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Cyrille Dongmo, John Andrew Van der Poll. 

 
Abstract — A great deal of the benefits of formal methods 

stems from their ability to rigorously and precisely specify, at an 

initial stage, the requirements of the system being developed. 

Errors in requirements are detected and eliminated earlier and 

important properties of the system can be formally established 

thereby, allowing the analysis of the behaviour of the system 

before the design. These benefits come at two significant prices: 

firstly, due to its rigour and the level of details, the specification 

process is a difficult and costly exercise. Secondarily, a formal 

specification becomes exploitable when it is carefully validated. 

The search for appropriate validation guidelines, frameworks, 

methods and techniques is a continuous endeavour of researchers 

especially with techniques such as Object-Z for which tool 

support are still very scarce. This paper follows a 4-way 

framework for validating a specification, to validate an Object-Z 

specification. During the validation, a mechanism is proposed to 

translate the specification into Prolog facilitating its animation. A 

case study is used to illustrate the approach.  

Keywords—Formal Specification, Specification validation, 4-

way framework, Object-Z, Animation, Prolog. 

I.  Introduction  
Mathematical approaches to software development are 
becoming increasingly popular in both academia and industry.   
Formal requirements specification and the specification 
validation are two important and challenging phases. The 
precision, rigour and the level of detailed analysis expected 
from a formal specification makes the process of transforming 
informal descriptions of the initial user requirements into 
mathematical-like expressions a tedious and difficult task.  
Similarly, the validation of a formal specification, aimed at 
establishing the correctness of the proprieties of the system 
being specified, is equally demanding.  

Some of the most rigorous and costly validation approaches, 
e.g. automated proofs are by means of theorem provers. Such  
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approaches involve the mathematical formulation of desirable 
properties of the system as theorems of which the correctness 
are demonstrated by means of specialised software, e.g. 
theorem provers [9]. Animation is another technique in 
validating a specification and despite criticisms raised against 
specification animation for not being rigorous enough, 
research in favour of animating formal specifications has been 
abundant. Amongst the most prominent reasons put forward in 
favour of animation is the ability to make the complex nature 
of mathematical notations transparent, thereby facilitating 
discussions between developers, users and other stakeholders 
[10] [15]. 

This paper is an extension of research, presently conducted, in 
which we suggested a means to exploit enterprise 
organograms to address the challenge of scope delimitation in 
goal and requirements analysis. The model proposed in our 
previous work, as well as the algorithms to manipulate the 
model, presented next as a case study, is formalised as an 
Object-Z specification and subsequently validated. We 
illustrate how existing Z animations with Prolog can usefully 
be adapted to animate Object-Z specifications.  

II. Case study 
Consider the organogram of a college in Figure 1 to which 

business objectives and some relationships between such 

objectives are defined to facilitate IT goal/requirements 

elicitation.  

Each node of the organogram (which may be viewed as a 

directed graph) is either a decisional element (e.g. a director’s 

office) with operational elements attached to it, or simply an 

operational element (a leaf). An IT project initiated within the 

college aims to produce a tool to support activities either at a 

decisional or at an operational level, hence contributing to 

achieve the college’s business objectives. In general, 

objectives of components at a lower level in the hierarchy of 

the organogram are sub-objectives of the objectives of the 

components at a higher level. For a given set of objectives to 

be supported by an IT project, two search strategies are 

defined to traverse the organogram to systematically identify 

all the components (decisional or operational) within the 

college that may need to be investigated during the 

requirements elicitation phase. These are horizontal (cf. 

breadth-first) and vertical (cf. depth-first) searches.  

The horizontal search purposes to identify, on the basis of 

horizontal relationships between objectives, nodes within the 

same domain or sub-domain, which objectives directly or 
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 indirectly contribute to the achievement of other objectives of 

the system being analysed. 

