

10

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

An application of a four-way framework for

validating a specification:
Animating an Object-Z specification using Prolog

Cyrille Dongmo, John Andrew Van der Poll.

Abstract — A great deal of the benefits of formal methods

stems from their ability to rigorously and precisely specify, at an

initial stage, the requirements of the system being developed.

Errors in requirements are detected and eliminated earlier and

important properties of the system can be formally established

thereby, allowing the analysis of the behaviour of the system

before the design. These benefits come at two significant prices:

firstly, due to its rigour and the level of details, the specification

process is a difficult and costly exercise. Secondarily, a formal

specification becomes exploitable when it is carefully validated.

The search for appropriate validation guidelines, frameworks,

methods and techniques is a continuous endeavour of researchers

especially with techniques such as Object-Z for which tool

support are still very scarce. This paper follows a 4-way

framework for validating a specification, to validate an Object-Z

specification. During the validation, a mechanism is proposed to

translate the specification into Prolog facilitating its animation. A

case study is used to illustrate the approach.

Keywords—Formal Specification, Specification validation, 4-

way framework, Object-Z, Animation, Prolog.

I. Introduction
Mathematical approaches to software development are
becoming increasingly popular in both academia and industry.
Formal requirements specification and the specification
validation are two important and challenging phases. The
precision, rigour and the level of detailed analysis expected
from a formal specification makes the process of transforming
informal descriptions of the initial user requirements into
mathematical-like expressions a tedious and difficult task.
Similarly, the validation of a formal specification, aimed at
establishing the correctness of the proprieties of the system
being specified, is equally demanding.

Some of the most rigorous and costly validation approaches,
e.g. automated proofs are by means of theorem provers. Such

Cyrille Dongmo

School of computing/ College of Science Engineering and Technology /
University of South Africa (Unisa)

South Africa

John Andrew Van der Poll

Graduate School of Business Leadership (SBL) / University of South Africa
(Unisa)

South Africa

approaches involve the mathematical formulation of desirable
properties of the system as theorems of which the correctness
are demonstrated by means of specialised software, e.g.
theorem provers [9]. Animation is another technique in
validating a specification and despite criticisms raised against
specification animation for not being rigorous enough,
research in favour of animating formal specifications has been
abundant. Amongst the most prominent reasons put forward in
favour of animation is the ability to make the complex nature
of mathematical notations transparent, thereby facilitating
discussions between developers, users and other stakeholders
[10] [15].

This paper is an extension of research, presently conducted, in
which we suggested a means to exploit enterprise
organograms to address the challenge of scope delimitation in
goal and requirements analysis. The model proposed in our
previous work, as well as the algorithms to manipulate the
model, presented next as a case study, is formalised as an
Object-Z specification and subsequently validated. We
illustrate how existing Z animations with Prolog can usefully
be adapted to animate Object-Z specifications.

II. Case study
Consider the organogram of a college in Figure 1 to which

business objectives and some relationships between such

objectives are defined to facilitate IT goal/requirements

elicitation.

Each node of the organogram (which may be viewed as a

directed graph) is either a decisional element (e.g. a director’s

office) with operational elements attached to it, or simply an

operational element (a leaf). An IT project initiated within the

college aims to produce a tool to support activities either at a

decisional or at an operational level, hence contributing to

achieve the college’s business objectives. In general,

objectives of components at a lower level in the hierarchy of

the organogram are sub-objectives of the objectives of the

components at a higher level. For a given set of objectives to

be supported by an IT project, two search strategies are

defined to traverse the organogram to systematically identify

all the components (decisional or operational) within the

college that may need to be investigated during the

requirements elicitation phase. These are horizontal (cf.

breadth-first) and vertical (cf. depth-first) searches.

The horizontal search purposes to identify, on the basis of

horizontal relationships between objectives, nodes within the

same domain or sub-domain, which objectives directly or

11

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 indirectly contribute to the achievement of other objectives of

the system being analysed.

A vertical search on the other hand, traverses the

organogram, one level up or down of the hierarchy of the

organogram to identify nodes with at least one objective either

obtained by the refinement of some of the objectives of the

system being analysed, or from which some of the objectives

of the system were derived by refinement. For example,

Research objectives at the college level are achieved through

the research activities at the dean office, as well as the

achievement of research objectives at School_1, School_2 and

School_3.

