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A finite element method to describe the cyclic 

behavior of saturated soil 
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Abstract—In this paper, a finite element code to describe the 

cyclic behavior of saturated soil was developed. In order to 

describe the cyclic behavior, the EC model with the extended 

subloading surface, the rotational hardening and the hardening / 

softening due to shear was incorporated in the code as the 

constitutive model. The simulation of the cyclic simple shear test 

was carried out to validate the developed code and it was 

confirmed that the reasonable cyclic behavior of soil could be 

simulated. 
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I.  Introduction 
The saturated sandy soil is mixed material of soil grain and 

pore water. The volume change due to shear which is called 
dilatancy is the important mechanical characteristics of 
granular materials. The liquefaction of sandy soil is deeply 
retated to the dilatancy. When the cyclic shear stress due to an 
earthquake is subjected to loosely deposited saturated sandy 
soil, the soil would contract by the negative dilatancy. 
However the volume change is constrained by the pore water, 
pore water pressure rises and the effective stress decreases. 
When the effective stress become zero and the shear strength 
is disappeared, the soil is liquefied. This is the mechanism of 
the liquefaction of the sandy soil. The liquefaction have been 
estimated by mainly two methods so far. The first one is the 
simple method using the liquefaction strength and the safety 
factor for liquefaction based on the laboratory tests on the 
sandy soil. the other is the dynamic analyses based on the total 
stress. Nowadays, the dynamic analyses based on the effective 
stress that the deformation of the soil structure and the seepage 
of the pore water have been developed.   
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The objective of this research is to formulate the 
mechanical behavior of the soil structure and the pore water as 
the initial and boundary problem in the field considering the 
acceleration due to an earthquake and to develop the soil-
water coupled dynamic finite element method. In this research, 
the EC model[1][2][3] with the extended subloading 
surface[4][5], the rotational hardening[6] and the hardening / 
softening due to shear[7] is employed as the constitutive 
model to describe especially the dilatancy due to the cyclic 
shear stress. 

II. Finite Element Formulation of 
Soil-water Coupled Dynamic 

Problem 
The governing equations to describe the soil-water coupled 

dynamic problem are as follows. In the following description, 
compression is defined to be positive. 

 0   u σ b  


wp σ σ 1  

 : σ C ε  

   2  ε u u  

 h  w k  

  v w wnp K  w  

Equations (1) to (6) are the equation of motion, the principal 
of effective stress, the constitutive equation, the strain-
displacement relation, the Darcy’s law and the continuity 
equation respectively. ρ is density, u is displacement vector, σ 
is stress tensor, b is body force vector, σ' is effective stress 
tensor, pw is pore water pressure, 1 is Kroneker’s delta, C is 
constitutive tensor, ε is strain tensor, w is Darcy’s velocity, k 
is hydraulic conductivity tensor, h is total water head, εv is 
volumetric strain, n is porosity, Kw is bulk modulus of pore 
water. The boundary conditions are 

 ˆ u u   on uS  (7) 

 ˆ T t σ n   on S  (8) 

 ĥ h   on hS  (9) 
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 q̂  w n   on 
qS  (10) 

where t is traction vector, n is normal vector to the boundary 
surface, q is quantity of flowing pore water, Su is displacement 
boundary, Sζ is stress boundary, Sh is head boundary, Sq is 
flow boundary. 

By multiplying the rate form of equation of motion (1) by 

a test function δ u  and volume integrating it, the weak form of 
equation is obtained: 

 ˆ

0

V V V

v w
V S V

V

dV dV dV

p dV dS dV

dV



  

  



    

    

  

  

  



u u u u ε σ

u t u b

u b

 

The weak form of the continuity equation is obtained by the 
same procedure: 



 ˆ

0

q
v

V S V

w
V

w

h dV hqdS h dV

n
h p dV

K

   



   

 

  



w

 

The field variables are spatially discretized as shown below 

     neu N u     neB u      ne

v vB u   

   me

hh N h     me

hh B h   

where  N ,  B ,  vB ,  hN and  hB are the shape function 

matrices, the super script ne and me indicate the variables at 
the discretized points. By substituting (13) and (14) to (11) 
and (12), the spatially discretized weak forms of the equation 
of motion and the continuity equation of an element are 
obtained: 


    

     

e ne e e ne

M R

T
e ne e me e

v w

M u C C u

K u K h F

           

        

 

        1 2

e ne e me e me e

v h w h wK u K h K h Q               

where the matrices are expressed as follows: 

    
e

Te

V
M N N dV      

    
e

Te

M
V

C N N dV      

     
e

Te

V
K B D B dV      

    
e

Te

v h v
V

K N B dV      

  
 

 1 e

Te

h h h
V

w

k
K B B dV


      

     2 e

Te

h w h h
V

K n K N N dV      


         

   

ˆ
e e

e

T Te

S V

T

V

F N t dS N b dV

N b dV







 



 


 

