

135

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Reducing Loading Time of Smart TV‟s web

Application
 [Cheolhee Lee | Taeho Hwang | Jaemin Jung | Youjip Won]

Abstract— Smart TVs use Webkit as a web browser engine to

provide contents. Webkit exploits web standard resources, such

as HTML, CSS, JavaScript, and images, to run applications.

When an application is started, Webkit loads resources to the

memory and creates DOM(Document Object Model) tree and

render tree; this process takes a long time. Generally, the web

browsers on PCs or mobile devices sometimes change DOM tree

and render tree by downloading modified web resources from the

web server. However, smart TV’s applications do not change

DOM tree and render tree because they use web resources

stored in a disk. If DOM tree and render tree can be stored and

reused, it is possible to reduce application’s loading time. This

paper proposes FastIO technique which selectively adds

persistency to dynamically allocated memory. It reduces overall

application loading time by removing the process of loading

resources from storage, parsing the HTML documents, and

creating DOM tree and render tree. When we compared the

application loading times, the result showed that the web browser

with FastIO is 44.8x faster than the legacy web browser in an

Ramdisk environments, respectively.

Keywords— Web Platform, Smart TV Application, Webkit,

Parsing, DOM Tree and Render Tree, Persistency

I. Introduction
Smart TVs provide a variety of web contents, such as web

surfing, VOD watching, social network, and games. Generally,
a smart TV uses a web platform as execution environment of
applications [1]. With recent improvements in the web
technology, web platforms provide web apps that have similar
functions as native apps [2].

Webkit [3] is an open source framework that runs web
applications on the web platform. When an application is
started, Webkit performs the process of loading web resources,
such as HTML, XML, CSS, JavaScript, and images, to
memory and converting these resources into a tree data
structure that is composed of nodes. There are two types of
tree data structures: DOM(Document Object Model) tree and
render tree [4]. The nodes of a tree contain information on
each element of the web page, including its location, size,
color, and images. However, whenever an application is
started, Webkit repeats the process of loading resources and
creating tree structures. This is a CPU intensive task which
takes a long time. Therefore, if DOM tree and render tree can
be stored and reused, it is possible to reduce the loading time
of applications.

Cheolhee Lee, Taeho Hwang, Jaemin Jung, Youjip Won

Hanyang University

Seoul, Korea

Figure 1. Loading an HTML Document

This paper proposes FastIO technique which selectively
adds persistency to dynamically allocated memory. When the
technique is applied to Webkit, it removes the process of
creating DOM tree and render tree. FastIO proposes the
concept of persistent heap, called an object, to support
persistency to the memory area. An object is a set of linked list
of consecutive pages with a name. Each object is mapped to a
file through mmap() system call. A file that is mapped to an
object is called an object file. Objects are non-volatile because
they are stored in object files through page cache. Therefore,
when an application is restarted, the data is reused by mapping
the object file to process address space through mmap()
system call. In FastIO, a naming system is designed to manage
each object‟s name and mapping location in order to reuse the
object. Through this naming system, it is possible to find out
an object‟s address by its name, and the library manages
objects through this address. A special object called metadata
object is created to retain naming system information. FastIO
provides an interface which is capable of dynamically
allocating and releasing objects in byte units. This interface is
designed based on glibc‟s malloc() mechanism.

Figure 2. Web Browser with FastIO

136

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

II. Related Work
Recently, many researches are being conducted on

improving the performance of web browsers. One among the
researches parallelizes web browser processes to minimize a
web browser‟s resource requesting time. It divides web
browser processes into main-thread, which includes the
process of requesting and parsing HTML documents, and sub-
thread, which includes the process of calling sub resources [5].
In addition, to improve energy efficiency and browsing speed
of a web browser, one of the researches separates the web
browsing process into parsing, layout, and JavaScript
compiling sub-processes. An optimal number of threads is
determined for each sub-process and the sub-processes are
executed in parallel [6]. ZOOMM [7] is a parallel web
browser engine optimized for multi-core mobile devices. It
divides subsystem into the resource manager, DOM engine,
rendering engine, JavaScript engine, and user interface. Each
subsystem is designed to operate in parallel. Smart caching [8]
is a method that utilizes the fact that style information does not
change unless DOM tree‟s element changes. It removes the
process of style formatting and layout by caching and
restoring the DOM tree element‟s style information and layout
operation calculation.