Assume we are requested to produce an Object-Z specification

to address the following stakeholders’ requirements:

1) Model the organogram of the case study,

2) Specify a mechanism for the horizontal search,

3) Specify a mechanism for the vertical search,

4) Facilitate the feasibility analysis of the project.

A. College organogram

To proceed with the Object-Z specification of the college

organogram and the algorithms to manipulate it, we next

present the graph model of the organogram followed by the

algorithms. The first step is to label the nodes as in Table 1.

Table 1 - Labelling the nodes of the organogram

Node label

(identifier)

Description of each node

Domain Management
Operational

element

CD College Deanery Dean’s office

CR Colllege Deanery Research

CS College Deanery Staffing

CT College Deanery Tuition

S1 College School_1
Director’s

office

S2 College school_2
Director’s
office

S3 College school_3
Director’s

office

S1R School_1 Director’s office Research

S2A School_2 Director’s office Academics

S2Q School_2 Director
Quality

assurance

S2D School_2 COD Office

S2C School_2 CENSE CENSE office

DCE School_2 COD
Community

Engagement

DR School_2 COD Research

DT School_2 COD Tuition

DS School_2 COD Support staff

CEC School_2 CENSE
Certificate

courses

CEE School_2 CENSE
Enterprise

liaison

S3T School_3 Director Tuition

A graph model of the organogram is therefore given by the

sets of nodes Vfig1 and the set of edges Efig1.










TSCEECECDSDTDRDCECSDS

QSASRSSSSCTCSCRCD

fig
V

3,,,,,,,2,2

,2,2,1,3,2,1,,,,

1

and






























TSSCEECS

CECCSDSDSDTDSDRDS

DCEDSCSSDSSQSS

ASSRSSSCDSCD

SCDCTCDCSCDCRCD

figE

33,2

,2,2,2,2

,2,22,22,22

22,11,3,2

1,,,

1











The above simplified model of the organogram serves as

illustration of what we want to specify formally.

Some traversal algorithms are defined next.

College

School_2 School_1 School_3

COD CENSE

Research Tuition

Staffing

Deanery

Director Director Director

Office Director

Tuition Research

Academics Quality

Assurance

Community

Engagement

Research Tuition

Certificate

courses

Enterprise

Liaison

Support

staff

Figure 1: College organogram

12

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 B. Organogram Traversal Algorithm

(OrTA)

Algorithm 1.0 – General organogram traversal

Input E, CurV, CurObj, CurHrel, CurVrel

Output CurV’, CurObj’, CurHrel’, CurVrel’,

Initialize (CurV, CurObj, CurHrel, CurVrel)

While (there are vertices v in CurV not coloured black)

For Each vertex v in CurV

If color(v) is white then

‘horizontal processing of v

Apply Algorithm 1.1

Change v color to grey

ElseIf Color(v) is grey then

‘vertical processing of v

Apply Algorithm 1.2

Change color of v to black

End If

Next vertex

End While

End

E denotes the set of directed edges, CurV contains the

currently identified vertices that may be considered during

requirements elicitation. CurObj is the set of objectives so far

identified and CurHrel and CurVrel represents, respectively,

the horizontal and vertical relationships between the currently

identified objectives.

The horizontal analysis: For a given node, the purpose is to

identify those objectives of the node that are in a horizontal

relationship with the currently identified objectives.

Algorithm 1.1 – Horizontal search

Input V, CurObj, CurHrel

Output CurObj,CurHrel updated

ListObjectives = ran curObj

For Each Ov in ran ({v}◁ nodeObj)

For each O in ListObjectives

If Ov ↦ O ∈ hRel or O ↦ Ov ∈ hRel then

Add Ov to CurObj

Add Ov ↦ O or O ↦ Ov to CurHrel

End If

Next O

Next Objective

The vertical analysis: For the input node, the main purpose is

to identify direct predecessors and successors of the node of

which the objectives are in a vertical relationship with the

objectives of the input node.

Algorithm 1.2 – Vertical search

Input v, CurObj, CurV, E, CurVrel

Output CurV, CurObj, CurVrel updated

ListObjectives = ran ({v}◁ nodeObj)

[analysing the direct predecessor of v]

If v has a direct predecessor w (w ↦ v ∈ E) then

If at least one objective of w is in vertical relationship with

at one or more objectives of v then

Add the vertex w to curV if not yet added

Add each Ow ↦ Ov of vRel to CurVrel,

where Ov is an objective of v and Ow

objective of w.