 

A vertical search on the other hand, traverses the 

organogram, one level up or down of the hierarchy of the 

organogram to identify nodes with at least one objective either 

obtained by the refinement of some of the objectives of the 

system being analysed, or from which some of the objectives 

of the system were derived by refinement. For example, 

Research objectives at the college level are achieved through 

the research activities at the dean office, as well as the 

achievement of research objectives at School_1, School_2 and 

School_3.  

Assume we are requested to produce an Object-Z specification 

to address the following stakeholders’ requirements: 

1) Model the organogram of the case study, 

2) Specify a mechanism for the horizontal search, 

3) Specify a mechanism for the vertical search, 

4) Facilitate the feasibility analysis of the project. 

A. College organogram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To proceed with the Object-Z specification of the college 

organogram and the algorithms to manipulate it, we next 

present the graph model of the organogram followed by the 

algorithms. The first step is to label the nodes as in Table 1.  

 

Table 1 - Labelling the nodes of the organogram 

Node label  

(identifier) 

Description of each node 

Domain Management 
Operational 

element 

CD College Deanery Dean’s office 

CR Colllege Deanery Research 

CS College Deanery Staffing 

CT College Deanery Tuition 

S1 College School_1 
Director’s 

office 

S2 College school_2 
Director’s 
office 

S3 College school_3 
Director’s 

office 

S1R School_1 Director’s office Research 

S2A School_2 Director’s office Academics 

S2Q School_2 Director 
Quality 

assurance 

S2D School_2 COD Office 

S2C School_2 CENSE CENSE office 

DCE School_2 COD 
Community 

Engagement 

DR School_2 COD Research 

DT School_2 COD Tuition 

DS School_2 COD Support staff 

CEC School_2 CENSE 
Certificate 

courses 

CEE School_2 CENSE 
Enterprise 

liaison 

S3T School_3 Director Tuition 

 

A graph model of the organogram is therefore given by the 

sets of nodes Vfig1 and the set of edges Efig1. 
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The above simplified model of the organogram serves as 

illustration of what we want to specify formally. 

 

Some traversal algorithms are defined next. 
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Figure 1: College organogram 
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 B. Organogram Traversal Algorithm 

(OrTA) 
 

Algorithm 1.0 – General organogram traversal 

Input E, CurV, CurObj, CurHrel, CurVrel 

Output CurV’, CurObj’, CurHrel’, CurVrel’,  

Initialize (CurV, CurObj, CurHrel, CurVrel) 

While (there are vertices v in CurV not coloured black) 

For Each vertex v in CurV 

If color(v) is white then 

‘horizontal processing of v 

Apply Algorithm 1.1 

Change v color to grey 

ElseIf Color(v) is grey then 

‘vertical processing  of v 

Apply Algorithm 1.2 

Change color of v to black 

End If 

Next vertex 

End While 

End 

E denotes the set of directed edges, CurV contains the 

currently identified vertices that may be considered during 

requirements elicitation. CurObj is the set of objectives so far 

identified and CurHrel and CurVrel represents, respectively, 

the horizontal and vertical relationships between the currently 

identified objectives. 

 

The horizontal analysis: For a given node, the purpose is to 

identify those objectives of the node that are in a horizontal 

relationship with the currently identified objectives. 

 

Algorithm 1.1 – Horizontal search 

Input V, CurObj, CurHrel 

Output CurObj,CurHrel updated 

ListObjectives = ran curObj 

For Each Ov in ran ({v}◁ nodeObj) 

For each O in ListObjectives 

If Ov ↦ O ∈ hRel or O ↦ Ov ∈ hRel then 

Add Ov to CurObj 

Add Ov ↦ O or O ↦ Ov to CurHrel 

End If 

Next O 

Next Objective 

 

The vertical analysis: For the input node, the main purpose is 

to identify direct predecessors and successors of the node of 

which the objectives are in a vertical relationship with the 

objectives of the input node.  

