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Probability and Pertinence 
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Abstract— In our today culture, the availability of a 

quantitative measure is highly comforting, without to speak 
about the opportunity that such a quantitative measure 
represents within the framework of developing quantitative, 
descriptive models,  in the financial, economic or any other field. 
However, one should be wary about the comfort of a quantitative 
measure, which may be fallacious in some cases, to the extent that 
it could seriously affect some decision/management process. In 
this paper, we are concerned with a specific subset of quantitative 
measures, namely, probability measures, in the particular case of 
(very) low probabilities. This paper is about the pertinence of 
such a (very) low probability measure: to what extent is this 
measure pertinent, with respect to its use, in financial, or, more 
generally, economic decisions? We propose a quantitative 
measure of this degree of pertinence, and apply it to an example 
of Value-at-Risk calculation. 

I. The validity of a (very) low 
probability calculation 

In our today culture, the availability of a quantitative 
measure is highly comforting, without to speak about the 
opportunity that such a quantitative measure represents within 
the framework of developing quantitative, descriptive models,  
in the financial, economic or any other field. However, one 
should be wary about the comfort of a quantitative measure, 
which may be fallacious in some cases, to the extent that it 
could seriously affect some decision/management process. In 
this paper, we are concerned with a specific subset of 
quantitative measures, namely, probability measures, in the 
particular case of (very) low probabilities, called “tails 
probabilities” hereafter. 

The use of tail probability measures may be problematic at 
two levels. The first level is the validity of a probability 
calculation, and has been extensively studied. This paper is 
rather about a second level, that is, the pertinence of such a 
measure: to what extent is this measure pertinent, with respect 
to its use, in financial, or, more generally, economic 
decisions? 
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Let us first compare two extreme cases of probability 
calculations, 

- The case of a lottery with 1 million tickets and 1 
single prize: the probability to win is 10

-6
; 

- The case of the incidence of a major earthquake (M  
7.0) in the Paris area within the next 50 years: the 
probability of such an incidence has been computed 
as 0.02 % before 2050

1
; 

In the first case, the probability determination is obviously 
100% accurate. In the second case, the earthquake probability 
of 0.0002 is valid to the extent of the accuracy of its 
calculation methodology, and subject to a sampling size issue 
(i.e., the set of relevant historical data). 

One can find numerous studies about the errors which may 
affect the determination of a probability measure, in the 
particular field of time series of financial markets data. The 
main problems arising when computing probabilities and 
related functionals such as their corresponding distributions – 
through their moments – are:  

- The quality of the input data, in particular, time series 
of data: in other words, should the presence of 
outliers be considered, or not, as erroneous data (not 
rectified by the data provider)? The problem is all the 
more crucial if we are interested in tails probabilities: 
to what extent an extreme data (for example, a 
financial return), that could be taken into account in a 
tail probability measure, must be considered as a 
reliable data, even as an outlier? For more about 
outliers detection, cf. for example Rousseeuw, Leroy 
(2003); 

- The quantity of available input data, which will 
directly affect the precision, and therefore the 
confidence interval of the measure: in many instances 
we do not dispose of long enough series of data;  

- The frequency of the data: higher frequency data 
allow easier for huge enough data sets, but, for 
example in financial time series, erroneous data have 
less chances to have been corrected by the data 
provider on a higher frequency base; 

- The sampling procedure used to compute the 
probabilities. Market data are discrete by essence: 
using them for computing continuous functionals 
poses the challenge of determining if the 
discontinuities between successive data are resulting 
from the discreteness of the sampling, or from actual 
jump dynamics. Indeed, even by using the full set of 
available, discrete, data, they are nevertheless making 
up a sample vis-à-vis the continuous series that will 
correspond to some continuous functional. This 
problem has been investigated by Aît-Sahalia (2002); 

                                                           
1 Source: TX Earthquake report, Texas (USA). 
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- The hypotheses that can be postulated about a type of 
probability distribution (Gaussian, or others): they 
obviously affect more particularly the shape of its 
tails; 

- The degree of homogeneity of the used data over 
time, with respect to their probability distribution, 
namely, the degree of stationarity of the distribution. 
Actual financial time series do actually present some 
lack of stationarity (cf. Taylor, 2007), and 
unfortunately,  

o the longer the time series, the less stationary, 
o the higher the moment of a distribution, the 

higher its variability over time.  

