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Abstract—The scope of this study is to investigate linear 

viscoelastic vibration response of conical and hyperboloidal 

helices having an elliptical hollow section. A mixed finite element 

formulation based on the Timoshenko beam theory is 

implemented, where the numerical analysis are performed in the 

Laplace domain. Noncylindrical helix geometry is spatially 

discretized by the finite elements where nodes are placed on the 

exact geometry. The curvatures are approximated by shape 

functions over each element. The material constants are replaced 

with their complex counterparts in the Laplace domain in 

accordance to the correspondence principle. For the step type 

loading, results from the solutions performed in the Laplace 

domain are transformed back to the time domain numerically by 

employing the Modified Durbin’s transformation procedure. 

Numerical results are presented as benchmark examples 

investigating the viscolelastic dynamic behavior of noncylindrical 

helices with elliptical hollow sections. Parametric studies are 

performed to analyze the influence of the helix geometry on the 

dynamic response of the structure. 

Keywords—viscoelasticity, noncylindrical helix, mixed finite 

element method, free vibration, Laplace space 

I.  Introduction 
Among various structural elements, helicoidal rods are 

frequently used in a wide range of engineering applications, 
e.g. springs and staircases. Due to their desirable functionality 
and aesthetical reasons helicoidal bars are the critical parts of 
the global structures they belong to. Therefore an optimal and 
reliable engineering design of helicoidal structures requires a 
good understanding o their dynamic characteristics. It is very 
common to analyze the dynamic response of the helicoidal 
rods under the assumption of linear elastic behavior. Instead of 
ignoring the internal friction in the material model, 
viscoelastic theory can more reliable reflect the behavior of 
the material under dynamic conditions. The formulation of the 
viscoelasticity theory is well documented by many 
researchers, among them, one can refer to the monographs [1] 
and [2]. In the case of linear viscoelastic problems, the 
correspondence principle ([3]) states that the equations of the 
viscoelastic problem defined in the Laplace space may be 
expressed identical to the equations of the elastic problem by 
replacing the elastic constants with related complex moduli 
regarding the chosen viscoelastic model. Numerous studies in 
the literature investigated the viscoelastic behavior of straight, 
circular and helicoidal bars having circular, square or 
rectangular cross-sections, e.g. [4]-[9]. 
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In the scope of this study, the dynamic behavior of 
noncylindrical helixes is investigated by employing a linear 
viscoelastic material model. Field equations of the helicoidal 
beam depend on the Timoshenko assumptions. A mixed finite 
element formulation is employed for the solution of the 
structural problem in the Laplace domain. The three parameter 
standard model is implemented in the formulation according to 
the correspondence principle to reflect the viscoelastic 
material behavior. The curvatures of the helicoidal geometry 
are approximated with the same shape functions of the finite 
elements, which are used to interpolate field variables over the 
domain. The results of the dynamic problem obtained from the 
Laplace domain are transformed back to the time domain 
numerically according to the Modified Durbin's transformation 
algorithm ([10]-[12]). The verification of the present 
formulation by means of the literature is carried out in [9]. In 
the presented parametric studies, the effects of the helix 
geometry on the dynamic response of conical and 
hyperboloidal helices with elliptical hollow section are 
investigated. 

II. Formulation 

A. The Field Equations and the Mixed 
Formed Functional in the Laplace 
Space 
The geometry of an helix can be defined in the Cartesian 

coordinate system in terms of the helix parameters as: 

( )cosx R   , ( )siny R    and ( )z p   , where 

( ) ( ) tanp R   . Here,  is the pitch angle. For the conical 

helix, the centerline radius ( )R   is expressed as 
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where n  is the number of active turns, 1R  and 2R  are the 

bottom and top radii of the helix, respectively (See Figure 1), 
and for the hyperboloidal helix, the radius is 
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where 1R  and 2R  are the bottom radius and the central radius, 

respectively (See Figure 1). ( )p   is a function of the 

horizontal angle   and defines the step for unit angle of the 
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helix. The field equations of the elastic cylindrical/non-
cylindrical helix based on the Timoshenko beam assumptions 
were presented by [13] and [14] regarding Frenet coordinate 
system. Based on this premise, the Laplace transformed field 
equations can be listed as follows:  

Equations of motion: 


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Kinematic equations: 
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Constitutive equations: 
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where z  is the Laplace transformation parameter. In (5) 
 

t n bu u u  u t n b  is the displacement vector, 

t n b    Ω t n b  is the rotation vector, 

t n bT T T  T t n b
 
is the force vector, 

t n bM M M  M t n b  is the moment vector in the Laplace 

space,   is the density of homogeneous material, A  is the 

area of the cross section, I  is the moment of inertia of the 
cross section,   is the unit shear vector,   is the unit rotation 

vector, C  and C  are the compliance matrices in the Laplace 

space, related with the shear and bending deformations, 
respectively. q

 
and m

 
are the distributed external force and 

moment vectors in the Laplace space.  