 

Algorithm 1.2 – Vertical search 

Input v, CurObj, CurV, E, CurVrel 

Output CurV, CurObj, CurVrel updated 

ListObjectives = ran ({v}◁ nodeObj) 

[analysing the direct  predecessor of v] 

If v has a direct predecessor w (w ↦ v ∈ E) then 

If at least one objective of w is in vertical relationship with 

at one or more objectives of v  then 

Add the vertex w to curV if not yet added 

Add each Ow ↦ Ov of vRel to CurVrel, 

where Ov is an objective of v and Ow 

objective of w. 

Add each Ow to CurObj 

End If 

End If 

[analysing the direct successors of v] 

If v has at least one direct successor  then 

For each direct successor s of v (v ↦ s ∈ E) 

If an objective Os of s is in vertical 

relationship with Ov (Ov ↦ Os ∈ Vrel) 

then 

Add s to CurV is not yet added 

Add Os to CurObj 

Add each Op ↦ Ov of vRel to CurVrel 

where Ov is an objective of v and 

Os objective of s.  

End If 

Next successor 

End If 

 

Before developing an Object-Z specification of the case study, 

we give some background on Z, Object-Z and validation. 

III. Background 

A. Z and Object-Z  
Z is a formal specification notation based on first-order logic 

and a strongly-typed fragment of Zermelo–Fraenkel set theory 

[2] [23]. The main concept to describe static and dynamic 

behaviours of systems is that of a schema. A generic form of a 

schema is given next: 

 SchemaName[list of parameters]  

[declaration – part] 
 

[predicate – part]  
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 The variables of the schema are defined in the declaration part 

above the short dividing line while constraints on the variables 

are included in the predicate part [19]. Operations on standard 

Z elements and schemas, namely the schema calculus, as well 

as the construction of state and operation schemas are covered 

in any good book on Z, e.g. [14] and [21]. Object-Z is an 

object-oriented extension of Z that encapsulates standard Z 

schemas in a class structure [6] [22]. A generic form of an 

Object-Z class schema is shown [4]. 

 

The visibility list restricts access to specific elements of the 

class. A list of inherited classes is included as well as local Z 

definitions. Only one state schema is allowed in a class, which 

may be initialised. Operations are specified within the class. 

Concrete examples of Object-Z class schemas are given in 

subsequent sections. Operations on class schemas used in this 

work will be explained when they are encountered. 

B. Specification validation 
Validating a formal specification is a tedious task that has 

been studied by researchers and practitioners over many years.  

Different levels/categories of validation are employed, each of 

which addresses a specific aspect of the specification and 

requires specific tools: 

 Reviews and Inspection – this involves manually 

checking a specification to detect and correct problems, 

e.g. Fagan inspections [8][5][7]. This technique is less 

rigorous and requires a fair amount of human effort. 

 Parsing and type-checking – these two techniques are 

concerned mainly with detecting errors related to the 

specification language (syntactic and semantic errors) and 

aim to ensure the internal consistency of the specification 

[13] [12]. Most of the tool support available perform both 

parsing and type-checking [20]. 

 Animation – animating a specification involves executing 

the specification with appropriately selected test data and 

observing its behaviour [10] [11]. An animation process 

generally includes two major phases: the transformation 

of the specification into an executable form, followed by 

the execution phase. Although animation techniques are 

less rigorous than formal proofs, they have been widely 

adopted as a means for prototyping formal specifications. 

 Mathematical proofs – properties of the system are 

formulated as theorems, of which the proofs are 

discharged in either an automated or semi-automated 

fashion by specialized software, namely theorem provers 

[9] [17]. 

C. A 4-way validation framework  
The four-way framework for validating a specification [3], 

proposes to iteratively validate and amend a specification until 
the desired quality is obtained. As shown on Figure 2, at each 
iteration four validation phases are considered; with each 
phase focused on one important aspect of the specification. 

