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Abstract— Given the architecture of a Cyber Physical 

System (CPS) in AADL (Architecture Analysis and Design 
Language), we aim to use a model based development 
approach for system construction. We use the Event-B 
formalism for modelling and analysis. The model 
decomposition mechanism in Event-B helps us in establishing 
a one to one correspondence between the AADL components 
and the Event-B sub-models. Using the example of an 
Adaptive Cruise Controller, we show how interesting 
architectural properties could be verified within the Event-B 
modelling framework.  
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I.  Introduction  
Cyber physical systems integrate computation, networking and 

physical processes. Since there could be a signal propagation 

loop between the physical plant and the computational 

elements, it means that the plant affects the computation, and 

computation in turn affects the plant [6]. Some of the 

prominent examples of CPS are (a) Adaptive Cruise Controller 

for a vehicle, (b) Aircraft fuel tank controller, (c) Lane 

centring controller for a vehicle, and (d) Remote healthcare 

monitoring system. Modelling of a CPS has many challenges 

[6] in that (a) a CPS model needs to integrate different models 

of computation (MOC) -- plants need continuous-time models 

whereas the rest of the system is discrete models, (b) 

modelling needs to consider the dynamics of communication 

and software, and (c) time is critical to operation. 

 
AADL is a standard language for specifying the architecture 
of embedded control systems [5]. AADL is currently being 
extensively used to specify architectures of embedded 
software in avionics, automotive, transportation and robotics 
domains. An important concept of AADL is refinement, which 
is the focus of this paper. An AADL model can be associated 
with a set of architectural properties and it is expected that 
these properties are preserved under refinement. Thus, an 
abstract model can be gradually refined to introduce sub-
components, ports, threads, devices, buses etc. However, the 
model specification and the refinement mechanism in AADL 
are of informal nature; therefore, there is a need to assign 
formal semantics to AADL entities that captures architectural 
properties.  
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Event-B [1] is an independent formal modelling notation 
for rigorous development of software systems. The two 
primary characteristics of Event-B are the notion of formal 
refinement and model decomposition [10]. Consistency of and 
refinement relationship between Event-B models can be 
formally verified. As the model grows bigger and bigger, the 
proof effort of showing the correctness of the model with 
respect to its specification grows with the size off the model. 
In order to keep the proof effort within bounds, Event-B has 
the decomposition mechanism which means a model can be 
decomposed to component models and the component models 
can be further refined independently. 

In this paper, we use AADL for specifying the architecture 
of a CPS and its architectural properties. We then use the 
Event-B method for formally modelling the requirements 
while respecting the architecture and the architectural 
properties as specified in the AADL. Model decomposition 
technique is used to decompose an Event-B model so that the 
sub-models represent the AADL components. Architectural 
properties are modelled as invariants which are verified within 
the Event-B method using necessary tool support [2]. We 
illustrate our approach by considering the case study of a 
simplified Adaptive Cruise Controller. 

The organization of the paper is as follows. Section II 
discusses our case study. Section III presents the Event-B 
method and the model decomposition mechanism in greater 
detail. In Section IV, we show how a one to one 
correspondence can be established between AADL 
components and the Event-B components. Section V presents 
the related work, and Section VI concludes. 

II. Our Case Study 
 

We will illustrate our method in relation to the example of an 

Adaptive Cruise Controller (ACC). An ACC keeps the host 

vehicle at a certain gap with respect to the front vehicle. When 

there is no front vehicle, the ACC system behaves like a 

Cruise Controller meaning that it maintains the speed of the 

host vehicle at a certain speed – called the cruise speed. When 

a front vehicle appears, the ACC system controls the speed 

such that a minimum gap – or more – is maintained between 

the two vehicles.  

