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Abstract—This paper presents the multiscale spectral analysis 

of four water quality time series data from an Indian river. First, 

the Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise (CEEMDAN) is employed for multiscale 

decomposition and the resulted orthogonal modes namely 

Intrinsic Mode Functions (IMFs) are subsequently subjected to 

the Normalized Hilbert Transform (NHT). The spectral 

representation clearly depicts the nonlinearity and non-

stationarity of the datasets and the time varying behavior of 

dominant frequency. The marginal Hilbert spectrum of different 

parameters shows that the dominant frequency of most of the 

pollutants is at high frequency range which indicates the 

significant anthropogenic impacts in the study area. Also the 

trend analysis performed upon the instantaneous amplitudes 

show that the high frequency components are responsible for 

overall trend of the four time series during the study period 

under consideration. The multiscale decomposition process and 

the results of spectral analysis may improve the modeling efforts 

on the river system. 

Keywords—Amplitude, Frequency, Multiscale Decomposition, 

Hilbert Huang Transform, Water Quality 

I.  Introduction  
Water quality modeling is of great concern among the 

environmental modelers and hydrologists for ensuring the 
quality standards of natural water bodies. Most of the water 
quality time series data possess nonlinear and non-stationary 
characteristics and a multiscale spectral analysis study may 
give more insight to the modeling practices. Hilbert Huang 
Transform (HHT) proposed by Huang et al. [1] is one of the   
spectral analysis tools which overcomes the limitations 
concerning the „a priori‟ selection of decomposition levels, 
basis functions, linearity and stationarity requirements of the 
time series, lack of ability for local scale characterization etc. 
possessed by traditional spectral analysis techniques such as 
Fourier Transform, Wigner Ville Distribution, Wavelet 
Transforms. The use of HHT has been gaining popularity in 
geophysical applications [2], hydrology [3-6] as most of the 
hydrological time series possess nonlinearity and non-
stationarity characteristics.  
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For the analysis of water quality time series data, only a few 
applications of HHT has been reported sofar [7-10] and none 
in the Indian context. Also, performing a formal trend analysis 
of spectral amplitudes is an important step in the analysis of 
water quality time series. The traditional Empirical Mode 
Decomposition (EMD) may sometimes possess a limitation 
such as existence of modes in multiple frequency ranges 
(popularly known as „mode mixing‟) which in turn can lead to 
misinterpretation of spectra. Thus to avoid such problems, 
noise assisted and ensemble averaged variants of EMD were 
proposed in recent past [11, 12]. The traditional Hilbert 
Transform may sometimes lead to instantaneous frequencies 
which are mathematically incorrect or with less physical 
meaning. To circumvent such limitations, Normalized Hilbert 
Transform (NHT) and direct quadrature schemes were 
proposed by Huang et al. [13]. Therefore the specific 
objectives of this paper are framed as follows : (i) to propose a 
novel method for the spectral analysis of water quality time 
series by conjunctive application of a variant of EMD namely 
the  CEEMDAN and NHT  (ii) to estimate the dominant 
frequencies  by the construction of marginal Hilbert Spectrum 
(MHS) and  (iii) to perform a trend analysis of spectral 
amplitudes of the series at different scales.  

II. Hilbert Huang Transform 
Hilbert Huang Transform is a popular method for 

analyzing nonlinear and non-stationary time series data. The 
HHT method involves two phases (i) a multiscale 
decomposition of time series to get orthogonal series called 
Intrinsic Mode functions (IMFs) (ii) the NHT of the obtained 
IMFs. A typical EMD process contains (i) the identification of 
local extrema points and fitting of spline functions connecting 
them (ii) compute the mean series (of extrema) and find a 
residue series (obtained by subtraction of mean from the 
original series). The above process is known as „sifting‟ and 
the sifting operation is   iteratively continued till the resulting 
series become a zero mean series with total number of extrema 
differ from the summation of number of local maxima and 
local minima points at the most by one. The process is 
repeated till the final residue series is monotonic or contains 
only one peak. A detailed description on the EMD can be 
found in Rao and Hsu [7]. The IMFs obtained sometime show 
„mode mixing‟ and to  overcome this issue, Torres et al. [12] 
proposed the CEEMDAN algorithm which is rarely applied 
for environmental time series. The important steps of the 
CEEMDAN algorithm are presented below : 
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1. Perform the EMD for M realizations 

)()()( 0 twtXtX mm   and compute the first mode of 
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where, m=1,2,…,M the index for realizations; o is the  

noise parameter for the initial step.  