The rightward phase targets the properties of the specification 
related to the specification language and any associated tool 
support. The upward validation focuses on the properties of 
the specifications pertaining to stakeholders' expectations and 
initial goals. The leftward phase addresses attributes of the 
application domain, while the downward validation ensures 
that the specification can eventually lead to the envisioned 
software product. The order of the phases is not prescriptive, 
but in this work, we start with the rightward phase to first 
ensure that the specification is well-formed and can, therefore, 
serve as input to the available tools. 

 

Figure 2: Four-way framework for validating a 

specification [3] 

D. Animating Z/Object-Z specifications 

Although approaches and tools to validate Object-Z 
specifications, especially animators and theorem provers, are 
still rather scarce, many more have been developed for Z. 
Many of the methods for animating Z use Prolog. Two main 
approaches have been proposed: formal program synthesis 
and structure simulation [25]. 

Formal program synthesis obtains a Prolog program from 
the Z specification by means of a direct two-step 
transformation of Z schemas. First any higher-order Z 
constructs are rewritten as first-order formulae, and second 
such first-order formulae are converted into Prolog. The 
challenge with this approach is that the second step is manual 
– there is no suitable algorithm to turn the first-order 
specifications into logic programs [18]. Following structure 
simulation, a Prolog program is created based on the 
characteristics of the Z specification, which may have been 
“flattened” by eight (8) guiding rules derived for this approach 
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 [25]. Seven (7) of these rules are adapted in this paper for the 

Z/Prolog transformation that follows : 

(1) For each Z schema, create the following Prolog 
predicates: 

 schema_type (L, N) for state schemas and schema_op (L, N) for 
operations. L is the list of variables associated to schema N. 

 givenset (S, N) where S is a given set and N the given set name. 

(2) Possible values of variables in a Z schema are described 
in the body of the clause using the logical relationship. 

(3) Concerning Z types, the given sets characterising the 
schema are specified first. Each declared (type) variable is 
represented by two predicates, the one naming, the other 
giving the type. Decoration of variable names is achieved 
by Prolog functions; thus s? and s! are named in(s) and 
out(s), respectively, where s is the base name. Similarly, x 
and d(x) name a state variable and the post-operational 
state. 

(4) Set operations, such as intersection and union, are 
(assumed to be) contained in a library of Prolog code. 
Otherwise, we implement these when needed. 

(5) A variable that is existentially quantified in a Z schema's 
clause appears in the body of the Prolog translation of the 
clause as a Prolog variable, which does not appear in the 
declarations of a named variable. 

(6) The Prolog translation of the conjunction C of two 
schemas A and B is obtained as follows: translate the 
signature of C, which is obtained by merging the 
signatures of A and B. The Prolog translation of the 
predicates of A and B are conjoined to obtain that of C. 
An analogous rule applies to the disjunction of two 
schemas. 

(7) When a schema B is used as a type in the signature of A, 
during the translation, schema B is conjoined to the 
signature of schema A. 

IV. Guidelines for animating an 
Object-Z specification in Prolog 
A three-fold process is followed for the animation: Firstly, 

we unfold the Object-Z classes to extract the encapsulated Z 
schemas. Secondly, we transform each Z element into Prolog 
and lastly, proceed with the execution.  

A. Unfolding Object-Z classes 
Since an Object-Z specification normally encapsulates 

standard Z elements with very little modifications, we take 
advantage of the existing Z transformation guidelines. We 
unpack each class individually to work on the embedded Z 
elements. When necessary, an identified Z element may be 
slightly modified to undo slight changes due to Object-Z 
transformation.  

B. Transforming Z schemas into Prolog 
We use the above 7 guidelines to transform each Z schema 

into a Prolog program. As and when necessary, more 

explanation is provided during the transformation process. The 

symbol “/” is used to couple related elements within a relation 

or a function. 

C. Animating the specification 
Two standard questions are used to guide the execution of the 

specification: Are we building the correct system? 