 

The mode behaviour of the ACC system is as follows. Initially 

the ACC is in an off mode. When the driver presses the on 

button, the system moves to the ready mode. The ACC 

operates beyond a minimum speed. When the ACC is at ready 

mode and the minimum speed condition is satisfied then if the 

driver presses a set button then the ACC transits to CC mode. 
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When in CC mode and there is no front vehicle, then ACC 

drives the vehicle at the cruise speed. As soon as a front 

vehicle appears close to the host vehicle, then state control 

transits to the ACC mode in which a minimum gap is 

maintained between the two vehicles. At any time the driver 

can take control of the vehicle by pressing either the brake or 

the throttle pedal. The driver can give control back to the ACC 

by pressing a resume button. Note that whenever the system is 

either in CC or ACC mode, then the throttle value is 

determined by the system; otherwise the throttle value is 

determined by the driver. 

 

III. The Event-B Method 
 

Event-B is a formal modelling notation based on first order 

logic and Set Theory [1]. The basic unit of modelling in 

Event-B is an Event-B machine. Figure 1 shows a truncated 

machine -- called CCN0 -- of an abstract Adaptive Cruise 

Controller (ACC). All constant and set declarations are stored 

in a context machine called context0 in the figure -- details of 

this machine has not been shown. Machine CCN0 has a set of 

state variables declared under the VARIABLES clause. These 

variables must satisfy some constraints which are declared 

under the heading INVARIANTS. Such invariants need to be 

satisfied at all points when the machine is executed. In the 

figure we have shown only some of the variables and 

invariants. The events under the heading EVENTS define the 

dynamic behaviour of the machine. An event has a guard and 

an action part. When the guard is true the event is enabled. At 

any time one of the enabled events is non-deterministically 

selected for execution. Then the individual actions of the 

selected event are executed in parallel. When there are no 

more enabled events, the machine halts. A special event called 

INITIALISATION initialises the machine variables; this is 

executed exactly once at the beginning (we have omitted the 

initialisations).  Details about Event-B machines and its 

execution can be found in [1].  

 

Figure 1 shows only some of the events. The set BUTTONS 

and the value of the constant MAXTH -- for maximum throttle 

-- are defined in context0. In the event controller_action, a 

non-deterministic throttle value is selected and it is given to 

the variable cc_th, for the throttle value computed by the 

Controller. In event D_TO_W_swOn, the value of the function  

dbutton(swOn) is copied to dbutton(swOn); this models 

sending of the event from the Driver component to the bus. In 

event pr_swOn -- this models the driver pressing the ON 

button -- dbutton(swOn) is given the true value. 

 

The Rodin Platform [2] provides the tool support for 

consistency and refinement checking of Event-B models. This 

toolset auto-generates a set of proof obligations which can be 

discharged automatically or by interactive theorem proving. 

Rodin toolset has necessary provers for theorem proving. 

Once the proof obligations are discharged, it would mean that 

the Event-B models are correct and refinement relationship 

holds between respective models. 

 

  

 
                Figure 1. Structure of an Event-B model 

  Model Decomposition 
We consider the shared event decomposition of an Event-B 

model [10]. Let us ignore the controller_action event and the 
variable cc_th in the machine of Figure 1. What the truncated 
model represents is that --after due initialization -- the driver 
presses the switch button to make it on. As a consequence of 
this event, the functional value dbutton(swOn) gets a true 
value. The event  D_TO_W_swOn then copies the value of 
dbutton(swOn) to wbutton(swOn) -- this means this event puts 
the value of the driver press into the bus. We will now 
decompose the current machine into a Driver machine and a 
Bus machine. We distribute the variables of the original 
machine into the component machines: variable dbutton 
belongs to the Driver machine and the variable wbutton 
belongs to Bus. 
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Figure [2] shows the component machines. Observe that 
events pr_swOn and D_TO_W_swOn are in the Driver 
machine; event D_TO_W_swOn is also in the Bus machine. 
What it means is that the two events D_TO_W_swOn in both 
the machines are synchronized which results in the copying of 
the value of dbutton(swOn) to wbutton(swOn). Also the 
dbutton(swOn) next becomes false meaning that the 
corresponding button is ready to be pressed again.  

