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Abstract—Referring to the previous theoretical and numerical 

studies on the static/dynamic analyses of elastic helicoidal bars, 

only circular or square cross-sections were considered up today. 

The main purpose of this study is to investigate the dynamic 

behavior of the elastic cylindrical helices having hollow circle and 

elliptical hollow sections. For this purpose, a mixed finite element 

formulation with the Timoshenko beam assumptions is employed. 

Frenet triad is adopted as the local coordinate system in the helix 

geometry. Isoparametric curved elements involve two nodes, 

where each node has 12 DOF, namely three translations, three 

rotations, two shear forces, one axial force, two bending moment 

and one torque. Numerical solutions are performed to analyze 

the free vibration behavior of the cylindrical helices and 

benchmark results are presented. Parametric studies are carried 

out to investigate the influence of the parameters e.g. section 

geometry, boundary conditions, density of the material and 

number of turns. 

Keywords—cylindrical helix, elliptical hollow section, mixed 

finite element method, free vibration 

I.  Introduction 
Helix type structural elements are frequently used in many 

engineering applications, such as, helicoidal staircases in civil 
engineering and vehicle suspension systems in mechanical 
engineering. In the literature, although a tremendous amount 
of theoretical and numerical studies exist on the static/dynamic 
analyses of elastic helixes, it can observed that only beams 
with circular or square cross-sections were considered ([1]-
[8]). Analytical study of Yu and Hao [9] considered the 
warping deformations of the cross-section in the free vibration 
analysis of cylindrical helical springs with noncircular cross-
sections. In [10], the free vibration analysis of cylindrical helix 
with elliptical cross-section is investigated and verified 
numerically using the problem existing in [9]. 

It is straightforward to calculate the torsional rigidity of 
bars having a circular cross section. In the case of other 
geometries some special treatments have to be shown to 
determine the torsional rigidity. It is possible to find some 
exact formulas ([11]) in the open literature expressing the 
torsional moment of inertia for various arbitrary cross-sections 
e.g. ellipse and equilateral triangle, some approximated 
analytical formulas ([12]) and numerical solution procedures 
([13]-[15]).  
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This study performs free vibration analysis of elastic 
cylindrical helices having hollow circle and elliptical hollow 
sections. For this purpose a mixed finite element formulation 
comprising the Timoshenko beam theory is employed. The 
formulation used for the torsional rigidity of the elliptical 
hollow section is given in [12]. Parametric studies are reported 
to analyze the free vibration behavior of cylindrical helices 
with circular and elliptical hollow sections. First five 
frequencies cylindrical helices are presented for various 
numbers of turns, material densities, geometric properties and 
boundary conditions. 

II. Formulation 

A. The Field Equations and the 
Functional 
The details of the field equations for the elastic cylindrical 

helix based on Timoshenko beam theory can be found in [2] 
and [16]. For the completeness of the paper they will be 
introduced briefly here. Thus, the referred equations can be 
listed as follows: 

Equations of motion: 


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Kinematic equations: 
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Constitutive equations: 
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Here t n bu u u  u t n b  is the displacement vector, 

t n b    Ω t n b  is the cross section rotation vector. 
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Figure 1. Cylindrical helix geometry. 

 

t n bT T T  T t n b
 
defines the force vector, 

t n bM M M  M t n b  is the moment vector,   is the 

material density. A  is the area of the cross section, I  stores 
the moment of inertia,   is the unit shear vector,   is the unit 

rotation vector, C  and C  are the compliance matrices. q
 

and m
 
are the distributed external force and moment vectors, 

respectively. Incorporating Gâteaux differential with potential 
operator concept ([17]) yields the functional in terms of (1)-(3) 
as, 
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where the square brackets indicate the inner product, the 
terms with hats in (4) are known values on the boundary and 
the subscripts   and   represent the geometric and dynamic 

boundary conditions, respectively. Once the motion is 
considered as harmonic for the free vibration of the helix, 
conditions  q m 0 are satisfied. For further access to the  

detailed formulation, the reader is referred to the paper [2]. 

B. Mixed Finite Element Formulation 
Helicoidal beam is discretized with curved bar elements 

having two nodes with 12 degrees of freedom at each node. 