(Validation) and are we building it right? (Verification). The 

first question concerns the validation of the specification 

against the initial requirements, stakeholder goals (upward 

validation), as well as constraints from the application domain 

(leftward validation). The second question addresses the 

consistency and correctness of the specification (rightward 

validation. A successful animation of the specification also 

indicates that the specification can be transformed into 

operational software (downward validation).  

 

As noted by West [24], an important requirement for a 

successful animation is the ability to trace back in the 

specification the source of errors when they occur. This 

requirement is achieved by creating a Prolog program that 

mimics the structure of any Z element under consideration; 

whenever possible, the names used in the specification are 

conserved in Prolog. 

V. Object-Z specification of the 
case study 

Each node of the graph is represented by its identifier. The set 

of all possible identifiers, as well as business objectives are 

represented as empty Object-Z classes as shown next [4]. 
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A node is either an operational element or a decisional 

element, i.e.: 

Node = = ClsOperationalElt ∪ ClsDecisionalElt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The class organogram specifies the nodes as a set of identifiers 

to make it possible to use only this class for the animation and 

hence avoid extra operations such as idnode and concentrate 

on the two key operations which are: HorizSearch and 

VerticalSearch. 

VI. Validating the specification 
The following techniques are proposed for each of the 4 

validations in Figure 2: 

 

Table 2: Planning the validation for one iteration 

Iteration  

Phases Method Tool  Property 

Rightward 
Review 

Parsing and type checking 

Manual 

CZT 

Internal 

consistency 

Upward Animation / Prototype Prolog Correctness 

Leftward 
Domain analysis 

Animation / Prototype 
Prolog 

Completeness 

Applicability 

Downward 
Arguments 
Inventory of techniques 

manual Feasibility 

The phases and methods in Table 2 are discussed next. 

A. The rightward validation phase 
This phase is carried out to resolve language related errors and 
ensure that the specification is internally consistent and well-
formed. Two approaches are used: informal inspections and 
automatic type checking.  

The inspection of the specification entails: detect contradicting 
elements within a class, check that each class is well-
structured with respect to a manageable size, especially the 
size of the schema, and check that the formulas in the 
predicate parts of the state and operation schemas within a 
class are syntactically correct and intuitively clear to an 
average reader. 

The Object-Z specification in this paper was constructed in a 
latex document using the OZ.STY macro [1] and type-checked 
with the Community of Z Tools – CZT version 1.5 [16].   

B. The upward validation phase 
As indicated in The following techniques are proposed for 

each of the 4 validations in Figure 2: 

 
Table 2, we seek to animate the specification purposing to 
establish the correctness of the specification regarding the 
initial goals and/or requirements.  

The three (3) empty classes Identifier, Objective, and 
Description, resulting from ClsOrganogram above are each 
transformed into a given type in Z, which is presented as a 
clause in Prolog. 

The guidelines proposed above are further applied to the class 
ClsOrganogram. The two other classes may be animated in a 
very similar vein. 

a. Unpacking this class, we obtain:  
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 (1) Two relations, namely, hRel, vRel, and a function idnode 

which remain unchanged in Z. Implementing a relation 
(and a function) in Prolog is rather straightforward. 

(2) An abstract state, namely, stateOrganogram which is 
simply the named version of the class state. 

(3) Two operation schemas: HorizSearch and VerticalSearch. 
Neither of these operations changes the state schema. 
However, in their Z form; the term ΞstateOrganogram is 
included into each of the operation schemas. 

Next, is the Prolog implementation of the class organogram. 
 

b. Prolog implementation 

1- The horizontal and vertical relationships (hRel & vRel) 

Sample data used in this paper are given in Table 3. The 
first column contains node identifiers and the second 
column the objectives at each node. These columns are 
implemented as given sets. The last two columns provide 
for the vertical and horizontal relationships between the 

objectives. An element x ↦ y ∈ vRel (y is obtained from 

x by refinement) is encoded in Prolog as x/y.   x ↦ y ∈ 

hRel means that x supports y or y needs x to be achieved. 