Rodin toolset has a decomposition plugin which can 
perform model decomposition into component models. That 
the composition of the component models are equivalent to the 
original model is based on the sound theory of model 
decomposition in Event-B [10].  

Overview of AADL 
AADL provides textual and graphical formats to specify 

architectures and is supported by well-structured modelling 
environments and robust underlying syntax [5]. AADL 
follows a component-style architecture framework, 
components are central to an AADL architecture. Component 
templates are available to model run-time entities of 
application software (like system, process, thread, data, sub-
program etc.) and for hardware and platform specific entities 
(like processor, bus, memory, device etc.). Such a 
categorization of components make AADL suitable for 
specifying embedded software architectures. In addition, 
AADL has several features for modular definition of 
architectures: pre-defined refinement templates, packages, 
abstract components, arrays of sub-components etc. 

Components in AADL interact with each other through 
features which are interfaces to exchange data or events. 
Components can also communicate with other components 
using synchronous call and return and through shared data 
access. Each component (feature) has a set of properties 
associated with it that describe the component (feature). In 
addition, an AADL model can have global properties like end-
to-end latency. 

Figure 3 shows the various components of ACC: Driver, 
Controller, Plant, Gap Sensor, Plant and the Bus. Each 
component has threads, and the threads have their 
periodicities. AADL can specify all these architectural 
elements and their properties like the thread periodicities and 
the end-to-end latency. 

IV. AADL to Event-B 
 

AADL and Event-B both support refinement mechanism. 
Syntactic constructs are provided to transform an AADL 
model to a more detailed one. However, the refinement 
mechanism in AADL are informal in nature. 

Event-B supports formal refinement. It can also specify 
and prove timing properties. Refer to Figure 3. A thread – call 
it th1 -- puts the values of the switch presses into the bus. A 
thread (th3) in the Gap Sensor component also puts the value 
of the gap in the bus. Thread th2 puts the values in the bus into 
the controller component which is consumed by another thread 

in the Controller (th4) which in turn computes the throttle 
value. Another thread (th5) puts the throttle value into the bus. 
Thread th6 puts the throttle value in the bus into the Plant 
component. The plant thread th7 uses this throttle value to 
produce the engine speed.  Thread th8 senses the speed value. 
Th9 puts the speed value into the bus. Th10 puts this speed 
value into the controller which is consumed by th4. 

    

Figure 2. Event-B decomposition 

We claim that for an AADL model at any level of 
abstraction, there can be a corresponding Event-B model, and 
the Event-B model captures all the architectural properties. It 
is easy to put the above AADL model in Event-B. Each thread 
behaviour can be captured as an event in event-B. 

Figure 1 shows a portion of the Event-B model. Refer to 
the events press_Swon and D_TO_W_swOn. When driver 
presses the switch-on button, then dbutton(swOn) becomes 
true. When the second event executes the value of 
dbutton(swOn) is copied to wbutton(swOn), the latter is a 
variable of the bus. Once the value is copied the value of 
dbutton(swOn) is reset to mean that the variable is ready for 
another switch press. 

In the next refinement, task periodicities are assigned to 
each process thread in the AADL model, and some timing 
properties. To model this in the Event-B, we introduce a timer.  
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Figure 3. Event-B components and timing 
synchronizationn 

In  Figure 3, let TH1 represent a thread which puts some      
value of the driver component into the bus; and it be of 
periodicity 5ms. Let TH2 be another thread which sends a 
value in the bus to the Controller, and it be of periodicity 10 
ms. Let counter1 and counter2 be two counters which 
represents the passing of time in both the threads. Event 
GTimer updates both the counters at the same time. Only 
when the counter values match any of the thread periodicities, 
then that thread executes -- not shown in figure -- and the 
corresponding counter values are re-initialized to zero. It can 
be seen that the periodicities of the threads are met.. Similar 
approach is used to satisfy the periodicities of all threads. 

