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Abstract— The object of this study is to analyze the ramp profile 

functions of buried asymmetric dielectric targets for non-axial or 

oblique incidence of the electromagnetic wave.  

This approach can be used, with due limitations, in satellite SAR 

radar to scan large areas of land on which it intends to identify 

buried metallic or dielectric objects (such as landmines, etc..).  

The results contained in this dissertation are based on (a 

scattering computation using a Method of Moments (MoM) 

solutions with SCILAB simulation tool. The targets used in the 

simulation include metallic and dielectric spheres and 

rectangular metallic and dielectric blocks. 
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I.  Introduction 
 He in [1] proposed a theoretically exact approach 

to creating  a two-dimensional image of a buried dielectric 

scatterer by reconstructing the induced surface currents on the 

scatterer surface. He, using multiple plane wave illuminations, 

reconstructed distinctive images of a buried dielectric cylinder 

and a buried rectangular air cavity from theoretically 

simulated data. Application of this imaging technique to 

discriminate buried targets from experimentally measured 

radar data could be informative. However, this technique of 

image reconstruction could be time consuming if one 

considers that ultimately  large areas of land need to be 

cleared, and some estimates in the literature give false alarm 

rate of the order of 100:1. Also, the incidence angle of the 

backscattered fields (traveling from the ground into air) on the 

ground-air interface at the critical angle will restrict the 

possible target look angles. Chen [2] has demonstrated that as 

the incidence angle is changed from normal incidence to the 

air-ground interface, the time duration of the clutter from even 

mild rough surfaces is increased so that the buried target 

scattering is masked by the surface scatter. These difficulties 

would pose limitations on the applications of the technique in 

[1]. 
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Starting from a first order Kirchoff’s approximation or 

Physical Optics approximation, Lewis [3] proposed an 

approach based on spatial transform to generate the size and 

shape of the target, the backscattered fields need to be 

measured at all frequencies and all incident angles, which is 

not easily feasible. 
 

II. Ramp Response 

A. Size and shape of the target  
 The ramp response signature overcomes these 

limitations. A ramp signature obtained from a single 

backscattered frequency response of a target already provides 

some information about the size and shape of the target, and so 

extensive measurement can be avoided. This means that a 

large frequency band is not required to generate a valid ramp 

response signature of a buried target. Essentially, the ramp 

response of a target is a signal processing technique. This 

technique can be applied to the identification of an unknown 

body in a given medium. The ramp response of a radar target 

is defined as the far-zone backscattered time domain 

waveform resulting from illumination by a plane 

electromagnetic wave with a time domain ramp wave shape. 

The ramp response gives information about the target size, 

geometry and orientation.  
 

B. Kennagh and Moffatt  idea 
 Kennagh and Moffatt [4] showed that the scattered 

field due to a ramp driving function traces out the cross 

sectional area profile of a metallic targets as a function of time 

along the line of sight. Using this concept, Young [5], [6] 

compared the measured ramp response signature for different 

metallic targets of simple shapes with the corresponding 

profile functions. In addition, Young generated low frequency 

images of conducting targets of simple shapes in free space 

using the ramp response for only three orthogonal observation 

angles. The ramp response signature is defined as the far-zone 

backscattered time domain waveform of a target illuminated 

by a traveling planar transverse electromagnetic wave whose 

time dependence is that of a ramp function. 

The maximum amplitude of the ramp response gives the 

approximate maximum value of the transverse physical cross 
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sectional area of a scatterer in the direction of propagation of 

the incident wave.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Scattering Geometry of a Target 

 

III. Analisys of the Ramp 
Response 

 The ramp response duration gives an estimate of 

the scatterer thickness in the direction of EM wave 

propagation, and the rise time (shape) of the ramp response 

yields information about the shape of the target in the given 

direction of incident wave. 

If    ( )   ( )   ( )   are respectively the impulse response, 

the step response and the ramp response of a system, and 

  ( )   ( )   ( )  are their corresponding Laplace 

transforms, then [8] 
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So the ramp response   ( ) is obtained by taking the inverse 

Fourier transform of a target’s backscattered frequency 

response   (  ) weighted by 
 

(  ) 
. 

Young et al [9] observed that since the ramp response of a 

scatterer has a finite duration, a sequence of ramp excitations 

in the form of a periodic plane wave is more practical than an 

isolated ramp function excitation. The periodic ramp 

excitations should be spaced such that the spacing is larger 

than the duration of the ramp response waveform. 

In Figure 2 is shown a ramp excitation   ( ) obtained using a 

weighted sum of harmonic (c.w.) plane waves. The excitation 

is obtained with an Inverse Fourier Transform (IFT) of an unit 

amplitude and zero phase band limited signal weighted by 

 (       )
 ⁄ , where      is the frequency f expressed in 

GHz. 
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 In order to obtain a valid ramp response of a 

scatterer , Young  observed that the frequency band must 

include a part of the Rayleigh region (typically         ) 

(see Figure 1) of the backscattered fields of the scatterer due 

to a ramp input.  