Most of these error sources are all the more affecting rare 
events, quantified by (very) low probability levels. For 
example, the need for a sufficient size of the available data set, 
combined with enough stationarity. Or the difficulty of 
assigning an adequate probability distribution to observed tails 
probabilities. 

In the following sections of this paper, we will not take 
into consideration to what extent the probability measures are 
affected by above problems. 

II. The pertinence of a (very) low 
probability measure 

Excluding the particular case of computing an exact 
probability form a sample equal to the full population (not a 
realistic situation in the business area), even by considering 
probability measures are resulting from a precise and reliable 
enough methodology, the next question is thus: Is it reasonable 
to include a probability measure in a calculation that must lead 
to a decision, or that will affect a decision? To be affirmative, 
the answer to this question must necessarily involve a 
sufficient degree of pertinence of the measure involved in the 
calculation, in other words, that this measure satisfactorily 
represents the reality or the reliability of the phenomenon 
which has been quantified in the measure. If it is not the case, 
it makes sense that the use of such a probability measure 
would better be restricted to a stylized fact, that is, to its actual 
equivalent of a qualitative assessment (from “very low 
probable” to “highly probable”). So that the previous question 
can be reformulated as: To what extent a probability measure 
should be valid enough to be safely used in a quantitative way, 
within the framework of a decision process? And the answer 
is: It depends on its degree of pertinence. 

A. A qualitative approach of the pertinence  

Intuitively, at first sight a (very) low probability should be 
considered as less pertinent than a (very) high probability: for 
example, it should make sense to use a (very) high probability 
measure in computing the size of a potential profit or loss. On 
the other hand, if one has to consider the building of a plant in 
the area of Paris, one may probably consider the risk of a 
major earthquake. If the probability of such an earthquake is 
of 0.02 % (cf. section 1), one will presumably not involve this 
data in the feasibility study, even if, qualitatively speaking, the 

low probability of such a major issue could make part of the 
study.  

But a “degree of pertinence” should better be quantified, in 
order to handle it in a more precise way: 

B. A tentative, quantitative measure of the 
pertinence  

Let us denote p a probability measure and  its pertinence, 

looking for a =f(p) relationship. A trivial solution would 

consist in posing =p, translating in the simplest way the fact 
that the lower the probability, the lower its pertinence. But 
such a proposition looks too simplistic, since there is no 
reason to admit that only the certainty ( p=1 ) would be fully 
pertinent, nor that the degree of pertinence would not differ 
from the probability level itself. 

The proposed, more grounded, pertinence measure rests 
upon the confidence interval associated to a probability 
measure. For a probability measure p, the confidence interval 
of an observed value p of this probability, associated to an 
error α, is given by 

 

 

 

, where q = 1 – p, n is the size of the sample used to compute 

p, and z/2  is the z-score
2
 corresponding to /2.  

For a given p, reducing the width of the confidence 

interval to a suitable error level  implies to compute p with a 
sufficient sample size n.  

 If we want that n be so that the error on p would be for 

example +/- /2 % of p, this implies 

 

 

 

, that is a sample size of  

 

 

 

We can also compute the width of the “relative confidence 
interval” wp , expressed in percent of p as: 

 

                                                           
2
 Here, the distribution of p is implied to be Gaussian, but this 

will not affect our further reasoning. 
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This formula is usually applied on an “ex-post” basis to 
determine the confidence interval, for a given error and sample 
size. But we can view it on an “ex ante” basis as well: once the 
probability of a certain event has been computed with some 
error margin, in order to observe the occurrence of the event 
with this same probability, one must consider it with the same 
error margin, and on a sample of the same size (n) of future 
data. But a smaller ex post sample size will not reflect this 
probability of occurrence. 