Linear shape functions ( ) /i j       and 

( ) /j i       are used to interpolate field variables over 

the problems spatial domain. The subscripts i  and j  

represent node numbers of the bar element and 

( )j i     . The detailed formulation of the mixed finite 

element matrices considering the variation of helix geometry 
can be found in [2] and [16]. Field variables at a node can be 
collected in a vector form as 

 { , , , , , , , , , , , }T
t n b t n b t n b t n bu u u T T T M M M   X  (5) 

C. Dynamic Analysis in the Mixed Finite 
Element Formulation 
Calculation of the natural free vibration frequencies of a 

structural system yields to the following standard eigenvalue 
problem, 

     2[ ] [ ] K M u 0  

Here, [ ]K and [ ]M  are the system and mass matrix of the 

entire domain, respectively. u  is the eigenvector (mode shape) 

and  depicts the natural angular frequency of the system. The 
compact form of mixed finite element matrices in (6) can be 
expanded as follows, 


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22 22

[ ] [ ] [ ] [ ] { } { }

[ ] [ ] [ ] [ ] { } { }


        
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       

K K 0 0 F 0

K K 0 M U 0
 

Here, { }F  corresponds to the nodal force and moment 

vectors, { } = { }T
U u Ω  contains the nodal displacement and 

rotation vectors. In order to reduce the problem from the 

mixed form in (7) to a standard eigenvalue form as in (6), { }F  

vector is eliminated from (7) by a condensation procedure, 
which produces the condensed system matrix 

* T 1[ ] [ ] [ ] [ ] [ ] 22 12 11 12K K K K K . Finally, the eigenvalue 

problem in the mixed formulation yields to the form, 

     * 2[ ] [ ] K M U 0  

III. Numerical Examples 
The free vibration analysis of the cylindrical helix problem 

with fixed-fixed and fixed-free boundary conditions is 
investigated in order to compare the performance of hollow 
circle and two different elliptical with hollow cross-sections, 
where all the cross-sections are chosen to have the same 
constant area. The effects of the number of active turns, the 
material density are also considered. The selected material and 
geometrical properties for the helicoidal beam are: the 
modulus of elasticity 210GPaE  , Poisson's ratio 0.3  , 

the material densities 37850kg/m   and 38500kg/m  , 

the number of active turns 3.5n  , 7.5 , 11.5 , the vertical 

height and radius of the cylindrical helix 0.6mH   and 

0.2m,R   respectively (see Figure 1). The outer and inner 

radii of hollow circle cross-section 1 15mmr   and 

2 7.5mmr  , respectively. The major radii of two different 

elliptical hollow cross-sections are 1 25mma   and 

1 40mm,a   by keeping 1 15mmb   constant, respectively.  
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Figure 2. Circular and elliptical hollow sections. 

 

For two different elliptical hollow cross-sections, the inner 
radius to the outer radius ratios of the minor and major radii to 

the major radius ratios are taken 2 1 2 1/ / 0.74b b a a   and 

0.85 , respectively (see Figure 2). The first five natural 

frequencies of cylindrical helix for all cross-sections are 
tabulated in Table I. 

The results obtained by using 200 finite elements can be 
summarized as follows: 

 The natural frequencies of cylindrical helix with elliptical 

with hollow cross-sections are greater than the natural 

frequencies of cylindrical helix with the circular cross-

section. 

 In the case of the fixed-fixed boundary condition, with 

respect to the fundamental natural frequencies in Table 1 

for the hollow circle section, the percent increases for the 

elliptical with hollow-1 and the elliptical with hollow-2 

sections are 34% 36%  and 54% 56% , respectively. 

Similarly, in the case of the fixed-free boundary 

condition, with respect to the fundamental natural 

frequencies for the hollow circle section, the percent 

increases for the elliptical with hollow-1 and the elliptical 

with hollow-2 sections are 27% 29%  and 

38% 42% , respectively. 

 If the fundamental natural frequencies are compared with 

the results that correspond to the elliptical with hollow-1, 

the percent increases in the fundamental natural 

frequency, which corresponds to the elliptical with 

hollow-2 for the fixed-fixed and the fixed-free boundary 

conditions, ranges from 14% 15%  and 7% 12% , 

respectively. 
 As n  increase, the natural frequencies of the cylindrical 

helix reduce, the closer frequencies are obtained and 

coupled modes begin to appear. For the all boundary 

conditions, the discussed sections and the material 

densities, with respect to the fundamental natural 

frequencies for the number of turns 3.5n  , the percent 

decreases for 7.5n   and 11.5n   are approximately 

52%  and 69% , respectively. 