If  this is achieved, the scattered fields produced by the ramp 

excitation is almost independent of frequency as the minimum 

frequency of the operational frequency band goes to zero. In 

fact, the backscattered fields could be extended down to 

minimum frequency             so  that the response 

would be the one produced by the ramp excitation in Figure 

2. 

 

 
Figure 2 One period of a periodic train of ramp excitation with a 
fundamental period of T=50ns 

 

A. Physical Optics (PO) solution for the 
ramp response of a target  

  

 Kennaugh and Moffatt [4] were the first to discuss 

the applications of EM  field waveforms produced by 

scattering of transient plane waves from finite objects to 

obtain target identification. They obtained the PO solutions for 

the ramp response of metallic targets of simple convex 

geometry. 



 

3 

International Journal of Advancements in Communication Technologies– IJACT 
Volume 2: Issue 1         [ISSN : 2374-1511]   

Publication Date : 30 April, 2015 
 

The PO approach is valid only for the lit region of the target. 

Young [5] observed that it is approximately correct for the 

shadowed region as the ramp discontinuity passes over the 

target. 

Try to consider a plane transverse electromagnetic wave (time 

harmonic) propagating in + ̂ direction which is incident on a 

scatterer with the Area of the surface S (Figure 1).  

Suppose the incident wave is a ramp waveform both in the 

domain of time and space, such as: 

 

 (   )    (  
 

  
)                      (4) 

 

Where t is time, and    is the velocity of the wave in the 

ambient lossless medium. In  Figure 1 is shown the geometry 

of the target  for a given time instant.  the input ramp function 

is equal to zero for         whereas the input signal is non-

zero  when         . 

The scatterer can be either a perfectly electric conductor or 

penetrable (dielectric) body with relative permittivity    
   . 

Supposing the scatterer is a PEC (Perfectly Electrical 

Conducting), using PO, the impulse response approximation 

for a Metallic target of simple shape is given by [4]: 
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Where  ( ) is the area of the scatterer between the xy plane 

and a cutting plane at z, projected orthogonally on the xy 

plane.    is the velocity of propagation in the ambient 

medium.  ( )  is a monotonic function, having a constant 

value 0 for     and a limiting value  ( ) for    .  

We can observe that the impulse response calculated with PO 

is obtained with a time scale such that the cutting plane which 

determine  ( )  moves with one-half the velocity of the 

incident impulsive wave (     ) , starting at      and 

reaching the shadow boundary at       ⁄ .  In other words, 

the equation (5), which defines the ramp response as a 

function of time for the illuminated portion of a simple shape 

metallic target, is proportional to the cross sectional area  ( ) 

along the line-of-sight. This transverse cross sectional area of 

a target is also known as its profile function. 

Using PO, the backscattered impulse response obtained for a 

dielectric scatterer of simple shape having two finite radii of 

curvatures, is given by: 

 

  
 ( )   

 

   
 

 

  
        (

   

 
)

 

  
 (

   

 
)     (6) 

Where the polarization of the backscattered field is parallel to 

that of incident wave.        (
   

 
)  is the average reflection 

coefficient of the wave incident on the scatterer, and is given 

by: 
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)  are Fresnel reflection coefficients 

corresponding to perpendicular and parallel components of   
⃑⃑  ⃑ 

respectively with respect to plane of incidence. 

The ramp response is the double integral of the impulse 

response, that  is: 
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Then the ramp response for a metallic target can be obtained 

from equation (5) as: 
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Whereas, for a dielectric target the ramp response is given by 
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The meaning of the equation (9) is  that the backscattered field 

from a ramp incident wave is proportional to the transverse 

cross-sectional area corresponding to the time and position on 

the target such that the argument of the incident ramp function 

is zero. 

For a given time instant    the ramp input at its slope 

discontinuity point  traces out the cross sectional area  (  )  
 (      ). Thus, as the ramp input passes over the scatterer at 

different time instants we get the transverse cross sectional 

areas of the body at the corresponding points in the space 

domain. The equation (6) has been obtained by integrating the 

PO electric and magnetic surface current distributions 
  
→ and 

  
→  respectively over the scatterer surface S. The ramp response 

initiates when incident wave illuminates the front interface of 

the scatterer. Hence these current densities include the 

reflection coefficients    
   

 of the incident wave hitting the 

scatterer, and do not include the transmission coefficients and 

the internal reflection coefficients of the wave inside the 

penetrable scatterer. The surface current densities used in the 

PO solution are only approximate and they do not represent 

the total scattered fields from the dielectric body. 