To illustrate this reasoning, let us consider the case of an 
event which has been determined to occur with a probability 
of 10%.To ensure that this probability  is valid with a error 
margin of + or - 1% (corresponding to a z-score of 

2.3263487), such as 0.09  p  0.11, (1bis) says that it should 
have needed a sample of n = 487,070 (supposing the 

distribution of is Gaussian). Let us further focus on the case 
of probabilities of events to be observed in the course of the 
time, that is, the case of time series of variables, more 
specifically, on a daily basis. So that, to actually observe in the 
future the occurrence of this event with a probability of p= 
10% within such a + or - 1% error margin, we need to cover a 
future period of n= 487,070 days. The shorter the n, or future 
period of time, the broader the confidence interval of p will be. 
At a rather standard horizon of time of 100 days or within 
n=100 trials, and for a given error margin of + or - 1%, hence 

a given value of z/2 of 2.3263487, (2) gives 140% (rounded) 
as the width of the relative confidence interval corresponding 
to p= 10%, and from (1), one computes that during these 100 
days, the event will actually occur with a probability range of 
140% of 10% around p=10%, i.e.,10% + or – 7%, that is, 
comprised between 3% and 17%! As a result, a decision based 
on the premise that such an event would occur with a 10% 
probability during the next 100 days is at least questionable. 

Coming back to the general case, we can build a pertinence 
measure that would reflect the sample size needed for reaching 
a given error level in the occurrence of an event. To scale such 
a measure, we propose, quite arbitrarily but realistically in 
many actual decision-making problems, to scale the measure 
in two ways: 

- By considering a  50% probability as fully 

pertinent (=1); 
- For two different probability levels, by 

considering their relative confidence interval with 
respect to an identical sample size of n for the 
occurrence of the event.  

Based on this scaling, for a given probability pi, denoting 

p0.5 as the reference level for a =1, we posit 

 

 

 

 

The rationale of this pertinence measure is the following: if 
one admits, as a reference point, that a probability of 50%, 
characterized by its relative confidence interval w0.5 , can 
reasonably considered as fully pertinent (although to be 
verified within some small enough error margin), the relative 
confidence interval wpi for a probability pi < 50% being larger, 
the ratio of both intervals will be reduced accordingly. 
Moreover, the ratio (3) presents the advantage of being 
independent of both α and n. 

Applying relationships (2) and (3), we obtain the table and 
the graph below. The graph also shows the comparison 
between the pertinence measure and a trivial determination of 

pertinence ( =2p, assuming π = 1 for p  0.5). 

Intuitively, the pertinence measure looks realistic: first, 
with decreasing probabilities, and down to a probability level 

of about 15%,  decrases in an approximately linear way, but 
at a slower pace than the trivial solution; but below this level 

of about 15% probability,  drops  goes at a higher speed 
towards 0. This would imply that the taking into account of a 
(very) low probability measure into a quantitative calculation 
with respect to some decision process becomes more and more 
questionable. 

Incidentally, it should be noted that the proposed 
pertinence measure is based on a Gaussian distribution 
through the above calculation of confidence interval. 
However, this confidence interval could significantly differ if 
said distribution is not Gaussian. In many fields, such as 
quantitative finance, the actual determination of the 
parameters of a non-Gaussian distribution is difficult, given 
the sensitivity of these parameters, subject to changes over 
time (non-stationarity). This should suffice to favor a robust 
pertinence measure that could be considered as “neutral”, that 
is, not being based on any other (non-Gaussian) distribution. 