2. At the first stage (𝑘 = 1) calculate the unique first residue as 
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where, 1 is noise parameter for stage 1 (k=1); the operator 

Ek(.) is an operator represents the evolution of the k
th

 mode by 

EMD. 

4. Calculate the k 
th  

residue as 
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for k=2, 3,…, K
    

where,    )(tIMFk  is the IMFs obtained by CEEMDAN 

5. Compute the first EMD mode of ( ) ( ( ))k k k mR t E w t , 
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6. Go to step (4) for next k 

Steps 4 to 6 are performed until the obtained residue is no 

longer feasible to be decomposed (i.e., the residue is 

monotonic or having only one extrema).  





K

k

kK tIMFtXtR
1

)()()( .   (6) 

The obtained IMFs are the most appropriate inputs to perform 

the Hilbert transform which may help to study the spectral 

characteristics of a nonlinear and non-stationary time series in 

the time-frequency domain. The mathematical background of 

HT can be found in Huang et al. [1] or Rao and Hsu [7]. But 

the traditional HT may sometimes lead to instantaneous 

frequencies that are of less physical meaning (such as negative 

frequency) or mathematically incorrect. To overcome such 

problems, Huang  et al. [13] proposed a normalization scheme 

for the HT. The theoretical background of this scheme is 

available in [2, 13]. In this study the CEEMDAN based 

multiscale decomposition and the normalization scheme are 

conjunctively used for analyzing four water quality time series 

data collected from an Indian river. 

III. Database 

The HHT method is used for the analysis of four water quality 

parameters of Elunuthi Mangalam (E Mangalam)  water 

quality station in Erode, belongs to Noyyal river in Tamil 

Nadu state in India. In India, there is a wide network of 390 

water quality stations from different river basins under the 

Central Water Commission (CWC) which monitors 68 water 

quality parameters systematically. The suitability of river 

water for potable uses with regard to its physical and chemical 

quality has to be deciphered and defined on the basis of the 

some vital characteristics of water. Based on the assessment of 

water quality parameters from different stations, CWC 

identified water quality hotspots in India in the year 2011.  E 

Mangalam station is one such station and it is the station in the 

network where the maximum number of water quality 

parameters fails to meet the permissible water quality criteria 

[14], i.e. water quality parameters exceeds the permissible 

limits. In this study, two physical parameters (temperature and 

Electrical Conductivity (EC)) and two chemical parameters 

(total hardness and magnesium (Mg)) are considered for the 

analysis. The monitoring is done in biweekly basis and the 

monthly data for the period November 2004-May 2012 (91 

instances) collected from http://www.india-wris.nrsc.gov.in/ 

are used for the present study. 

IV. Results and Discussion  
The four water quality parameters are subjected to multiscale 

decomposition employing the CEEMDAN algorithm. Figure 1 

shows the IMFs of four water quality parameters recorded at E 

Mangalam station. All the four water quality time series are 

found to be decomposable to six IMFs and a final residue, 

while the sixth mode is behaving more like a residue 

(oscillating with its own mean).   
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Figure 1. IMF components of four water quality parameters 

 

The mean period of IMFs calculated by zero crossing method 

[10]  and the correlation of IMFs with the respective series are 

presented in Table 1. 
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TABLE 1 MEAN PERIOD (T) OF IMFs AND THEIR 

CORRELATION (R) WITH ORIGINAL SERIES   

 

 

It is noticed that the third IMF is showing the highest 

correlation with their respective series. The first three IMFs 

possess intra annual periodicity, the IMF4 is of near annual 

periodicity and the fifth mode is of inter annual periodicity. 

The final residue is denoting the inherent long term trend of 

the dataset and in this study, the trend of all the four water 

quality parameters is found to be decreasing. 

The HSA of IMF of all water quality time series are performed 

and the instantaneous frequency trajectories are presented in 

Fig. 2. 
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Figure 2. Instantaneous frequency trajectories of four water 

quality parameters of Noyyal river. The color bar represents 

the amplitude in respective units (EC- micro mhos/cm; 

Temperature-
o
C; Total hardness- mg/l; Magnesium-mg/l) 

 

From Fig. 2, it is noticed that high intermittency is present in 

IMF1. This is a typical characteristics of nonlinearity of the 

time series. Also a high frequency modulation is present in the 

low frequency part of the spectra, which show the non-

stationarity of the data. Further it is noticed that the dominant 

frequency (where a concentration of highest amplitude occurs) 

is not constant, but varying with time. It is further noticed that 

the instantaneous frequency trajectories of different IMFs of 

the total hardness and magnesium time series are strikingly 

similar in terms of the time instants of peak, instant of 

occurrence of the highest amplitudes and overall non-

stationarity (features of such as trend, seasonality)  etc. 