Persistence [9] is a concept proposed by Atkinson in 1981.
It means „data required by the system must be maintained until
its necessity disappears‟. SoftPM [10] ensures data‟s
persistency through a persistent area called the container. If
the root node is given persistency, it provides persistency to all
nodes connected to it by bringing them into a container.
SoftPM automatically provides persistency to the memory
data connected to the root node. NVRAM [11] is a non-
volatile memory that can substitute HDDs or SSDs as a
storage. It can also substitute DRAM as a main memory.
Mnemosyne [12] and NV-Heaps [13] are examples of
researches on providing data persistency using NVRAM. They
provide persistency to address place in order to optionally
provide persistency to data and reuse it without deserialization
process.

III. Overview
Currently, smart TVs use a web platform as an

environment to run applications. Web platforms began to gain
attention when the need for an environment, which can run
applications on various types of devices, arose. The web can
be operated on any device with a web browser which gives it
an advantage over applications. For this reason, the ultimate
goal of web platforms is to provide an environment where
applications can be developed with web standards [14], such
as HTML, CSS, and JavaScript, as in Chrome OS or WebOS,
and can be run without access to the Internet.

A. Web Page Loading in Webkit
Web platforms use Webkit as a web browser engine to run

applications. Webkit is an open source framework which
offers necessary functions to create a web browser and run
web applications. It can be modified by users and it renders
various web contents on user‟s devices.

Figure 3. Loading a Web Page in Webkit

Figure 3 shows steps required to display a web page on the
screen using Webkit. First, Webkit loads HTML document
into a memory from web server or storage through URL, and
performs tokenizing and parsing process for the HTML file. In
the parsing step, HTML parser converts the document into
HTML elements, such as HTML tags and contents, and
creates a tree data structure called DOM (Document Object
Model) tree. At this point, a render tree is also created as a
corresponding tree to DOM tree. HTML pages include
information on the page layout, CSS of the page, existence of
JavaScript, size of images, and the number of images. Webkit
additionally requests HTML, CSS, JavaScript, and images,
which are loaded into and calculated at the storage. In case of
CSS, style information is extracted through parsing process,
just as with HTML, and the style rule of the web page is
created. JavaScript updates DOM tree, requests resources, and
modifies style information through JavaScript engine.
Through these steps, Webkit processes resources necessary to
render a webpage and performs layout and style information
updates. It decides where on the render tree to allocate which
elements. When the composition of a render tree is finished,
the tree is used for rendering a web page. The page is
displayed using information contained in nodes of the render
tree.

B. Problem Statement
Generally, a web browser receives necessary resources

from a web server when it accesses a web page. Since the
resources from web server change frequently, all steps
necessary to display a web page need to be performed with
every access. However, smart TV applications use the data
stored in storage and the loaded resources do not change every
time an application is accessed. Therefore, the process of
parsing stored resources into tree data structure is not always
necessary when an application is run in a smart TV.

TABLE I. COMPARISON BETWEEN RESOURCE LOADING TIME AND WEB

PAGE LOADING TIME

Web Site Resource Loading Web Page Loading

Naver 0.241 sec 1.044 sec

Facebook 0.082 sec 0.531 sec

Youtube 0.271 sec 1.115 sec

Daum 0.335 sec 1.041 sec

Google 0.127 sec 0.998 sec

137

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Table 1 shows resource loading time and web page loading
time for five websites. Resource loading time includes the
time it takes to load the resources in memory and to create
DOM tree and render tree. Web page loading time is the total
time consumed to load each web page . On average, resource
loading time accounted for about 21.6% of web page loading
time. By reusing DOM tree and render tree, we can remove
the parsing process and shorten the loading time of an
application.

IV. Design
This section explains FastIO technique which provides

persistency to dynamically allocated memory and reuses the
tree data structure.

Figure 4. Basic Concept of FastIO

FastIO proposes the concept of persistent heap, called an
object, to support persistency to the memory area. An object is
an instance that has a name and is a linked list of consecutive
pages. It is allocated in the process address space through
mmap() system call and it is an area mapped with the file. The
file that is mapped to an object is called an object file.
Therefore, the data in object area is stored in the object file.
When an application is restarted, Fast IO technique reuses data
within the object by mapping the object file to process address
space. Moreover, FastIO provides an interface which allocates
and releases memory in the object in byte units. The allocated
data in byte unit is called a node. Metadata exists to manage
the names and mapping information of objects. It is stored in a
special object called a metadata object.

A. Pointer Validation Problem
To reuse data structure in an object, the object file should

be mapped to process address space through mmap() system
call. However, if allocated mapping location of the object
changes in the process address space, there occurs the problem
of invalid pointer address value which represents incorrect
connection between the nodes. There are two ways to solve
this problem. The first is to use pointer swizzling to find a
node in the object. The second is to ensure pointer validation
by always mapping the object to the same address space. Since
the first method incurs overhead from using pointer swizzling
process to access the pointer of nodes, we used the second
method and designed objects to be mapped to the same
address whenever an application is run.