Add each Ow to CurObj

End If

End If

[analysing the direct successors of v]

If v has at least one direct successor then

For each direct successor s of v (v ↦ s ∈ E)

If an objective Os of s is in vertical

relationship with Ov (Ov ↦ Os ∈ Vrel)

then

Add s to CurV is not yet added

Add Os to CurObj

Add each Op ↦ Ov of vRel to CurVrel

where Ov is an objective of v and

Os objective of s.

End If

Next successor

End If

Before developing an Object-Z specification of the case study,

we give some background on Z, Object-Z and validation.

III. Background

A. Z and Object-Z
Z is a formal specification notation based on first-order logic

and a strongly-typed fragment of Zermelo–Fraenkel set theory

[2] [23]. The main concept to describe static and dynamic

behaviours of systems is that of a schema. A generic form of a

schema is given next:

 SchemaName[list of parameters]

[declaration – part]

[predicate – part]

13

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 The variables of the schema are defined in the declaration part

above the short dividing line while constraints on the variables

are included in the predicate part [19]. Operations on standard

Z elements and schemas, namely the schema calculus, as well

as the construction of state and operation schemas are covered

in any good book on Z, e.g. [14] and [21]. Object-Z is an

object-oriented extension of Z that encapsulates standard Z

schemas in a class structure [6] [22]. A generic form of an

Object-Z class schema is shown [4].

The visibility list restricts access to specific elements of the

class. A list of inherited classes is included as well as local Z

definitions. Only one state schema is allowed in a class, which

may be initialised. Operations are specified within the class.

Concrete examples of Object-Z class schemas are given in

subsequent sections. Operations on class schemas used in this

work will be explained when they are encountered.

B. Specification validation
Validating a formal specification is a tedious task that has

been studied by researchers and practitioners over many years.

Different levels/categories of validation are employed, each of

which addresses a specific aspect of the specification and

requires specific tools:

 Reviews and Inspection – this involves manually

checking a specification to detect and correct problems,

e.g. Fagan inspections [8][5][7]. This technique is less

rigorous and requires a fair amount of human effort.

 Parsing and type-checking – these two techniques are

concerned mainly with detecting errors related to the

specification language (syntactic and semantic errors) and

aim to ensure the internal consistency of the specification

[13] [12]. Most of the tool support available perform both

parsing and type-checking [20].

 Animation – animating a specification involves executing

the specification with appropriately selected test data and

observing its behaviour [10] [11]. An animation process

generally includes two major phases: the transformation

of the specification into an executable form, followed by

the execution phase. Although animation techniques are

less rigorous than formal proofs, they have been widely

adopted as a means for prototyping formal specifications.

 Mathematical proofs – properties of the system are

formulated as theorems, of which the proofs are

discharged in either an automated or semi-automated

fashion by specialized software, namely theorem provers

[9] [17].

C. A 4-way validation framework
The four-way framework for validating a specification [3],

proposes to iteratively validate and amend a specification until
the desired quality is obtained. As shown on Figure 2, at each
iteration four validation phases are considered; with each
phase focused on one important aspect of the specification.

The rightward phase targets the properties of the specification
related to the specification language and any associated tool
support. The upward validation focuses on the properties of
the specifications pertaining to stakeholders' expectations and
initial goals. The leftward phase addresses attributes of the
application domain, while the downward validation ensures
that the specification can eventually lead to the envisioned
software product. The order of the phases is not prescriptive,
but in this work, we start with the rightward phase to first
ensure that the specification is well-formed and can, therefore,
serve as input to the available tools.

Figure 2: Four-way framework for validating a

specification [3]

D. Animating Z/Object-Z specifications

Although approaches and tools to validate Object-Z
specifications, especially animators and theorem provers, are
still rather scarce, many more have been developed for Z.
Many of the methods for animating Z use Prolog. Two main
approaches have been proposed: formal program synthesis
and structure simulation [25].

Formal program synthesis obtains a Prolog program from
the Z specification by means of a direct two-step
transformation of Z schemas. First any higher-order Z
constructs are rewritten as first-order formulae, and second
such first-order formulae are converted into Prolog. The
challenge with this approach is that the second step is manual
– there is no suitable algorithm to turn the first-order
specifications into logic programs [18]. Following structure
simulation, a Prolog program is created based on the
characteristics of the Z specification, which may have been
“flattened” by eight (8) guiding rules derived for this approach

14

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 [25]. Seven (7) of these rules are adapted in this paper for the

Z/Prolog transformation that follows :

(1) For each Z schema, create the following Prolog
predicates:

 schema_type (L, N) for state schemas and schema_op (L, N) for
operations. L is the list of variables associated to schema N.

 givenset (S, N) where S is a given set and N the given set name.