2- The state schema stateOrganogram 

The variables in the signature of the state schema are: 
edges, and nodeObj. The clause varname( _ , _ ) is used in 
Prolog to associate data to these variables. The predicate 
schema_type ([ ], schema_name) is used to implement 
any state schema. The first argument contains the 
signature and the second the name of the state space.  
Since the operations need access to the signature of the 
state schema, the Prolog assert operation is used to save 
them during the execution of schema_type. 

        
varname(_, edges). 

varname(_, nodeob). 

 

schema_type([Edges, Obj], stateorganogram):- 

 %given sets 

 givenset(Ns, identifier), 

 givenset(Gs, objective), 

  

 %variables names 

 varname(Edges, edges), 

 varname(Obj, nodeob), 

 

 % variables' definition 

 validedges(Edges), 

 validnodeobj(Obj), 

 

 %Predicate 

 findall(X, element(X/_, Edges), DE), 

 rem_dups(DE, DomE), 

 findall(D, element(_/D, Edges), RE), 

 rem_dups(RE, RanE), 

 union(DomE, RanE, UNodes), 

  

 findall(X,element(X/_,Obj), DomOb), 

 rem_dups(DomOb,Dob), 

 subset(Dob,UNodes). 

 
The set operations: rel(L,N) (test a relation), element(x, L), 
subset(X, L), rem_dups (X, NewX) (remove duplicates), 
etc. were included in the program. 

3- The operations: horizSearch and verticalSearch 
 

Each Z operation schema is implemented as: 
Schema_op (L, N) 

 

c. Executing the Prolog program 
 

Table 3 - Sample data 

Node objectives 
Vertical 

relationship(vRel) 

Horizontal 

relationship(hRel) 

Cd 
cd_o1, cd_o2, 

cd_o3 

  

Cr 
cr_o1, cr_o2, 

cr_o3 

 cr↦cd_o1, 

cr_o2↦cd_o2 

Cs cs_o1, cs_o2 
 cs_o1↦ cd_o2, 

cs_o2↦ cd_o2 

Ct ct_o1  ct_o1 ↦cd_o1 

s1 s1_o1, s1_o2 
cd_o1↦s1_o1, 

cd_o2↦s1_o2 

 

s2 s2_o1, s2_o2 
cd_o1↦s2_o1, 

cd_o2↦ s2_o2 

 

s3 s3_o1, s3_o2 
cd_o1↦s3_o1, 

cd_o2↦s3_o2 

 

s1r s1r_o1, s1r_o2  s1_o1↦ s1r_o1 

s2a 
s2a_o1,s2a_o2, 

s2a_o3 

s2_o1↦s2a_o1, 

s2_o2↦ s2a_o2 

 

s2q 
s2q_o1,s2q_o2, 

s2q_o3 

s2_o2↦ s2q_o1 s2q_o2 ↦ s2a_o1, 

s2q_o3 ↦ s2d_o2, 

s2q_o3 ↦ s2c_o2 

s2d 
s2d_o1, s2d_o2,  
s2q_o3, s2q_o4 

s2_o1 ↦ s2d_o1, 

s2_o2 ↦ s2d_o2 

 

s2c s2c_o1, s2c_o2 s2_o2 ↦ s2c_o1  

Dce dce_o1 s2d ↦dce_o1,  

Dr 
dr_o1, dr_o2,  

dr_o3 

S2d_o2 ↦ dr_o2, 

s2d_o2 ↦dr_o3 

 

Dt dt_o1, dt_o2 S2d_o1 ↦dt_o1  

Ds 
ds_o1, ds_o2,  

ds_o3 

 ds_o1 ↦ dr_o2, ds_o2 

↦ dr_o3, ds_o3  ↦ 

dt_o1, ds_o1 ↦ dt_o2 

Cec 
cec_o1, cec_o2,  

cec_o3 

s2c_o1 ↦ cec_o1, 

s2c_o2 ↦ cec_o3 

 

Cee cee_o1, cee_o2 
 Cee_o1↦cec_o2, 

cee_o2 ↦cec_03 

s3t s3t_o1, s3t_o2 cd_o1 ↦ s3t_o1  

 
 

1- Testing the initial state 

Initially, both the two components of the state schema denote 
empty sets. 