B. Collision between Shared Library
and Object
When an application is started, the application‟s process

address space is created. At this time, a shared library used by
the application, such as libc, is loaded to the mmap area. In
Linux, shared library is allocated to the address space called
mmap_base. mmap_base is an initial address of mmap area. It
is a random value (-1MB ~ 1MB) away from 0X7701000.
Therefore, whenever an application is started, mmap_base
changes which also changes the mapping location of shared
library. This could result in a conflict between the object and
shared library. For example, let us assume that an object was
allocated to 0X3000 when an application was first started.
When the application is restarted, a shared library is already
loaded at 0X3000 which means the object cannot be loaded at
that address (Figure 5).

Figure 5. Example of Collision between a Shared Library and an Object

FastIO reserves an area for shared library to prevent a
collision with objects. It sets the lowest address where shared
library can be located as P_base, and allocates objects from
this area. P_base is calculated as follows.

P_base = 0Xb771000 - (1MB + Shared Library Size)

FastIO sets the range where shared library can be located as
shared library area and reserves it for unused shared library so
that objects are not created in the area.

C. Namespace for Object Management
Object files are accessible through the namespace of file

system. However, the namespace does not contain detailed
information on where to allocate specific objects. Therefore, to
reuse the data structure in an object, we designed the
namespace for object management. With the new design, it is
possible to find the address of a specific object with a name,
and the application can reuse the data in object through this
namespace information.

D. Byte Unit Allocation/Free in Object
To dynamically allocate and release the data in byte units

in an application, we call on malloc() / free() function. This
function call allocates data in the heap area. To allocate

138

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

memory in byte units, called a node, to a persistent area called
an object, we designed the allocation scheme based on the
memory allocation mechanism of glibc. malloc_state exists in
an object‟s first address space. It manages an object‟s unused
area, called free chunk, by size. If memory allocation in byte
uinit is requested with the size and the name of object, the
namespace is searched for the object. Then, it searches free
chunks in object and allocate memory according to the
requested size. However, if the request cannot be allocated due
to lack of empty space in an object, object expands object's
address space in order to allocate the request. In the case of
heap, address space increases continuously when there is
insufficient memory to satisfy the allocation request. However,
we designed objects to increase discontinuously because
continuous address space may be used for other purpose.

V. Experiment
This section explains the performance evaluation of FastIO

technique. Performance was measured in experiments. The
experiment compares the speed of Webkit-based web browser
with FastIO to the web browser without FastIO. The
experiment was conducted under AMD Phenom X4 925
Processor, 4GB DDR3 DRAM, SSD (Samsung 840 Pro
256GB) environment. An Ramdisk was used for the storage
for experiment environment. Webkit-based QT-4.6.4 web
browser was used for the experiments.

Generally, A web browser downloads HTML documents
through URL and parses the HTML document. At this time,
the browser requests resources from the web server. On the
other hand, smart TV‟s application load resources from the
storage instead of a web server. So, we stores resources on the
storage and use file path instead of URL to load resources
from the storage When QT web browser is run. QT web
browser parse HTML Document to extract rendering
information of web page. At this time, the QT web browser
requests sub resources from storage and creates DOM Tree
and render tree. It displays a web page on the screen using the
rendering information of DOM tree and render tree. However,
when the web browser is closed or changed, the DOM tree and
render tree of the web page are removed from the memory.
When the web browser is restarted, the process of loading
HTML document from the storage and parsing HTML
document and creating DOM tree and render tree is repeated.
We applied FastIO to the QT web browser to add persistency
to DOM tree, render tree, and sub resources of in-memory
structure. This removes the process of parsing HTML
document and creating DOM tree and render tree when the
web browser is restarted.

We measured the time it takes for the web browser to load
HTML document into memory, parse the document, load sub
resources into memory, and create DOM and render trees.
Figure 6 is the result measured on the Ramdisk for 5 web
pages. It shows the resource loading time of legacy web
browser and a web browser with FastIO. Mainresource
Loading refers to the time spent on loading the HTML
document into the memory. Subresource Loading refers to the
time spent on loading CSS, JavaScript, images, and other sub
resources into memory and converting them into in-memory

structure. Parsing refers to the time spent on parsing the
HTML document and creating DOM and render trees. FastIO
refers to the time spent on loading to the memory from the
files to reuse the DOM tree, render tree, and in-memory
structure of sub resources. When FastIO was applied to QT
web browser, the speed of loading a web page improved by
44.8x in an Ramdisk SSD environment,

Figure 6. Loading Times on Legacy Web Browser and FastIO Browser

VI. Conclusion
This paper proposes FastIO technique to improve

application‟s loading speed in a smart TV environment.
FastIO is a technique that adds persistency to dynamically
allocated memory. By applying FastIO to Webkit, it adds
persistency to DOM tree, render tree, and resources of in-
memory structure. These resources with persistency are reused
every time an application is started, removing the process of
creating DOM tree and render tree. the result showed that the
web browser with FastIO is 7.9x faster than the legacy web
browser in an Ramdisk environments. In addition to smart
TVs, FastIO can also be implemented on various applications
and devices that perform parsing process (deserialization) in
using HTML document to improve their performance.