(2) Possible values of variables in a Z schema are described
in the body of the clause using the logical relationship.

(3) Concerning Z types, the given sets characterising the
schema are specified first. Each declared (type) variable is
represented by two predicates, the one naming, the other
giving the type. Decoration of variable names is achieved
by Prolog functions; thus s? and s! are named in(s) and
out(s), respectively, where s is the base name. Similarly, x
and d(x) name a state variable and the post-operational
state.

(4) Set operations, such as intersection and union, are
(assumed to be) contained in a library of Prolog code.
Otherwise, we implement these when needed.

(5) A variable that is existentially quantified in a Z schema's
clause appears in the body of the Prolog translation of the
clause as a Prolog variable, which does not appear in the
declarations of a named variable.

(6) The Prolog translation of the conjunction C of two
schemas A and B is obtained as follows: translate the
signature of C, which is obtained by merging the
signatures of A and B. The Prolog translation of the
predicates of A and B are conjoined to obtain that of C.
An analogous rule applies to the disjunction of two
schemas.

(7) When a schema B is used as a type in the signature of A,
during the translation, schema B is conjoined to the
signature of schema A.

IV. Guidelines for animating an
Object-Z specification in Prolog
A three-fold process is followed for the animation: Firstly,

we unfold the Object-Z classes to extract the encapsulated Z
schemas. Secondly, we transform each Z element into Prolog
and lastly, proceed with the execution.

A. Unfolding Object-Z classes
Since an Object-Z specification normally encapsulates

standard Z elements with very little modifications, we take
advantage of the existing Z transformation guidelines. We
unpack each class individually to work on the embedded Z
elements. When necessary, an identified Z element may be
slightly modified to undo slight changes due to Object-Z
transformation.

B. Transforming Z schemas into Prolog
We use the above 7 guidelines to transform each Z schema

into a Prolog program. As and when necessary, more

explanation is provided during the transformation process. The

symbol “/” is used to couple related elements within a relation

or a function.

C. Animating the specification
Two standard questions are used to guide the execution of the

specification: Are we building the correct system?

(Validation) and are we building it right? (Verification). The

first question concerns the validation of the specification

against the initial requirements, stakeholder goals (upward

validation), as well as constraints from the application domain

(leftward validation). The second question addresses the

consistency and correctness of the specification (rightward

validation. A successful animation of the specification also

indicates that the specification can be transformed into

operational software (downward validation).

As noted by West [24], an important requirement for a

successful animation is the ability to trace back in the

specification the source of errors when they occur. This

requirement is achieved by creating a Prolog program that

mimics the structure of any Z element under consideration;

whenever possible, the names used in the specification are

conserved in Prolog.

V. Object-Z specification of the
case study

Each node of the graph is represented by its identifier. The set

of all possible identifiers, as well as business objectives are

represented as empty Object-Z classes as shown next [4].

15

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

A node is either an operational element or a decisional

element, i.e.:

Node = = ClsOperationalElt ∪ ClsDecisionalElt

The class organogram specifies the nodes as a set of identifiers

to make it possible to use only this class for the animation and

hence avoid extra operations such as idnode and concentrate

on the two key operations which are: HorizSearch and

VerticalSearch.

VI. Validating the specification
The following techniques are proposed for each of the 4

validations in Figure 2:

Table 2: Planning the validation for one iteration

Iteration

Phases Method Tool Property

Rightward
Review

Parsing and type checking

Manual

CZT

Internal

consistency

Upward Animation / Prototype Prolog Correctness

Leftward
Domain analysis

Animation / Prototype
Prolog

Completeness

Applicability

Downward
Arguments
Inventory of techniques

manual Feasibility

The phases and methods in Table 2 are discussed next.

A. The rightward validation phase
This phase is carried out to resolve language related errors and
ensure that the specification is internally consistent and well-
formed. Two approaches are used: informal inspections and
automatic type checking.

The inspection of the specification entails: detect contradicting
elements within a class, check that each class is well-
structured with respect to a manageable size, especially the
size of the schema, and check that the formulas in the
predicate parts of the state and operation schemas within a
class are syntactically correct and intuitively clear to an
average reader.

The Object-Z specification in this paper was constructed in a
latex document using the OZ.STY macro [1] and type-checked
with the Community of Z Tools – CZT version 1.5 [16].