 The integration of Hilbert spectra of IMFs lead to the  

marginal Hilbert spectrum, which offers a measure of total 

amplitude contribution from each frequency value. It 

represents the cumulated amplitude over the entire data span 

in a probabilistic sense. i.e., the amplitude at a frequency 

 means there is a higher likelihood that an oscillation with 

such a frequency exists. 

The marginal Hilbert Spectrum (MHS) of IMFs are obtained 

and the mean MHS of all the four water quality parameters 

are presented in Fig. 3. 
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Figure 3. Mean marginal Hilbert spectrum of the four water 

quality parameters 

The figure shows that the prominent peaks are in the 

frequency exceeding 0.18 in all the cases (i.e., high frequency 

range). This indicates that the likelihood of highest amplitude 

(refers more pollution) occurs in intra annual scale. This can 

be linked with anthropogenic impacts such as frequent 

disposals of pollutant load into the river. 

 

The instantaneous amplitudes of IMFs of discharge and the 

four water quality parameters are subjected to a trend analysis 

by the modified Mann Kendall (MK) test [15] at 5 % 

significance level. The MK values are shown in Table 2. It is 

noted that the amplitudes of fifth mode (of inter annual 

periodicity) is showing a statistically significant increasing 

trend for the study period.  However from Fig. 1 it is noted 

that the overall trend is reducing. Thus it can be inferred that 

the lower modes (high frequency) are responsible for such 

changes in the river system.  

TABLE 2 MANN KENDALL VALUES OF 

INSTANTANEOUS AMPLITUDES OF WATER QUALITY 

PARAMETERS 

 

IMF 

Number 

EC Temperature Total 

hardness 

Mg 

IMF1 -1.429 -2.069 -2.311 -1.282 

IMF2 -5.062 -2.043 -0.337 0.314 

IMF3 -5.392 2.039 -2.251 0.082 

IMF4 2.938 -0.301 1.445 2.921 

IMF5 5.177 10.131 8.423 4.775 

IMF  

Number 

Electrical  

Conductivity 
Temperature 

Total 

 Hardness 
Magnesium 

R T R T R T R T 

IMF1 0.57 3.37 0.52 2.94 0.56 3.03 0.57 2.68 

IMF2 0.54 6.07 0.46 6.50 0.44 6.07 0.41 6.07 

IMF3 0.73 10.11 0.52 7.00 0.62 7.58 0.60 7.58 

IMF4 0.61 13.00 0.54 13.00 0.47 13.00 0.49 13.00 

IMF5 0.38 45.50 0.49 30.33 0.36 30.33 0.30 22.75 

IMF6 0.45 45.50 0.45 45.50 0.45 45.50 0.41 45.50 

Residue 0.43 91.00 0.28 91.00 0.39 91.00 0.42 91.00 
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It is hoped that the information gained from this study may 

offer   more realistic representation of the transport processes 

in the river, thus providing accurate results for future 

management and decision making. Further analysis can be 

made by coupling the multiscale decomposition with data-

driven methods or linear models (such as auto regressive 

(AR)) to forecast the water quality parameters of prime 

concern and it is possible to eventually evaluate the risk 

associated with the existing water quality standards. 

v. Conclusions 

This paper presented an effective approach for analyzing water 

quality time series employing the multiscale decomposition by 

CEEMDAN algorithm and subsequent application of NHT. 

The method is demonstrated with four water quality parameter 

time series data collected from Noyyal river in India. The 

spectral representation clearly depicts the nonlinearity and 

non-stationarity of the datasets and the time varying behavior 

of dominant frequency. The similarity in the instantaneous 

frequency trajectories of magnesium and total hardness 

suggests that the primary contributor of the hardness of the 

river system is magnesium. The marginal Hilbert spectrum 

show that the prominent peaks of the different series are in the 

high frequency range, which may be attributed to the frequent 

pollutant disposal by anthropogenic interventions. The trend 

analysis of spectral amplitudes show that eventhough the 

IMF5 of inter annual periodicity is significantly increasing for 

all the parameters, as the overall trend is found to be 

decreasing, this may be because of the dominant effect of  

high frequency IMFs of intra annual or annual periodicities. 
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