III. Potential applications of the 
pertinence measure π of a (very) low 

probability 
The use of the pertinence concept, and of its proposed 
measure, can be considered in a broad range of applications, 
related to any kind of decision making processes, such as, for 
example, within the framework of business plans, or in some 
particular cases of accounting principles. Or also in the much 
sensitive medical field, where statistics play a key role 
(pharmaceutical research, diagnosis): as an example, in a 
recent interview

3
, professor Didier Sicard, past president of the 

French Comité Consultatif National d’Ethique, declared “To 
know that you have 2.1% chances more than your neighbor to  

                                                           
3
 In LE POINT, 17 October 2013 



 

197 

International Journal of Business and Management Study – IJBMS 
Volume 2 : Issue 1      [ISSN : 2372-3955] 

Publication Date: 30 April, 2015 
 

 
                                                 a. corrected to 0 when the calculation leads to a negative value) 

develop such or such disease is a derisory information” 
(translated from French), showing an intuitive perception of 
our pertinence issue. 

Interestingly, the lack of pertinence showed here above when 
considering (very) low probabilities, fits with a key aspect of 
the Prospect Theory. As Richard Zeckhauser (2010) writes, 
“Whether drawing from Prospect Theory of observation, it 
seems clear that individuals draw insufficient distinctions 
among small probabilities”. The author adds: “Some strong 
supporters of behavioral decision theory, however, think it is 
our norms that are misguided, and that the way the brain 
naturally perceives outcomes, not the prescriptions of decision 
theorists and economists, should be the guidelines “. To some 
extent, we could appreciate the human wisdom, consisting in 
not granting such an importance to a small probability 
measure per se, even without being aware of its underlying 

pertinence metrics. This of course does not mean just to ignore 
a small probability, but, somewhat wisely, to take it into 
account on a qualitative rather than on a quantitative basis. 

IV. Example of application in the 
quantitative finance area  

In this section, we will restrict our applications to the field of 
quantitative finance, and more particularly with respect to time 
series data. 

A. Financial risk management and the 
use of a VaR measure 

Let us consider here the application of the pertinence concept 
and measure, to a growing concern in the market finance area, 
namely, the Value-at-Risk (VaR), which plays a key role in 
the Basel III regulations for banks, and, more recently, as a 
risk management tool in funds, also in UCITS funds. 

For example, let us consider a fund invested for $ 100 million, 
which a long enough time series of past performances presents 

an average return  of 10 % and a standard deviation  of 
15%, on an annual basis. For a (99%, 100 days) VaR, the left 

hand tail of the returns distribution goes from - to: 

 

 

 

, so that its (99%, 100 days) VaR is
4
 

 

 

 

In absence of any consideration about the degree of pertinence 
of the probability level, a 99%-VaR means that there is 1% of 
chances – here, 1 day on 100 days – that the fund could 
support a loss estimated to $15.74 million (needless to add that 
the VaR measure does not represent the maximum possible 
loss). 

Now, applying (1bis), we can determine that this 1% 
probability measure would need a series of more than 5.3 
millions of days in the future, in order to be actually observed 
with a precision degree of + or -1% (of this 1% level)... 
Viewed in another way, applying the previous relationships, a 
loss of $15.74 million over a horizon of the 100 next days 
only, may actually occur with a probability ranging from 0% 
chances up to 3.31 % (i.e. up to more than 3 times more 
frequently), within our relative error margin of + or – 1%. 
Keeping this into account, we would rather have to say that an 

                                                           
4
 Assuming a Gaussian distribution of returns, with  and  

constant over the next 100 days, and a year counting 250 

business days. 
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estimated loss of $15.74 million has actually a probability of 
up to 3.31% instead of strictly 1% chances to occur within the 
next 100 days to come. 

Said in other words, the 1% VaR measure is far from 
pertinent, quantitatively speaking. And based on our 
pertinence scale, we could value this pertinence as π=10% 
only (cf. above table). Instead, using a 5% VaR measure 

would somewhat improve its pertinence, with a  of 23 %, i.e. 
more than twice. 