 The natural frequencies are inversely proportional with 

the material density  . In the case of the fixed-fixed 

boundary condition, with respect to the fundamental 

natural frequencies for the material density 
37850kg/m  , the percent decreases for the material 

density 38500kg/m   are 3% 4% . Similarly, in the 

case of the fixed-free boundary condition, with respect to 

the fundamental natural frequencies for the material 

density 37850kg/m  , the percent decreases for the 

material density 38500kg/m   are 2% 7% . 

 

 
Table I. The first five frequencies (in Hz) of the cylindrical helix with hollow circle and two different elliptical hollow cross-sections for different 

parameters (the number of turns n , the material density  , the boundary conditions) 

n  

 
hollow circle 

( 2 1/ 0.5r r  ) 
 

elliptical with hollow-1 

( 2 1 2 1/ / 0.74b b a a  ) 
 

elliptical with hollow-2 

( 2 1 2 1/ / 0.85b b a a  ) 

 fixed-fixed  fixed-free  fixed-fixed  fixed-free  fixed-fixed  fixed-free 

 3(kg/m )   3(kg/m )   3(kg/m )   3(kg/m )   3(kg/m )   3(kg/m )  

 7850  8500   7850  8500   7850  8500   7850  8500   7850  8500   7850  8500  

3.5   21.0 20.2  7.0 6.8  28.3 27.2  8.9 8.6  32.4 31.2  9.9 9.6 

  22.7 21.8  7.0 6.8  38.5 37.0  9.1 8.7  47.1 45.2  10.1 9.8 

  27.1 26.0  10.6 10.2  39.6 38.1  14.3 13.7  47.4 45.6  16.4 15.7 

  28.1 27.0  12.1 11.6  45.0 43.3  22.4 21.5  60.3 58.0  36.5 35.1 

  37.7 36.3  23.5 22.6  52.6 50.5  33.1 31.8  68.6 65.9  38.8 37.3 

7.5   10.0 9.6  3.3 3.2  13.5 13.0  4.2 4.1  15.5 14.9  4.7 4.5 

  11.3 10.8  3.3 3.2  19.4 18.6  4.2 4.1  23.8 22.8  4.7 4.6 

  13.1 12.6  5.0 4.8  19.6 18.9  6.8 6.5  23.8 22.8  7.8 7.5 

  13.3 12.8  5.7 5.5  21.4 20.5  10.6 10.2  30.5 29.3  17.7 17.0 

  19.7 18.9  11.4 11.0  26.6 25.5  16.1 15.4  35.3 33.9  18.9 18.1 

11.5   6.5 6.3  2.2 2.1  8.8 8.5  2.8 2.7  10.1 9.7  3.1 2.9 

  7.4 7.1  2.2 2.1  12.8 12.3  2.8 2.7  15.7 15.0  3.1 3.0 

  8.6 8.3  3.3 3.1  12.9 12.4  4.4 4.2  15.7 15.0  5.1 4.9 

  8.7 8.3  3.7 3.6  13.9 13.4  6.9 6.7  20.1 19.4  11.6 11.1 

  13.0 12.5  7.5 7.2  17.5 16.9  10.6 10.1  23.2 22.3  12.4 11.9 
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 As expected, the natural frequencies of cylindrical helix 

with fixed-fixed boundary condition are greater than 

fixed-free boundary condition. For the discussed 

sections, the number of turns and the material densities, 

with respect to the fundamental natural frequencies for 

the fixed-fixed boundary condition, the percent decreases 

for the fixed-free boundary condition are 66% 70% . 

IV. Conclusions 
This study investigates the free vibration response of 

cylindrical helicoidal beams. For this purpose a two-field 

mixed finite element formulation depending on the potential 

operator concept and Gâteaux differential is employed, where 

Timoshenko beam assumptions are adopted to the beam 

theory. Two nodded curved finite elements with bilinear shape 

functions are used to discretize the spatial domain of the 

problem. Eigen-value equations of the dynamic problem are 

obtained after a condensation procedure by elimination stress 

type terms from the finite element matrices. Some parametric 

studies are performed to observe the effects of material 

density, number of turns, boundary conditions and ellipticity 

of hollow cross section on the free vibration characteristics of 

the cylindrical helicoidal beam structures.  
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