

115

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Modelling of Cyber Physical Systems using AADL

and Event-B
 Manoranjan Satpathy

Abstract— Given the architecture of a Cyber Physical

System (CPS) in AADL (Architecture Analysis and Design
Language), we aim to use a model based development
approach for system construction. We use the Event-B
formalism for modelling and analysis. The model
decomposition mechanism in Event-B helps us in establishing
a one to one correspondence between the AADL components
and the Event-B sub-models. Using the example of an
Adaptive Cruise Controller, we show how interesting
architectural properties could be verified within the Event-B
modelling framework.

Keywords—Model based development, Cyber physical

systems, Architectural Properties

I. Introduction
Cyber physical systems integrate computation, networking and

physical processes. Since there could be a signal propagation

loop between the physical plant and the computational

elements, it means that the plant affects the computation, and

computation in turn affects the plant [6]. Some of the

prominent examples of CPS are (a) Adaptive Cruise Controller

for a vehicle, (b) Aircraft fuel tank controller, (c) Lane

centring controller for a vehicle, and (d) Remote healthcare

monitoring system. Modelling of a CPS has many challenges

[6] in that (a) a CPS model needs to integrate different models

of computation (MOC) -- plants need continuous-time models

whereas the rest of the system is discrete models, (b)

modelling needs to consider the dynamics of communication

and software, and (c) time is critical to operation.

AADL is a standard language for specifying the architecture
of embedded control systems [5]. AADL is currently being
extensively used to specify architectures of embedded
software in avionics, automotive, transportation and robotics
domains. An important concept of AADL is refinement, which
is the focus of this paper. An AADL model can be associated
with a set of architectural properties and it is expected that
these properties are preserved under refinement. Thus, an
abstract model can be gradually refined to introduce sub-
components, ports, threads, devices, buses etc. However, the
model specification and the refinement mechanism in AADL
are of informal nature; therefore, there is a need to assign
formal semantics to AADL entities that captures architectural
properties.

Author’s Name: Manoranjan Satpathy

Indian Institute of Technology (IIT), Bhubaneswar

Bhubaneswar – 751013; India

Event-B [1] is an independent formal modelling notation
for rigorous development of software systems. The two
primary characteristics of Event-B are the notion of formal
refinement and model decomposition [10]. Consistency of and
refinement relationship between Event-B models can be
formally verified. As the model grows bigger and bigger, the
proof effort of showing the correctness of the model with
respect to its specification grows with the size off the model.
In order to keep the proof effort within bounds, Event-B has
the decomposition mechanism which means a model can be
decomposed to component models and the component models
can be further refined independently.

In this paper, we use AADL for specifying the architecture
of a CPS and its architectural properties. We then use the
Event-B method for formally modelling the requirements
while respecting the architecture and the architectural
properties as specified in the AADL. Model decomposition
technique is used to decompose an Event-B model so that the
sub-models represent the AADL components. Architectural
properties are modelled as invariants which are verified within
the Event-B method using necessary tool support [2]. We
illustrate our approach by considering the case study of a
simplified Adaptive Cruise Controller.

The organization of the paper is as follows. Section II
discusses our case study. Section III presents the Event-B
method and the model decomposition mechanism in greater
detail. In Section IV, we show how a one to one
correspondence can be established between AADL
components and the Event-B components. Section V presents
the related work, and Section VI concludes.

II. Our Case Study

We will illustrate our method in relation to the example of an

Adaptive Cruise Controller (ACC). An ACC keeps the host

vehicle at a certain gap with respect to the front vehicle. When

there is no front vehicle, the ACC system behaves like a

Cruise Controller meaning that it maintains the speed of the

host vehicle at a certain speed – called the cruise speed. When

a front vehicle appears, the ACC system controls the speed

such that a minimum gap – or more – is maintained between

the two vehicles.

The mode behaviour of the ACC system is as follows. Initially

the ACC is in an off mode. When the driver presses the on

button, the system moves to the ready mode. The ACC

operates beyond a minimum speed. When the ACC is at ready

mode and the minimum speed condition is satisfied then if the

driver presses a set button then the ACC transits to CC mode.