In this example, the accuracy of the VaR at a 1 % level may be 
viewed as rather strict, namely of 1 % + or -1% of 1%, or a 
VaR between 0.99% and 1.01%. Given such a small variation, 
we can suppose that the loss amount of $15.74 million is very 
precise: the exact amount resulting from the above calculation 
is indeed $ 15,741,818. So that, by linearizing the distribution 
around the 1% level, with the said precision level the loss 
amount would vary between $ 15,584,400 and $ 15,899,236. 
Economically speaking this amount is not significant. But 
what if we loosen the VaR level? With a precision of 10 %  in 
absolute value of this 1% level, that is, a VaR level between 
0.9% and 1.10% - which does not affect the pertinence 
measure, – would still require (by using same formulae as 
above) about 1,6 million  days to be verified in the future. And 
the loss of $15.74 million over a horizon of 100  days only, 
may actually occur with a probability ranging from 0% cup to 
2.28 %, which is still not compatible with the spirit and the 
objective of the VaR as a risk measure. 

One could even further lower the accuracy around the 1% VaR 
measure, leading to a shorter time horizon to actually verify 
this probability level, as well as to a narrower probability 
range of observing the loss of $ 15.74 million. But at the same 
time, the precision on the loss amount will further deteriorate. 
As an example, with a 1% VaR  ranging from 0.8% to 1.2%, it 
would still need about 700,000 days to be verified, and the 
probability of occurrence of the loss during the next 100 days 
is still between 0.16% and 1.84%. 

Conversely, by using the same formulae, we could compute 
the accuracy of the 1% VaR level which would be verified in 
the next 100 days. The calculation gives a so-called 1% VaR 
level ranging from 0.5039 to 1.4961%. In this case, during the 
next 100 days, the probability of loss would shrink between 
0.99% and 1% and the loss amount would be seriously 
affected. Furthermore, assuming, for sake of simplicity, a 
linear dependence of the loss amount around the 0.5039 to 
1.4961% probability range, the theoretical loss of $ 15.74 
million would actually range from 7.93 million and 23.55 
million, which is no more acceptable with respect to the VaR 
as a risk measure. 

Further to the VaR itself, regulators require an ex-post 
backtesting of the VaR, to check to what extent its calculation 
is grounded. This backtesting is usually done by comparing 
the actual occurrence of losses exceeding the VaR level to the 
VaR probability level, over a period of one year, or about 250 
business days. This is usually performed by using the Kupiek 
and/or Christoffersen tests.   Unfortunately, by doing so, the 
lack of pertinence of the VaR 1% probability level is 
exacerbated because the comparison with actual exceeding 
losses is counted on a too small data or time interval, such as 

250 data or 250 days, that is, far below a satisfactory 
confidence interval. 

Let us further illustrate this with another real world example 
from the risk management of a UCITS fund. A UCITS fund 
can be managed according to one of the two available risk 
measures: the commitment approach (sum of notionals 
adjusted by netting and/or hedging) or the Value-at-Risk 
approach. In our example, the fund has adopted the VaR 
approach. In such a case, the regulator asks for an annual 
backtest in order to validate the VaR model. 

Our € 260 million fund is invested in various asset classes 
making use of derivative instruments. It has, according to the 
prospectus, a VaR

5
 limit or budget of 2.21% of the NAV of 

the fund. That is, 1 day out of 100, the expected loss of the 
fund should not be higher than 2.21% of its Net Asset Value 
or € 5.46 million. The graph below illustrates a time series of 6 
months or 180 days during which the 99% VaR reached a 
level of 1.84% or € 4.78 million. Applying (1bis), we see that 
one would need more than 5.3 million observations in order 
for this probability measure to be in the interval of 0.993% and 
1.027% around the 1% average level. But at the same time the 
degree of pertinence π is also low, namely at only 10%.  

Now, according to our measure of pertinence, the decision-
maker (fund manager) might decide to increase it to 23%, 
meaning a probability of 5%. In that case the VaR 95% would 
be lower as illustrated in the next “Backtesting” graph. 
However, this graph displays 6 breaches for the 95% VaR 
instead of only 2 breaches for the 99% VaR. The model with 
95% VaR will not be accepted in that case by the regulator. 
Therefore, although the degree of pertinence is much higher in 
the second case, the decision-maker will chose the 99% VaR 
which gives rise to less breaches. 