      ˆ
e
q

Te

h
S

Q N q dS   

e

RC   is the Rayliegh damping matrix and is represented as 

 0 1

e e e

RC M K              

where α0 and α1 are the constants. The acceleration, velocity 
and displacement in equations (15) and (16) are temporally 
discretized by Newmark method: 

 t t t t tt  u u u  

  t t t t t t tt t     u u u u u  

    2 22t t t t t t t tt t t       u u u u u u  

The equations (15) and (16) are solved iteratively. Describing 
the increment of acceleration, velocity and displacement 

during iterative calculation as 
 1k

u , 
 1k

u  and 
 1k

u , 

the following equations are obtained from equations (26), (27) 
and (28): 


     1 1k k k

t t t t t
 

   u u u  


     1 1k k k

t t t t

 

  u u u  


     1 1k k k

t t t t t
 

    u u u  


     1 12k k k

t t t t t
 

    u u u  

The superscript with bracket indicates iteration count. The 
initial values of the iteration are set to be 


 0

0t t u  


 0

t t t u u  


 0

t t t tt  u u u  


   0 2 2t t t t tt t    u u u u  



 

22 

 

International Journal of Material Science & Engineering– IJMSE 
Volume 2 : Issue 1  [ISSN : 2374-149X]      

Publication Date : 30 April, 2015 
 

The total water head and the time derivative of the total water 
head in equation (15) and (16) are temporally discretized as 

  1 t t th h h      


 t t th h h t  

 

where θ is constant within a range from 0 to 1. By substituting 
the equations (29), (30), (31), (32), (37) and (38) to the 
equations (15) and (16), and summing up all elements, the 
spatially and temporally discretized weak forms of the 
equation of motion and the continuity equation (The global 
stiffness equations) are obtained: 



            

           

        

12 Tn k m

v w t t
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Tn k m

v w t

M t C t K u K h
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 






       
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          

      
       
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1 21
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v h h w t t
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m m

h w t h w t

t K u t K K h

t Q t K u

t K h K h
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  



      

  

   

 

III. Constitutive Model to Describe 
Cyclic Behavior of Soil 

In order to describe the cyclic behavior of soil, the 
constitutive model employed in this research is the EC model 
with the extended subloading surface, the rotational hardening 
and the hardening / softening due to shear which are explained 
later. Sekiguchi and Ohta (1977)[8] developed their model 
assuming that the volumetric change of normally consolidated 
clays due to contractancy (negative dilatancy) and the stress 
ratio exhibits linear relationship based on Shibata’s (1963)[9] 
drained shear tests under conditions of constant effective mean 
stress. However, this does not preclude other nonlinear 
functions, such as exponential and/or logarithmic curves. 
Ohno, Iizuka and Ohta (2006)[1], Ohno, Takeyama, 
Pipatpongsa, Iizuka and Ohta (2007)[2] and Ohta, Iizuka and 
Ohno (2011)[3] proposed two categories of elasto-plastic 
model in which (original) Cam Clay, Modified Cam Clay and 
Sekiguchi-Ohta models are included as special cases. They 
characterize the relationship between the contractancy and the 
stress ratio using either exponential or logarithmic function 
and named EC model, LC model respectively which are 
collectively named the Extended Sekiguchi-Ohta model.  

The yield function of EC model is 


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Figure 1. Yield surface of the EC model in axi-symmetric stress plane. 

 

in which Μ is critical state parameter; D is coefficient of 
dilatancy proposed by Shibata (1963)[9]; p’ is effective mean 

principal stress; *  is generalized stress ratio (Sekiguchi and 

Ohta 1977[8]) described as 

 *

0

3

2
  η η  

in which η is stress ratio tensor which is stress deviator s 
divided by p’. The subscript 0 indicates the preconsolidated 
state. nE is the parameter describing the nonlinearity of the 
constractancy and the stress ratio curve. The EC model is 
identical to the Sekiguchi-Ohta model when nE = 1.0. The 
yield surfaces of EC model expressing in variation with the 
values of nE are depicted in Fig. 1. 

During the earthquake, the shear deformation occurs in the 
ground and the pore water pressure arises due to the 
contractancy. Thus the effective mean stress decreases. And 
then the liquefaction occurs when the effective mean stress 
becomes 0. Therefore it is need that the constitutive model can 
represent at least the decrease of the effective mean stress in 
undrainage shear deformation by cyclic load. However, the 
constitutive model which I mentioned above cannot represent 
this feature. In order to represent this feature, the subloading 
surface proposed by Hashiguchi et al. (1998)[7] is employed 
in this research. The subloading surface is always inside the 
normal yield surface and the current stress is on the subloading 
surface. The plastic strain is developed although the stress is 
inside the normal yield surface by applying subloading 
surface. Therefore the reduction of effective pressure due to 
cyclic load can be calculated. The function of subloading 
surface is as follows. 