B. The upward validation phase
As indicated in The following techniques are proposed for

each of the 4 validations in Figure 2:

Table 2, we seek to animate the specification purposing to
establish the correctness of the specification regarding the
initial goals and/or requirements.

The three (3) empty classes Identifier, Objective, and
Description, resulting from ClsOrganogram above are each
transformed into a given type in Z, which is presented as a
clause in Prolog.

The guidelines proposed above are further applied to the class
ClsOrganogram. The two other classes may be animated in a
very similar vein.

a. Unpacking this class, we obtain:

16

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 (1) Two relations, namely, hRel, vRel, and a function idnode

which remain unchanged in Z. Implementing a relation
(and a function) in Prolog is rather straightforward.

(2) An abstract state, namely, stateOrganogram which is
simply the named version of the class state.

(3) Two operation schemas: HorizSearch and VerticalSearch.
Neither of these operations changes the state schema.
However, in their Z form; the term ΞstateOrganogram is
included into each of the operation schemas.

Next, is the Prolog implementation of the class organogram.

b. Prolog implementation

1- The horizontal and vertical relationships (hRel & vRel)

Sample data used in this paper are given in Table 3. The
first column contains node identifiers and the second
column the objectives at each node. These columns are
implemented as given sets. The last two columns provide
for the vertical and horizontal relationships between the

objectives. An element x ↦ y ∈ vRel (y is obtained from

x by refinement) is encoded in Prolog as x/y. x ↦ y ∈

hRel means that x supports y or y needs x to be achieved.

2- The state schema stateOrganogram

The variables in the signature of the state schema are:
edges, and nodeObj. The clause varname(_ , _) is used in
Prolog to associate data to these variables. The predicate
schema_type ([], schema_name) is used to implement
any state schema. The first argument contains the
signature and the second the name of the state space.
Since the operations need access to the signature of the
state schema, the Prolog assert operation is used to save
them during the execution of schema_type.

varname(_, edges).

varname(_, nodeob).

schema_type([Edges, Obj], stateorganogram):-

 %given sets

 givenset(Ns, identifier),

 givenset(Gs, objective),

 %variables names

 varname(Edges, edges),

 varname(Obj, nodeob),

 % variables' definition

 validedges(Edges),

 validnodeobj(Obj),

 %Predicate

 findall(X, element(X/_, Edges), DE),

 rem_dups(DE, DomE),

 findall(D, element(_/D, Edges), RE),

 rem_dups(RE, RanE),

 union(DomE, RanE, UNodes),

 findall(X,element(X/_,Obj), DomOb),

 rem_dups(DomOb,Dob),

 subset(Dob,UNodes).

The set operations: rel(L,N) (test a relation), element(x, L),
subset(X, L), rem_dups (X, NewX) (remove duplicates),
etc. were included in the program.

3- The operations: horizSearch and verticalSearch

Each Z operation schema is implemented as:
Schema_op (L, N)

c. Executing the Prolog program

Table 3 - Sample data

Node objectives
Vertical

relationship(vRel)

Horizontal

relationship(hRel)

