined to stabilize their variation. From a 
viewpoint of excellent parallel processing and to ensure 
compatibility with multi-point search methods such as PSO 
and GA also be used in the present method, NN is often used 
in combination with these techniques [8]. NN may be used to 
cluster and classify the data without using a signal if it is 
necessary to learn using a teacher signal that is also a NN. In 
the present method, the GA variable data clustering is 
controlled using unsupervised learning to determine the output 
factor change. The initial neighborhood factor NR is set at 
random and we vary its value based on the NN output. The 
unsupervised learning method is also a multi-layer NN, so we 
use NN to perform the feed-forward transfer. The number of 
layers is determined in a number of search points for each 
subpopulation. In addition, the NN is configured after it has 
been sorted in descending order of fitness in the 
subpopulations to the output side from the input side, where 
the weight of the transfer equation is as shown in (13). 
Therefore, many subpopulations have highly adaptive search 
points with strong effects on other subpopulations. The 
formulation of the control variable, the transfer equation for 
each node in the NN and the schematic diagram of the overall 
NN are as follows. 

 



I

i

n

ijit IoutwSPnode nn

1

1  

 12 ,  GiCSP  


 mnnmij

yyw nn 1  


iGiGi NRNRNR  ,1,
 

 

The GA handles control variables (CVs) and C is allocated 
to each search point, which is encoded as a 10-bit string. The 
order of each search point is allocated to each node of a multi-
layer NN, as shown in Fig. 5, on the input side and the output 
side. The weight of the NN, wjnin, which is determined from 
the adaption ratio of the search points, is transmitted between 
the nodes. C is the control variable that determines the step 
size SP in (12) (as shown in Fig. 2) and this element 
determines the amount of the neighborhood factor change 

NR. Therefore, the neighborhood factor change is an 
important factor, which determines the width of the overall 
distribution of the neighborhood of search points. Using the 
control variable, we can change adaptively NR to facilitate 
more stable solution search and better control of the control 
variable in the NN. In addition, n is the number of hierarchy 
NN, m is the number of sub-populations, j, i is the number of 

neurons in NN, t is the number of individuals, S is the number 
of search per island, and I is the maximum number of islands. 

Figure 5.  PSOGA-NN Neural Network. 

C. Elite Strategy 
In this paper, using the diploid genetics is not proper to 

perform the search using the NN solution [9]. Generally, GA, 
information has only a single gene for one individual. 
However, the structure has a double recessive genetic 
information that does not appear in the dominant phenotype. 
Here, in NN, genetic information is treated as a control 
variable. Information dominance for the NN is elite solution 
closed to the control variable, as shown in the following 
equation. With the aim of having a strong influence in the 
form of dominant inheritance, enhancing the effectiveness of 
the control variable, advantageously advancing the solution 
search, elite solution against other sub-populations as the PGA 
with migration. 



221

121

0

0

SPSPSPeSPSPeSPif

SPSPSPeSPSPeSPif




 

D. Reconstruction of PSO Velocity 
We carried out the reconstruction of the control variable 

like considered control variable of PSO-APGA, not only 
control variable meet the conditions listed below, but also 
reconstruction of the velocity update by keep performing keep 
the global search of the search point, the appropriate solution 
search is always performed. 

 The same value adaptation accounted for more than 
80% for the entire. 

 The same bit-string chromosome occupies more than 
80% for the entire. 

 The same value of neighborhood factor accounted for 
50% of the total. 
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IV. Experiments 

A. Numerical Benchmark Problems 
In this section, the numerical experiments are performed to 

compare with other techniques for the robustness of the 
optimization approach using five benchmarks with 30 
dimensions - Ridge (f3), Rosenbrock (f5), Rastrigin (f9), Ackley 
(f10), and Griewank (f11). The parameter settings in solving the 
benchmark tests are given in Table 1. 

 RI : f3 = x j
j=1

i
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TABLE I.  PARAMETER SETTINGS 

Operator 
Settings 

Control Parameter Value 

PSO 

Inertia Weight ω = 0.7 

Acceleration Coefficients c1 = c2 = 0.8 

Constriction Factor scale = 0.729 

GA (NN) 

Island number 10 

Imigration rate 0.2 

Selection 1.0 

Crossover 0.8 

Mutation 0.1 

 

 

B. Constrained Real-parameter 
Optimization 
We shall apply PSOGA-NN to solve real constrained 

engineering design optimization. Speed reducer design [10] 
was chosen to evaluate its performance. 

The design of a speed reducer is a more complex case 
study. This problem involves seven design variables, with the 
face width b (x1), module of teeth m (x2), number of teeth on 
pinion z (x3), length of first shaft between bearings l1 (x4), 
length of second shaft between bearings l2 (x5), diameter of 
first shaft d1 (x6), and diameter of second shaft d2 (x7). The 
objective is to minimize the total weight of the speed reducer. 
There are nine constraints, including the limits on the bending 
stress of the gear teeth, surface stress, transverse deflections of 
shafts 1 and 2 due to transmitted force, and stresses in shafts 1 
and 2. The mathematical formulation can be summarized as 
follows: 

Minimize: 

 

 

 

    

   (21) 
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Best solution:  

 286683.5,350214.3,8.7,3.7,17,7.0,5.3* x  

where   384165.996,2* xf  

C. Evaluation 
The experiment results are given in Table II and Table III. 

"Mean" indicates average of optimum values obtained and 

"Std. Dev" stands for standard deviation. The results 

confirmed that this strategy can reduce the computational costs 

dramatically and significantly improve the stability of 

convergence on the optimal solution. Overall, PSOGA-NN 

was capable of attaining robustness, high quality, low 

calculation on many optimization problems. 

TABLE II.  AVERAGE RESULT OVER 25 RUNS BY PSOGA-NN                 

(30 DIMENSIONS, POPULATION SIZE 50) 

Function 
Benchmark Tests 

Gen. NFE Mean Std. Dev 

f3 54 2,700 0.00E+00 0.00E+00 

f5 1125 56,250 0.00E+00 0.00E+00 

f9 133 6,650 0.00E+00 0.00E+00 

f10 159 7,950 4.44E-16 0.00E+00 

f11 105 5,250 0.00E+00 0.00E+00 

TABLE III.  RESULT OF APPLYING PSOGA-NN FOR SPEED REDUCER 

DESIGN OPTIMIZATION PROBLEM (POPULATION 56) 

Speed Reducer Problem 

Solution Constraints 

x1 3,500008 g1 -0.073918 

x2 0,700000 g2 -0.198002 

x3 17,000014 g3 -0.977783 

x4 7,300133 g4 -0.901471 

x5 7,800016 g5 -0.000009 

x6 3,350225 g6 -4.4E-07 

x7 5,286684 g7 -0.702500 

  g8 -0.000002 

f(x) 2996,358 g9 -0.583332 

  g10 -0.051341 

NFE 7,840 g11 -0.010854 
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