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 

 



 

23 

 

International Journal of Material Science & Engineering– IJMSE 
Volume 2 : Issue 1  [ISSN : 2374-149X]      

Publication Date : 30 April, 2015 
 

Effective mean stress, p'

D
ev

ia
to

ri
c 

st
re

ss
, 

q
D

ev
ia

to
ri

c
st

re
ss

, 
q

0
Effective mean stress, p’

Subloading surface

Normal yield surface

Plastic yieldingσ’

 

Figure 2. Subloading surface and normal yield surface 
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Figure 3. Cyclic loading behavior by subloading surface model 

 

y cR p p   is called the similarity ratio of subloading surface 

which indicates the ratio of size between the subloading 
surface and normal yield surface. The subloading surface and 
the normal yield surface on axi-symmetric stress plane are 
shown in Fig. 2. The similarity ratio R changes according to 
the developing law which is proposed by Hashiguchi et al. 
(1998)[7]: 

 ln pm
R R

D
  ε  

where m is the parameter which controls the speed of the 
subloading surface to achieve the normal surface.  

The stress-strain curve of cyclic behavior simulated by 
using subloading surface model is opened loop as shown in 
Fig. 3. Therefore the accumulation of plastic strain due to 
cyclic loading is overestimated. Hashiguchi (1980[4], 1989[5]) 
was proposed the extended subloading surface model to 
overcome this problem. In addition to the extended subloading 
surface model, the rotational hardening model proposed by 
Hashiguchi (1977)[6] is also employed by replacing the tensor 
expressing the anisotropy η0 with the variable ηe. The function 
of extended subloading surface is expressed as 


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ln ln 0
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 

The modified effective stress is defined as  1 R   σ σ α  

where α is similarity center of the subloading surface. In the 
case that the similarity center is set to be the origin, that is α = 
0, the extended subloading surface is identical to the 

subloading surface. The modified mean effective stress and 
the modified generalized stress ratio are 

   3p tr  σ  

 * 3

2
e  η η  

in which η  is the modified stress ratio tensor which is 

modified stress deviator s  divided by p . The developing 

law of α and ηe are 
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e r r e e e db m   η η η η η η ε  

where c is the parameter which controls the speed of the 
similarity center; br is the parameter which controls the 
rotational speed of the yield surface; Μr is the parameter 
which defined the rotational limit of the yield surface. Figs. 4 
and 5 schematically shows the hardening due to the movement 
/ expansion of the extended subloading surface and the 
rotation of the normal yield surface.  

It was reported by Castro (1969)[10], Tatsuoka (1972)[11] 
etc. that the hardening of the sandy soil is not only caused by 
plastic volumetric change but also the plastic shear distortion. 
Hashiguchi and Chen (1998)[6] was proposed the hardening / 
softening due to shear to describe this experimental results in 
the numerical simulation. The developing law of the hardening 
parameter H is 

  
2

3

p p

v d dH     ε  

μ is the parameter which controls the contribution of the 
hardening / softening due to shear. Μd is the parameter which 
define the boundary of the hardening  and softening. Fig. 6 
schematically shows the hardening / softening due to shear in 
p’ - q stress plane. 
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Figure 4. hardening due to the movement / expansion of the extended 
subloading surface 
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Figure 5. hardening due to the rotation of the normal yield surface 
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Figure 6. Hardening / softening due to shear 

IV. Numerical Examples 
In order to validate the F.E. code, the simulation of the 

cyclic simple shear test is carried out. The amplitude of the 
shear stress is constant of 14.8kPa. The constitutive model 
mentioned in the chapter III is employed in this simulation. 
The material parameters used in the simulation are listed in 
Table I. Figs. 7  show the simulated stress path and the 
simulated stress-strain relationship. The reduction of effective 
mean stress due to cyclic load can be simulated as shown in 
Fig. 7. The reduction of the shear modulus during cyclic 
deformation also can be seen in Fig. 7. The excess pore water 
pressure versus the number of cycle is shown in Fig. 8. It can 
be seen that the liquefaction almost occurs after fifth time of 
cycle. 

TABLE I.  MATERIAL PARAMETERS USED IN THE SIMULATION 

Coefficient of dilatancy D  0.051 

Irreversibility ratio Λ  0.697 

Critical stress parameter Μ  1.22 

Poisson’s ratio ν’  0.344 

Parameter for EC model nE  1.4 

Parameter for subloading surface m  0.1 

Parameter for extended subloading surface c  30.0 

Parameter for rotational hardening 
br  1.0 

Μr  0.8 

Parameter for hardening / softening due to 

shear 

μ  2.0 

Μd  0.8 

Initial effective mean stress p’i (kPa) 98.0 

Preconsolidated effective mean stress P’0 (kPa) 98.0 
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Figures 7. Simulated effective stress path and stress-strain relationship 
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Figure 8. Excess pore water pressure vs. number of cycle 

 

V. Conclusions 
In this research, the mechanical behavior of the soil 

structure and pore water in the field considering the 
acceleration due to an earthquake was formulated as the initial 
and boundary problem and the soil-water coupled dynamic 
F.E. code was developed employing the EC model with the 
extended subloading surface, the rotational hardening and the 
hardening / softening due to shear as the constitutive model. 
The cyclic simple shear test was carried out by the developed 
code and it was confirmed that the reduction of effective stress 
and accumulation of the excess pore water pressure due to the 
cyclic load could be seen. 

The developed F.E. code will be incorporated in IES 
(Integrated Earthquake Simulator) which is developing to 
predict the seismic motion and damage by the K computer 
which is a super computer installed at the RIKEN Advanced 
Institute for Computational Science in Kobe, Japan. 
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