Cd
cd_o1, cd_o2,

cd_o3

Cr
cr_o1, cr_o2,

cr_o3

 cr↦cd_o1,

cr_o2↦cd_o2

Cs cs_o1, cs_o2
 cs_o1↦ cd_o2,

cs_o2↦ cd_o2

Ct ct_o1 ct_o1 ↦cd_o1

s1 s1_o1, s1_o2
cd_o1↦s1_o1,

cd_o2↦s1_o2

s2 s2_o1, s2_o2
cd_o1↦s2_o1,

cd_o2↦ s2_o2

s3 s3_o1, s3_o2
cd_o1↦s3_o1,

cd_o2↦s3_o2

s1r s1r_o1, s1r_o2 s1_o1↦ s1r_o1

s2a
s2a_o1,s2a_o2,

s2a_o3

s2_o1↦s2a_o1,

s2_o2↦ s2a_o2

s2q
s2q_o1,s2q_o2,

s2q_o3

s2_o2↦ s2q_o1 s2q_o2 ↦ s2a_o1,

s2q_o3 ↦ s2d_o2,

s2q_o3 ↦ s2c_o2

s2d
s2d_o1, s2d_o2,
s2q_o3, s2q_o4

s2_o1 ↦ s2d_o1,

s2_o2 ↦ s2d_o2

s2c s2c_o1, s2c_o2 s2_o2 ↦ s2c_o1

Dce dce_o1 s2d ↦dce_o1,

Dr
dr_o1, dr_o2,

dr_o3

S2d_o2 ↦ dr_o2,

s2d_o2 ↦dr_o3

Dt dt_o1, dt_o2 S2d_o1 ↦dt_o1

Ds
ds_o1, ds_o2,

ds_o3

 ds_o1 ↦ dr_o2, ds_o2

↦ dr_o3, ds_o3 ↦

dt_o1, ds_o1 ↦ dt_o2

Cec
cec_o1, cec_o2,

cec_o3

s2c_o1 ↦ cec_o1,

s2c_o2 ↦ cec_o3

Cee cee_o1, cee_o2
 Cee_o1↦cec_o2,

cee_o2 ↦cec_03

s3t s3t_o1, s3t_o2 cd_o1 ↦ s3t_o1

1- Testing the initial state

Initially, both the two components of the state schema denote
empty sets.

??- schema_type([[], []], stateorganogram).

17

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 yes

??-

2- Verifying the state schema

We test the state schema with the data for the sub-graph rooted
at School_2 (node id = s2).

??- schema_type([[s2/s2a, s2/s2d, s2/s2c, s2d/dce, s2d/dr,
s2d/dt, s2d/ds, s2c/cec, s2c/cee], [s2/s2o1, s2/s2o2,
s2a/s2ao1, s2q/s2qo1, s2d/s2do1, s2d/s2do2,
s2c/s2co1, dce/dceo1, dr/dro1, dt/dto1, dt/dto2,
ds/dso1, cec/ceco1, cee/ceeo1]], stateorganogram).

yes

??-

Each sub-graph, as well as the whole organogram was
tested in a similar fashion.

3- Testing the horizontal search operation

% Predicate to select a tuple for output

hsel(Ov, Oi, V, List):-
 nodeobj(V/Ov),
 element(Oi, List),
 (hrel(Ov/Oi) ;
 hrel(Oi/Ov)).

varname(_, in(id)).
varname(_, inout(curobj)).
varname(_, inout(curHrel)).

schema_op([Nodeid, CurObj, CurHrel],horizsearch):-
 %Given sets
 givenset(Ns, identifier),
 givenset(Gs, objective),

 %variables' names
 varname(Nodeid, in(id)),
 varname(CurObj, inout(curobj)),
 varname(CurHrel, inout(curobj)),

 %display inputs

 write('Input-Current list of objectives: '),
 write(CurObj), nl,
 write('Input-Current list of horizontal relationships: '),
 write(CurHrel), nl,

%find the horizontal relationships for the input node
 findall(Ov/Oi,hsel(Ov,Oi,Nodeid,CurObj),Od),
 union(Od,CurHrel,CurHrelo),

%Add input node’ objectives participating to horizontal relation
 findall(X,element(X/_,Od),Obs),
 union(Obs,CurObj,CurObjo),

 %display outputs
 write('Output-Current list of objectives: '), write(CurObjo),nl,
 write('Output-Current list of horizontal relationships: '),

 write(CurHrelo).

The predicate hsel(Ov, Oi, Nodeid, CurObj) determines the
sub-set of the horizontal relationships that relate the objectives
Ov of the selected node, which identifier is in Nodeid, to the
objectives currently identified and kept in CurObj.

Amzi! Prolog Listener
Amzi Prolog Listener 5.0.18h Windows
Aug 21 2000 20:19:21
Copyright (c) 1987-2000 Amzi! inc.

?-reconsult('C:\\dongmc\\User Data\\Studies\\PHD Package\\Journal And
Articles\\ACEC 2014\\Prolog\\operationalelt.pro')
yes
?- schema_op([s2q, [s2ao1, s2do2], []], horizsearch).
Input-Current list of objectives: [s2ao1, s2do2]
Input-Current list of horizontal relationships: []
Output-Current list of objectives: [s2qo2, s2qo3, s2ao1, s2do2]
Output-Current list of horizontal relationships: [s2qo2 / s2ao1, s2qo3 / s2do2]

yes
?-

The node s2q (school_2 quality assurance) is used as input.
Before the execution of the operation, the current list of
horizontal relationships is empty. After the execution, the
system has successfully determined two relationships: s2qo2 /
s2ao1 and s2qo3 /s2do2. The first relationship indicates, for
e.g., that the objective s2qo2 of the quality assurance is meant
to support or reinforce the objective s2do2 that needs to be
achieved by the academics in the school.
We have so far presented the implementation and testing of

the operation HorizSearch. The vertical search operation,

VerticalSearch, can be implemented in the same vein. Since

these two operations are the core dynamic components of the

system being specified, a successful animation/execution of

each of them constitutes a major step towards validating the

proposed model and consequently, the correctness of the

specification as planned in The following techniques are

proposed for each of the 4 validations in Figure 2:

Table 2. However, a complete validation would include the
loop invoking them (algorithm 1.0), as well as operations to
update the different components of the input graph, e.g.
adding/removing nodes to/from the graph.