The decision-maker can even go further in this case. Given 
that the VaR budget is significantly high (20% higher than the 
highest VaR level) it can lower the limit of 2.21% of the NAV, 
let say to 2%. This decision is not without consequences on 
the risk-profile of the fund. The VaR budget is used for what 
is called SRRI (Synthetic Risk and Reward Indicator) which 
gives to the UCITS investor a description of the maximum 
market volatility risk of the fund. Lowering the limit means 
that the fund is prone to lower risk, which is misleading given 
that the VaR has not changed (under the assumption that the 
model is accepted). 

 

 

                                                           
5
 The VaR model used here is a mix of GARCH and EWMA 

models. The diagonal of the variance-covariance matrix is 

estimated via GARCH, and correlations via EWMA. 
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B. Other applications in finance 

There are many other fields where (very) low probability 
measures are common in quantitative finance, such as for 
example in the pricing of (D)OTM options. A more sensitive 
topic concerns the valuation of a default or credit risk, and the 
related derivative products such as CDS (credit default swaps). 
By nature, a probability of default is a very low probability. 
Determining the “fair” (or theoretical) price of a CDS is 
necessarily involving some probability measure that is in the 
range of, say, 1 % or below. Default situations being rare 
events, the pricing of such credit derivatives is far from 

satisfactory
6
. Furthermore, involving a very low probability 

measure into such a calculation is questionable, given its lack 
of pertinence.  

Finally, let us consider the case of portfolio optimization based 
on a utility function. Assuming some distribution of portfolio 
returns, with respect to the Sharpe-Markowitz portfolio theory, 
the utility of a portfolio is typically viewed as a function of 
both the returns and the variance (hence, volatility, risk) of the 
observed past returns of the assets making up the portfolio. 
Each of the various possible values of a portfolio can be 
associated to the probability of obtaining some utility value. 
So that the expected value of the utility function is a sum of 
different possible portfolio values, weighed by their 
probability of occurrence. In particular, some high portfolio 
values will be associated to (very) low probabilities. Clearly, 
such an approach is questionable, the moment we worry about 
the pertinence of these low probability levels. 

 

V. Conclusion 
 

In many decision-making processes, the use of tail probability 
measures, i.e., of (very) low probabilities, may be problematic 
at two levels. The first level is the validity of a (very) low 
probability calculation, given the difficulties to determine 
them; this aspect is not covered here. This paper is rather 
about a second level, that is, the pertinence of such a measure, 
and proposes an objective, quantitative measure, called “π”, of 
the degree of pertinence of a probability metrics. The proposed 
determination of this  pertinence π measure makes use of the 
confidence interval which is associated to any probability 

measure, and has been scaled so that a probability  50 % is 
conventionally equal to 1, and decreases down to 0 for 
probabilities < 50 %. So that the pertinence π, associated to a 
given probability percentage, reflects the precision of this 
percentage through its link to the confidence interval which is 
associated to. This allow thus to assess the degree of 
pertinence of a probability measure that would be involved in 
any kind of calculation leading to a management decision. 

Altogether, before incorporating a probability measure into her 
decision process, a decision-maker would do well to take into 
account the degree of pertinence π of this probability, and 
probably give up to make use of this probability measure in 
her calculations if its pertinence π is judged too small, i.e., 
below some minimum threshold. Conversely, the soundness of 
a (financial) management decision involving some probability 
measure can be assessed by considering the pertinence π of the 
probability involved in. Alternatively, facing (very) low 
probabilities, instead of dealing with (very) low probability 
measures, characterized by a (too) low pertinence level, a 
decision-maker should rather incorporate it into her decision-
making process on a qualitative rather than on a quantitative 
basis. 

                                                           
6
 See for example Alain Ruttiens, Mathematics of the 

Financial Markets, Wiley, 2013. 
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