 
??- schema_type([[], [] ], stateorganogram). 
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 yes 

??- 
 
2- Verifying the state schema 

We test the state schema with the data for the sub-graph rooted 
at School_2 (node id = s2). 

 

??- schema_type([[s2/s2a, s2/s2d, s2/s2c, s2d/dce, s2d/dr, 
s2d/dt, s2d/ds, s2c/cec, s2c/cee], [s2/s2o1, s2/s2o2, 
s2a/s2ao1, s2q/s2qo1, s2d/s2do1, s2d/s2do2, 
s2c/s2co1, dce/dceo1,  dr/dro1, dt/dto1, dt/dto2, 
ds/dso1, cec/ceco1, cee/ceeo1]], stateorganogram). 

yes 

??-           

Each sub-graph, as well as the whole organogram was 
tested in a similar fashion. 

3- Testing the horizontal search operation 

% Predicate to select a tuple for output 

hsel(Ov, Oi, V, List):- 
 nodeobj(V/Ov), 
 element(Oi, List), 
 ( hrel(Ov/Oi) ; 
 hrel(Oi/Ov) ). 
 
varname(_,  in(id)). 
varname(_, inout(curobj)). 
varname(_, inout(curHrel)). 
 
schema_op([Nodeid, CurObj, CurHrel],horizsearch):- 
 %Given sets 
 givenset(Ns, identifier), 
 givenset(Gs, objective), 
 
 %variables' names 
 varname(Nodeid, in(id)), 
 varname(CurObj, inout(curobj)), 
 varname(CurHrel, inout(curobj)), 
  
 %display inputs 

 write('Input-Current list of objectives: '), 
         write(CurObj), nl, 
 write('Input-Current list of horizontal relationships: '), 
         write(CurHrel), nl, 
 

%find the horizontal relationships for the input node 
 findall(Ov/Oi,hsel(Ov,Oi,Nodeid,CurObj),Od), 
 union(Od,CurHrel,CurHrelo), 
  

%Add input node’ objectives participating to horizontal relation 
 findall(X,element(X/_,Od),Obs), 
 union(Obs,CurObj,CurObjo), 
 
 %display outputs 
 write('Output-Current list of objectives: '), write(CurObjo),nl, 
 write('Output-Current list of horizontal relationships: '), 

 write(CurHrelo). 

The predicate hsel(Ov, Oi, Nodeid, CurObj) determines the 
sub-set of the horizontal relationships that relate the objectives 
Ov of the selected node, which identifier is in Nodeid, to the 
objectives currently identified and kept in CurObj. 

 
Amzi! Prolog  Listener 
Amzi Prolog Listener 5.0.18h Windows 
Aug 21 2000 20:19:21 
Copyright (c) 1987-2000 Amzi! inc.   
 
?-reconsult('C:\\dongmc\\User Data\\Studies\\PHD Package\\Journal And 
Articles\\ACEC 2014\\Prolog\\operationalelt.pro') 
yes 
?- schema_op([s2q, [s2ao1, s2do2], [] ], horizsearch). 
Input-Current list of objectives: [s2ao1, s2do2] 
Input-Current list of horizontal relationships: [] 
Output-Current list of objectives: [s2qo2, s2qo3, s2ao1, s2do2] 
Output-Current list of horizontal relationships: [s2qo2 / s2ao1, s2qo3 / s2do2] 