116

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

When in CC mode and there is no front vehicle, then ACC

drives the vehicle at the cruise speed. As soon as a front

vehicle appears close to the host vehicle, then state control

transits to the ACC mode in which a minimum gap is

maintained between the two vehicles. At any time the driver

can take control of the vehicle by pressing either the brake or

the throttle pedal. The driver can give control back to the ACC

by pressing a resume button. Note that whenever the system is

either in CC or ACC mode, then the throttle value is

determined by the system; otherwise the throttle value is

determined by the driver.

III. The Event-B Method

Event-B is a formal modelling notation based on first order

logic and Set Theory [1]. The basic unit of modelling in

Event-B is an Event-B machine. Figure 1 shows a truncated

machine -- called CCN0 -- of an abstract Adaptive Cruise

Controller (ACC). All constant and set declarations are stored

in a context machine called context0 in the figure -- details of

this machine has not been shown. Machine CCN0 has a set of

state variables declared under the VARIABLES clause. These

variables must satisfy some constraints which are declared

under the heading INVARIANTS. Such invariants need to be

satisfied at all points when the machine is executed. In the

figure we have shown only some of the variables and

invariants. The events under the heading EVENTS define the

dynamic behaviour of the machine. An event has a guard and

an action part. When the guard is true the event is enabled. At

any time one of the enabled events is non-deterministically

selected for execution. Then the individual actions of the

selected event are executed in parallel. When there are no

more enabled events, the machine halts. A special event called

INITIALISATION initialises the machine variables; this is

executed exactly once at the beginning (we have omitted the

initialisations). Details about Event-B machines and its

execution can be found in [1].

Figure 1 shows only some of the events. The set BUTTONS

and the value of the constant MAXTH -- for maximum throttle

-- are defined in context0. In the event controller_action, a

non-deterministic throttle value is selected and it is given to

the variable cc_th, for the throttle value computed by the

Controller. In event D_TO_W_swOn, the value of the function

dbutton(swOn) is copied to dbutton(swOn); this models

sending of the event from the Driver component to the bus. In

event pr_swOn -- this models the driver pressing the ON

button -- dbutton(swOn) is given the true value.

The Rodin Platform [2] provides the tool support for

consistency and refinement checking of Event-B models. This

toolset auto-generates a set of proof obligations which can be

discharged automatically or by interactive theorem proving.

Rodin toolset has necessary provers for theorem proving.

Once the proof obligations are discharged, it would mean that

the Event-B models are correct and refinement relationship

holds between respective models.

 Figure 1. Structure of an Event-B model

 Model Decomposition
We consider the shared event decomposition of an Event-B

model [10]. Let us ignore the controller_action event and the
variable cc_th in the machine of Figure 1. What the truncated
model represents is that --after due initialization -- the driver
presses the switch button to make it on. As a consequence of
this event, the functional value dbutton(swOn) gets a true
value. The event D_TO_W_swOn then copies the value of
dbutton(swOn) to wbutton(swOn) -- this means this event puts
the value of the driver press into the bus. We will now
decompose the current machine into a Driver machine and a
Bus machine. We distribute the variables of the original
machine into the component machines: variable dbutton
belongs to the Driver machine and the variable wbutton
belongs to Bus.

117

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Figure [2] shows the component machines. Observe that
events pr_swOn and D_TO_W_swOn are in the Driver
machine; event D_TO_W_swOn is also in the Bus machine.
What it means is that the two events D_TO_W_swOn in both
the machines are synchronized which results in the copying of
the value of dbutton(swOn) to wbutton(swOn). Also the
dbutton(swOn) next becomes false meaning that the
corresponding button is ready to be pressed again.

Rodin toolset has a decomposition plugin which can
perform model decomposition into component models. That
the composition of the component models are equivalent to the
original model is based on the sound theory of model
decomposition in Event-B [10].

Overview of AADL
AADL provides textual and graphical formats to specify

architectures and is supported by well-structured modelling
environments and robust underlying syntax [5]. AADL
follows a component-style architecture framework,
components are central to an AADL architecture. Component
templates are available to model run-time entities of
application software (like system, process, thread, data, sub-
program etc.) and for hardware and platform specific entities
(like processor, bus, memory, device etc.). Such a
categorization of components make AADL suitable for
specifying embedded software architectures. In addition,
AADL has several features for modular definition of
architectures: pre-defined refinement templates, packages,
abstract components, arrays of sub-components etc.