C. The leftward validation phase
Having demonstrated the correctness of the system with regard
to stakeholders’ expectations, that is, for the system to produce
appropriate outputs, we need to ensure that the specification
also takes into consideration some domain related constraints
that are not always explicitly included in the initial
requirements. For example, it would be relatively easy to show
that our specification will work well for a system with only
one PC, or in a network environment with a few computers.
But, if it is to operate in a large (International) network
environment, or in a distributed system environment, or is to
serve in the cloud, the current specification has to be updated
to include for example, language issues, constraints related to
distributed system (communication), etc.

The animation at this stage would consist of generating
appropriate test data to estimate for example the response

18

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 time, the ability of the system to integrate different languages,

etc.

D. The downward validation phase
Having demonstrated the correctness of the specification
relative to stakeholders’ expectations and adequacy with the
application domain, this phase aims to establish the
operational ability/feasibility of the specification. Since, at this
stage, the only resource at hand is the specification, an
approach to demonstrate that an operational system, with the
required properties, can be effectively constructed, may
proceed by: identifying an appropriate design/refinement
process, as well as the methods/techniques and technology
needed.

Based on the success of the above animation, it may be
relatively easy to derive a desktop application from the
specification. However, it would not be the case if the
envisioned system is a web application or a cloud service.

VII. Conclusion and Future work
This paper proposed an approach to formally specify the

guidelines to construct enterprise organograms in a bottom-up

fashion and the transformation into useful models that can be

exploited in goal and requirements elicitation phases to

identify vital sources of information within the entire

organisation. Our approach also proposes strategies to

manipulate the model and derive the necessary information in

a simplistic manner. An Object-Z specification of the

approach was presented to use various benefits of formal

methods in the model. The specification was validated using

an enhanced spiral model to ensure its correctness, or to

identify any aspects still in need of attention. The specification

facilitates the implementation of our method and further

manipulation thereof. The implementation in this paper was in

Prolog, but it could equally have been in some high level

Object-Oriented programming language, e.g. Java or a .Net

language.

The main advantage of the proposed method stems from the

simplicity and availability of enterprise organograms to which

appropriate information may be cautiously added to construct

flexible and lightweight enterprise models vital to goal and

requirements elicitation.

Being an acyclic graph, the vast theory of tree searching

algorithms, heuristics and associated complexities may

usefully be applied to organogram construction and

maintenance. Suitable and economically feasible techniques

for the horizontal and vertical traversals of these structures

could be investigated for implementation. Knowledge

representation and management techniques ought to be

evaluated to determine their applicability to carry the goals

and requirements in the hierarchy of the organogram.

Based on the proposed guidelines, the Object-Z specification

and the above search strategies call for an expert system tool

to traverse the organogram and elicit the objectives and

services within the sub-domain, as well as the resources

allocated. With appropriate interfaces, such a tool could

additionally assist an enterprise in maintaining its objectives,

services and resources.

References
[1] Edward B. Allen. Typesetting Technical Reports that Include Z

Specifications Using LaTeX, 2006.

[2] Jonathan Bowen. Formal Specification and Documentation Using Z: A
Case Study Approach. International Thomson Computer Press, London /
Boston, revised 2003. ISBN 1-85032-230-9.

[3] Cyrille Dongmo and John A. van der Poll. A Four-Way Framework for
Validating a Specification. In Paula Kotze, Aurona Gerber, Alta van der
Mervwe, and Nicola Bidwell, editors, SAICSIT, pages 46–59. ACM
PRESS, 2010. ISBN 978-1-60558-950-3.

[4] Cyrille Dongmo and John Andrew van der Poll. Addressing the
construction of Z and object-z with use case maps (ucms). International
Journal of Software Engineering and Knowledge Engineering, 24 (2):
285, 2014. doi: 10.1142/S0218194014500120. URL http://dx.doi.org/-
10.1142/S0218194014500120.