yes 
?- 

The node s2q (school_2 quality assurance) is used as input.  
Before the execution of the operation, the current list of 
horizontal relationships is empty. After the execution, the 
system has successfully determined two relationships: s2qo2 / 
s2ao1 and s2qo3 /s2do2. The first relationship indicates, for 
e.g., that the objective s2qo2 of the quality assurance is meant 
to support or reinforce the objective s2do2 that needs to be 
achieved by the academics in the school. 
We have so far presented the implementation and testing of 

the operation HorizSearch. The vertical search operation, 

VerticalSearch, can be implemented in the same vein. Since 

these two operations are the core dynamic components of the 

system being specified, a successful animation/execution of 

each of them constitutes a major step towards validating the 

proposed model and consequently, the correctness of the 

specification as planned in The following techniques are 

proposed for each of the 4 validations in Figure 2: 

 

Table 2. However, a complete validation would include the 
loop invoking them (algorithm 1.0), as well as operations to 
update the different components of the input graph, e.g. 
adding/removing nodes to/from the graph.  

C. The leftward validation phase 
Having demonstrated the correctness of the system with regard 
to stakeholders’ expectations, that is, for the system to produce 
appropriate outputs, we need to ensure that the specification 
also takes into consideration some domain related constraints 
that are not always explicitly included in the initial 
requirements. For example, it would be relatively easy to show 
that our specification will work well for a system with only 
one PC, or in a network environment with a few computers. 
But, if it is to operate in a large (International) network 
environment, or in a distributed system environment, or is to 
serve in the cloud, the current specification has to be updated 
to include for example, language issues, constraints related to 
distributed system (communication), etc.  

The animation at this stage would consist of generating 
appropriate test data to estimate for example the response 
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 time, the ability of the system to integrate different languages, 

etc. 

D. The downward validation phase 
Having demonstrated the correctness of the specification 
relative to stakeholders’ expectations and adequacy with the 
application domain, this phase aims to establish the 
operational ability/feasibility of the specification. Since, at this 
stage, the only resource at hand is the specification, an 
approach to demonstrate that an operational system, with the 
required properties, can be effectively constructed, may 
proceed by: identifying an appropriate design/refinement 
process, as well as the methods/techniques and technology 
needed. 

Based on the success of the above animation, it may be 
relatively easy to derive a desktop application from the 
specification. However, it would not be the case if the 
envisioned system is a web application or a cloud service. 

VII. Conclusion and Future work 
This paper proposed an approach to formally specify the 

guidelines to construct enterprise organograms in a bottom-up 

fashion and the transformation into useful models that can be 

exploited in goal and requirements elicitation phases to 

identify vital sources of information within the entire 

organisation. Our approach also proposes strategies to 

manipulate the model and derive the necessary information in 

a simplistic manner. An Object-Z specification of the 

approach was presented to use various benefits of formal 

methods in the model. The specification was validated using 

an enhanced spiral model to ensure its correctness, or to 

identify any aspects still in need of attention. The specification 

facilitates the implementation of our method and further 

manipulation thereof. The implementation in this paper was in 

Prolog, but it could equally have been in some high level 

Object-Oriented programming language, e.g. Java or a .Net 

language.  

 

The main advantage of the proposed method stems from the 

simplicity and availability of enterprise organograms to which 

appropriate information may be cautiously added to construct 

flexible and lightweight enterprise models vital to goal and 

requirements elicitation. 

 

Being an acyclic graph, the vast theory of tree searching 

algorithms, heuristics and associated complexities may 

usefully be applied to organogram construction and 

maintenance. Suitable and economically feasible techniques 

for the horizontal and vertical traversals of these structures 

could be investigated for implementation. Knowledge 

representation and management techniques ought to be 

evaluated to determine their applicability to carry the goals 

and requirements in the hierarchy of the organogram. 

 

Based on the proposed guidelines, the Object-Z specification 

and the above search strategies call for an expert system tool 

to traverse the organogram and elicit the objectives and 

services within the sub-domain, as well as the resources 

allocated. With appropriate interfaces, such a tool could 

additionally assist an enterprise in maintaining its objectives, 

services and resources. 
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