Acknowledgment
This work is supported by IT R&D program MKE/KEIT

(No. 10041608, Embedded System Software for New-memory
based Smart Device)

References
[1] S.Y. Lee, S.T. Park and J.W. Hong, "Advanced Smart TV 2.0 System

and Service based on HTML5", Journal of Convergence Information
Technology, vol.8, no.14, pp.172-180, September 2013.

[2] A. Charland, and B. Leroux. "Mobile application development: web vs.
native." Communications of the ACM, vol.54, no.5, pp.49-53, 2011.

[3] Webkit Open Source Project, http://www.webkit.org/.

139

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

[4] K. Kim, H.M.Yang, C.G. Kim, and S.D. Kim, “A Parallel Approach to
Mobile Web Browsing”, In Mobile Computing, Applications, and
Services, vol.95 pp.338-344, 2012.

[5] D. Kim, C. Lee, and WW. Ro, “Parallelized sub-resource loading for
web rendering engine”, Journal of system Architecture, vol.59, no.9,
pp.785-793, 2013.

[6] C.G. Jones, R. Liu, L. Meyerovich, K. Asanovic and R. Bodik,
"Parallelizing the web browser", In Proceedings of the First USENIX
Workshop on Hot Topics in Parallelism, April 2009.

[7] C. Cascaval, S. Fowler, P. montesinos-ortego, W. Piekarski, M. Reshadi,
B.Robatmili, M.Weber, and V.Bhavsar, "ZOOMM: a parallel web
browser engine for multicore mobile devices", ACM SIGPLAN Notices,
vol.48, no.8, pp.271-280, 2013.

[8] K. Zhang, L. Wang, A. Pan, and B.B. Zhu. Smart caching for web
browsers. In Proceeding of the 19th international conference on World
wide web, Raleigh, USA, April 2010.

[9] A. Dearle, J. Rosenberg, F. Henskens, F. Vaughan, and K. Maciunas,
"An examination of operating system support for persistent object
systems", In System Sciences, 1992. Proceedings of the Twenty-Fifth
Hawaii International Conference on, Kauai, Hawaii, January, 1992

[10] J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Rangaswami, and J.
Wei, "Software Persistent Memory" In Proceding of the USENIX ATC,
Boston, MA, June. 2012.

[11] B.C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory”,
IEEE Micro, vol.30, no.1, pp.143, January, 2010.

[12] H. Volos, and M. Swift, "Mnemosyne: Lightweight Persistent Memory",
In Proceeding of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
California, USA, March 2011.

[13] J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta, R. Jhala, and S.
Swanson. "Nv-heaps: Making Persistent Objects Fast and Safe with
next-generation, non-volatile Memories" In Proceeding of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) ,California, USA, March,
2011.

[14] W3C Standards, http://www.w3.org/standards/.

About Author (s): Cheolhee Lee

About Author (s): Taeho Hwang

About Author (s): Jaemin Jung

About Author (s): Youjip Won

ChoelHee Lee is a MS Student at Dept. of

Computer and Software Engineering,

Hanyang University. He is member of

Embedded Software System Laboratory at

Hanyang University. He is interested in

Operating system and Embedded system

software.

Taeho Hwang is a Ph.D. student at Dept.

of Electrical and Computer Engineering.,

Hanyang University. He is a member of

Embedded Software Systems Laboratory

at Hanyang University. His research

interests include Operating Systems with

byte-addressable non-volatile memory.

Jaemin Jung is a Ph.D. student at

Embedded Software System Laboratory at

Department of electronics and computer

engineering, Hanyang University. He did

his BS and MS in Department of

electronics and computer engineering,

Hanyang University, Seoul, Korean in

2007 and 2009, respectively. His research

interests include Operating systems, byte-

addressable non-volatile memory and file

system.

He is currently Professor at Division of

Electrical and Computer Engineering,

Hanyang University, Seoul Korea. He is

leading Embedded Software System Lab.

He did his BS and MS in Dept. of

Computer Science, Seoul National

University, Seoul, Korea in 1990 and

1992, respectively. He received his Ph. D

in Computer Science from University of

Minnesota in 1997. Before joining

Hanyang University in 1999, he worked at

Intel Corp. as Server Performance

Analyst.