Incorporating  the potential operator concept and the 
Gateaux differential ([15]), the functional of the structural 
problem is obtained in the Laplace space regarding (3)-(5) as, 
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Theoretical details of the functional developed for elastic 
and viscoelastic bars can be found in [13], [9]. The terms with 
hats define the known values on the boundary. The subscripts, 
 and  represent the geometric and dynamic boundary 

conditions, respectively. 

B. Mixed Finite Element Formulation 
A two nodded curved element is employed to discretize the 

beam domain. Linear shape functions namely 

( ) /i j       and ( ) /j i       are adopted for i th 

and j th nodes of the finite element. Here ( )j i     . The 

mixed finite element matrices with the sub-matrices which 
indicate the variation of helix geometry can be found in 
explicit form [13], [14]. Each node has 12 degrees of freedom 
namely: 

 { , , , , , , , , , , , }T

t n b t n b t n b t n bu u u T T T M M M   X  

III. Numerical Examples 
Viscoelastic conical and hyperboloidal helices with fixed 

at both ends are analyzed (see Figure 1). These helices are 
subjected to impulsive step type vertical distributed load 

having an intensity of 1N/moq  . The helix geometry has 

1.5, 3.5, 7.5n   number of active turns, the height of the rod is 

4mH   and the minimum radius of helix to maximum radius 

of helix ratios min max/ 0.3, 0.5, 0.7R R   where max 2mR  . 

The major and minor radii of elliptical hollow cross-section 

1 150mma  , 2 75mma   and 1 90mmb  , 2 45mmb   (see 

Figure 2), respectively.  

The viscoelastic material exhibits the standard type of 
distortional behavior while having elastic Poisson’s ratio 

0.3   . The complex shear modulus is given by 

 ( 1) 1
1/

G

G

r

z
G G

z




 
   

 
 / 1G

gG G    

where G

r  G  and gG  are the retardation time, the 

equilibrium value and the instantaneous value of relaxation 
function associated with shear modulus. The material 

parameters are 5 27 10 N/mG   , 0.005s, 0.01s, 0.1s,G

r   

3G   and the material density 31000 kg/m  . 

  

Figure 1. Conical and hyperboloidal helix geometry. 
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Figure 2. Elliptical hollow cross-section. 

The solutions are obtained in the Laplace space and they 
are inverted back to the time space with the use of modified 
Durbin's algorithms [12]. The numerical parameters of 

modified Durbin's algorithm are taken as 112N   and 6aT  . 

For 0 50st  , the time histories of the vertical displacement 

zu  at the middle  of the helices by using 100 elements are 

depicted in Figure 3-Figure 5. As seen from Figure 3-Figure 4, 
as the number of active turns and the minimum radius of helix 
to the maximum radius of helix ratios increase, the magnitude 

and the vibration period of zu  increases. The magnitude of the 

vertical displacement zu  is inversely proportional with the 

retardation time G

r  (see Figure 5). 

IV. Conclusions 
A mixed finite element formulation is developed for the 

dynamic analysis of viscoelastic conical and hyperboloidal 
helices based on the Timoshenko beam theory. The 
formulation is accomplished in Laplace space and the 
viscoelastic properties of a body are accounted using the 
correspondence principle. The viscoelastic material behavior 
is simulated by using the standard model. The finite element 
solutions are carried out in the Laplace space. The results 
obtained in transform space are inverted back to time space 
using modified Durbin's algorithm. In the presented parametric 
studies, the influences of the some parameters (e.g. the number 
of turns, the minimum radius of helix to the maximum radius 
of helix ratios, the retardation time) on viscoelastic behavior of 
the helicoidal structures are investigated. As far as the author's 
knowledge, dynamic analysis of conical and hyperboloidal 
helixes with elliptical hollow cross-section is original 
examples for the literature. 
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Figure 3. Time histories of viscoelastic conical and hyperboloidal helices for 

different number of active turns ( 1.5, 3.5, 7.5n  ). 

 

 

 

 

Figure 4. Time histories of viscoelastic conical and hyperboloidal helices for 

different minimum radius of helix to the maximum radius of helix ratios 

( min max/ 0.3, 0.5, 0.7R R  ). 
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Figure 5. Time histories of viscoelastic conical and hyperboloidal helices for 

different retardation time ( 0.005s, 0.01s, 0.1sG
r  ). 
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