[5] E. P. Doolan. Experience with fagan’s inspection method. Software:
Practice and Experience, 22 (2): 173–182, 1992. ISSN 1097-024X. doi:
10.1002/spe.4380220205. URL http://dx.doi.org/10.1002/-
spe.4380220205.

[6] Roger Duke and Gordon Rose. Formal Object-Oriented Specification
Using Object-Z. Macmillan, Basingstoke, 2000. ISBN 0333801237.

[7] Kamsties Erik, Berry Daniel M., Paech Barbara, E. Kamsties, D. M.
Berry, and B. Paech. Detecting Ambiguities in Requirements Documents
Using Inspections. In Proceedings of the First Workshop on Inspection
in Software Engineering (WISE'01), pages 68–80, 2001.

[8] Michael E. Fagan. Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems Journal, 15 (3): 182 – 211, 1976.

[9] Leonardo Freitas. Proving theorems with z/eves. Appendix A, 1 (1),
2004.

[10] Jeff Gray and Stephen Schach. Constraint animation using an object-
oriented declarative language. In Proceedings of the 38th Annual on
Southeast Regional Conference, ACM-SE 38, pages 1–10, New York,
NY, USA, 2000. ACM. ISBN 1-58113-250-6. doi:
10.1145/1127716.1127718. URL http://doi.acm.org/10.1145/-
1127716.1127718.

[11] W. Hasselbring. Animation of object-z specifications with a set-oriented
prototyping language. In J.P. Bowen and J.A. Hall, editors, Z User
Workshop, Cambridge 1994, Workshops in Computing, pages 337–356.
Springer London, 1994. ISBN 978-3-540-19884-0. doi: 10.1007/978-1-
4471-3452-7_20. URL http://dx.doi.org/10.1007/978-1-4471-3452-
7_20.

[12] Xiaoping Jia. Ztc: A type checker for z notation–user’s guide. DePaul
University, Institute for Software Engineering, Department of Computer
Science and Information Systems, Chicago, Illinois, USA, version, 2,
1998.

[13] Wendy Johnston. A Type Checker for Object-Z. Technical report,
Department of Computer Science, The University of Queensland
Australia, 1996.

[14] David Lightfoot. Formal Specification Using Z. Grassroots Series.
Palgrave, 2nd edition, 2001.

[15] Shaoying Liu and Hao Wang. An automated approach to specification
animation for validation. Journal of System Software, 80 (8): 1271–
1285, August 2007. ISSN 0164-1212. doi: 10.1016/j.jss.2006.12.540.
URL http://dx.doi.org/10.1016/j.jss.2006.12.540.

19

International Journal of Advances in Software Engineering & Research Methodology– IJSERM
 Volume 2 : Issue 1 [ISSN : 2374-1619]

 Publication Date: 30 April, 2015

 [16] Petra Malik and Mark Utting. CZT: A Framework for Z Tools. In

International Conference of Z and B Users (ZB 2005), pages 65–84.
Springer, 2005.

[17] W. McCune. Prover9 and Mace4.
http://www.cs.unm.edu/~mccune/prover9/, 2005–2010.

[18] Katsuhiko Nakamura. Introduction to logic programming• by
christopher j. hogger. New Generation Computing, 3 (4): 487–487, 1985.
ISSN 0288-3635. doi: 10.1007/BF03037083. URL http://dx.doi.org/-
10.1007/BF03037083.

[19] Gerard O’Regan. Mathematical Approaches to Software Quality.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
184628242X.

[20] Tim Parker. TOZE-A Graphical Editor for the Object-Z Specification
Language with Syntax and Type Checking Capabilities. PhD thesis,
University of Wisconsin-La Crosse, 2008.

[21] Ben Potter, David Till, and Jane Sinclair. An Introduction to Formal
Specification and Z. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2nd edition, 1996. ISBN 0132422077.

[22] Graeme Smith. The Object-Z specification language. Kluwer Academic,
Boston, 2000. ISBN 0792386841.

[23] J Michael Spivey. The z notation: a reference manual. international
series in computer science, 1992.

[24] Margaret Mary West. Issues in Validation and Executability of Formal
Specifications in the Z notation. PhD thesis, School of Computing, 2002.

[25] M.M. West and B.M. Eaglestone. Software development: two
approaches to animation of z specifications using prolog. Software
Engineering Journal, 7 (4): 264–276, 1992. ISSN 0268-6961.