The refined AADL model has 5 components. However, we 
introduced a Timer module into the Event-B model 
CCN0_timer for modelling of timing properties; thus, the 
Event-B model has 6 modules. The AADL model has 
components, but the corresponding Event-B model is still 
monolithic though it has 6 modules within it; however, 
structurally, it is as given in Figure 3. Next we use shared 
event model decomposition [10] on the Event-B model to 
obtain 6 components. This decomposition has been performed 
by using the decomposition plugin [10] of the Rodin toolset. 

By the theory of shared event decomposition, the original 
Event-B model is equivalent to the synchronous 
decomposition of the 6 decomposed Event-B models, as 
shown in Figure 4. The individual Event-B components can be 
independently refined. For instance, mode behaviour can be 
introduced into the Controller component. This refinement – 
because of the sound logic of model decomposition – will not 
violate the compositional property of the whole model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The decomposed Event-B model, which has a close 
relationship with the corresponding AADL model, is correct 
by construction. We omit here the remaining refinements of 
the ACC model.At this stage, the decomposed Event-B model 
preserves the architectural semantics of the current AADL 
model; in addition, they have the same component structure. 
The only difference is that in the AADL model, the global 
notion of time is outside of the system; in Event-B, it is within 
the system. 

In [8] and [9], we have developed a method and tool to 
automatically translate Event-B models into Simulink models 
[7]. Following this method, we can obtain Simulink models 
for the Driver, Controller and the Plant components. However 
the operations involving the Bus could be translated to the 
send() and receive() commands of a standard bus protocol. 

V. The Related Work 
Even though AADL is extensively used to model 

architecture of many embedded software [5], it lacks an 
exhaustive framework for formally verifying AADL models 
against its requirements. By using the Event-B method and 
model decomposition, we address this deficiency. 

In [12], the authors take a synchronous scheduler specified 
in AADL and model it using Event-B. Their Event-B model is 
similar to the one discussed here in terms of a step by step 
translation and successive refinements. For the considered 
problem, the authors verify architectural properties involving 
schedulability. However, they consider only a synchronous 
subset of AADL where only thread components are modelled 
and translated to event-B. This paper does not discuss about 
model decomposition and the refinement of component 
models. 

CAN Bus 
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Control 
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speed TH1 
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TH2 
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DRIVER 
CONTROLLER 

PLANT 

Gap 
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or 

GTimer: 
counter1 % 5  ≠ 0   ounter1=0                      

                            
counter2 % 10 ≠ 0   unter2=0 
THEN       counter1++ 
              counter2++ 

TH1-sync: 
 counter1 % 5=0 

             
 counter1 ≠ 0   
 THEN 

  counter1 := 0    

TH2-sync: 
 counter2 % 10=0 

             
 counter2 ≠ 0   

 THEN 

    counter2 := 0 
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Figure 4. Communication synchronization between the 
Timer, the Bus and the individual components. 

In [12], the authors take a synchronous scheduler specified 
in AADL and model it using Event-B. Their Event-B model is 
similar to the one discussed here in terms of a step by step 
translation and successive refinements. For the considered 
problem, the authors verify architectural properties involving 
schedulability. However, they consider only a synchronous 
subset of AADL where only thread components are modelled 
and translated to event-B. This paper does not discuss about 
model decomposition and the refinement of component 
models. 

VI. Conclusion 
The results presented in this paper are preliminary results 

towards use of AADL and AADL refinements – and their 
formalization – in the context of cyber physical systems.  Our 
proposed framework uses a series of refinements and 
decompositions in Event-B to capture semantics of AADL 
models defined through successive refinements. Using the 
translation of AADL components here, we are able to formally 
prove architectural requirements of CPS. Our framework can 
also prove timing properties like end-to-end latency. 

We can translate the Bus component into the commands of a 
bus protocol like the CAN bus. For the remaining components, 
we can derive Simulink models as discussed in [5].  
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 Event-B modelling and the model 

decomposition mechanism can address the 

informality that is inherent in an AADL 

model. 
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