 (
   

 
) gets its maximum value at the shadow boundary of the 

target. Also, from equations (9) and (10) we find that a 

variation in relative permittivity of external medium (  
   ) 

causes a change in the duration of the ramp response because 

affect the velocity of the EM Wave. But a change in relative 

permittivity of the target (  
   )  does not affect the ramp 

response duration because  ( )   (
   

 
) is a function of   , 

which only depends on   . However the amplitude of the ramp 

response of a given scatterer depends on the values of (  
   ) 

and (  
   ). In the current analysis , the duration of the ramp 

response is defined between     and the first intersection 

point of the  ( ) curve on the z axis for    . 
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B. Determination of A(z) of a Scatterer 
from the backscattered field 

 

For a linear system, the frequency response   (  ) and the 

impulse response   ( ) are Fourier transform pairs: 
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In scattering applications, the frequency response can be 

defined as the ratio of the scattered field intensity   (  ) 

(Volts/meter) to the incident plane wave field intensity   (  ) 

(volts/meter), multiplied by a range factor, at a far zone 

observation distance   from the scatterer: 

 

  (  )   
 

  

  (  )

  (  )
(       )(  )    (  )           (13) 

The ramp response   ( )  is related to the phasor response 

  (  ) by: 
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The transverse cross-sectional area A(z) of a PEC scatterer for 

the given incident fields can be obtained by: 
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Now, for a (lossless) dielectric scatterer having a flat interface 

in the lit region,        ( ) , given in equation (10) is 

independent of z for a given polarization. Then the ramp 

response, via PO, takes the following simpler form: 
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A(z), for a dielectric body having a flat interface in the lit 

region, can be simply obtained as: 
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Where     is the reflection coefficient from a flat dielectric 

interface for a given linear polarization of the incident wave. 

Here, will be presented the ramp response signatures of PEC 

and lossless dielectric targets obtained from numerically 

computed and experimentally measured backscattered 

frequency responses. 

 

C. Ramp Response of a Pec Sphere 
 

Now we consider the ramp response of a PEC sphere 

embedded in free space for plane wave incidence. For a sphere 

of diameter    ( ) is given by: 
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In Using equation (5), (9) and (21), we can easily calculate the 

impulse response and the ramp response of a PEC sphere 

given by PO: 
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for          . 

 

Figure 4 shows the plot of the transverse cross sectional area 

A(z) as a function of z for the 76.2mm diameter PEC sphere in 

air, obtained from the exact backscattered field solutions. 

From Figure 3 and Figure 4, we may observe that the ramp 

response due to exact solution is in excellent agreement with 

the desired waveform obtained from PO through the lit region 

of the target. Soumya et al. [7] showed that  ( )  of the 

dielectric sphere obtained from the ramp response is in 

excellent agreement with that of the PEC sphere and the 

physical profile function especially up to the shadow 

boundary. Thus, using    ( )  instead of    ( )  in equation 

(10) enables us to estimate the transverse cross sectional area 

of a dielectric body, with two finite radii of curvatures, 

embedded in a less dense dielectric medium. 
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Figure 3 The Plots of A(z) obtained from the backscattered fields, the profile 
function, together with the normalized impulse response of a 76.2mm 

diameter PEC Sphere in free space. 

 

Figure 4 Impulse and Ramp waveforms, together with their corresponding 

frequencies responses, of a 76.2mm PEC sphere in free space for 0.02-

8.02GHz 

The ramp profile functions of a conducting and dielectric 
spheres and a dielectric cube (for normal incidence) immersed 
in free space have been obtained from the numerically 
computed backscattered electric fields.  

IV. Non-Axial or Oblique 
Incidence of the EM Wave in case 

of a dielectric Sphere 

 

Figura 5 Oblique incidence plane wave 

Let us now consider the case of incidence oblique to the 

boundary (see Figure 1). Suppose that the incident wave 

subtends an angle    with the normal to the boundary, whereas 

the reflected and transmitted waves subtend angles    and    

respectively. The incident wave can be written: 
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 (      )                            (21) 
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Where    is the incident electric field, and    and    are 

respectively the reflected and transmitted EF. Now, it is 

convenient to define the parameters 
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Where     
  ⁄  is the phase-velocity in medium 1 and  

  the refractive index.  Using PO we can obtain  that 
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the associated coefficients of reflection and transmission 
take the form: 
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    (
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                              (28) 

Note that at oblique incidence the Fresnel equations for the 
wave polarization in which the electric field is parallel to the 
boundary are different to the Fresnel equations for the wave 
polarization in which the magnetic field is parallel to the 
boundary. This implies that the coefficients of reflection and 
transmission for these two wave polarizations are, in general, 
different.  

Conclusions  

Now considering that for a dielectric target the ramp 
response is given by: 
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And from (27) we can put            which is 

dependent from         that are non dependent from z.  
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