Components in AADL interact with each other through
features which are interfaces to exchange data or events.
Components can also communicate with other components
using synchronous call and return and through shared data
access. Each component (feature) has a set of properties
associated with it that describe the component (feature). In
addition, an AADL model can have global properties like end-
to-end latency.

Figure 3 shows the various components of ACC: Driver,
Controller, Plant, Gap Sensor, Plant and the Bus. Each
component has threads, and the threads have their
periodicities. AADL can specify all these architectural
elements and their properties like the thread periodicities and
the end-to-end latency.

IV. AADL to Event-B

AADL and Event-B both support refinement mechanism.
Syntactic constructs are provided to transform an AADL
model to a more detailed one. However, the refinement
mechanism in AADL are informal in nature.

Event-B supports formal refinement. It can also specify
and prove timing properties. Refer to Figure 3. A thread – call
it th1 -- puts the values of the switch presses into the bus. A
thread (th3) in the Gap Sensor component also puts the value
of the gap in the bus. Thread th2 puts the values in the bus into
the controller component which is consumed by another thread

in the Controller (th4) which in turn computes the throttle
value. Another thread (th5) puts the throttle value into the bus.
Thread th6 puts the throttle value in the bus into the Plant
component. The plant thread th7 uses this throttle value to
produce the engine speed. Thread th8 senses the speed value.
Th9 puts the speed value into the bus. Th10 puts this speed
value into the controller which is consumed by th4.

Figure 2. Event-B decomposition

We claim that for an AADL model at any level of
abstraction, there can be a corresponding Event-B model, and
the Event-B model captures all the architectural properties. It
is easy to put the above AADL model in Event-B. Each thread
behaviour can be captured as an event in event-B.

Figure 1 shows a portion of the Event-B model. Refer to
the events press_Swon and D_TO_W_swOn. When driver
presses the switch-on button, then dbutton(swOn) becomes
true. When the second event executes the value of
dbutton(swOn) is copied to wbutton(swOn), the latter is a
variable of the bus. Once the value is copied the value of
dbutton(swOn) is reset to mean that the variable is ready for
another switch press.

In the next refinement, task periodicities are assigned to
each process thread in the AADL model, and some timing
properties. To model this in the Event-B, we introduce a timer.

118

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Figure 3. Event-B components and timing
synchronizationn

In Figure 3, let TH1 represent a thread which puts some
value of the driver component into the bus; and it be of
periodicity 5ms. Let TH2 be another thread which sends a
value in the bus to the Controller, and it be of periodicity 10
ms. Let counter1 and counter2 be two counters which
represents the passing of time in both the threads. Event
GTimer updates both the counters at the same time. Only
when the counter values match any of the thread periodicities,
then that thread executes -- not shown in figure -- and the
corresponding counter values are re-initialized to zero. It can
be seen that the periodicities of the threads are met.. Similar
approach is used to satisfy the periodicities of all threads.

The refined AADL model has 5 components. However, we
introduced a Timer module into the Event-B model
CCN0_timer for modelling of timing properties; thus, the
Event-B model has 6 modules. The AADL model has
components, but the corresponding Event-B model is still
monolithic though it has 6 modules within it; however,
structurally, it is as given in Figure 3. Next we use shared
event model decomposition [10] on the Event-B model to
obtain 6 components. This decomposition has been performed
by using the decomposition plugin [10] of the Rodin toolset.

By the theory of shared event decomposition, the original
Event-B model is equivalent to the synchronous
decomposition of the 6 decomposed Event-B models, as
shown in Figure 4. The individual Event-B components can be
independently refined. For instance, mode behaviour can be
introduced into the Controller component. This refinement –
because of the sound logic of model decomposition – will not
violate the compositional property of the whole model.

The decomposed Event-B model, which has a close
relationship with the corresponding AADL model, is correct
by construction. We omit here the remaining refinements of
the ACC model.At this stage, the decomposed Event-B model
preserves the architectural semantics of the current AADL
model; in addition, they have the same component structure.
The only difference is that in the AADL model, the global
notion of time is outside of the system; in Event-B, it is within
the system.

In [8] and [9], we have developed a method and tool to
automatically translate Event-B models into Simulink models
[7]. Following this method, we can obtain Simulink models
for the Driver, Controller and the Plant components. However
the operations involving the Bus could be translated to the
send() and receive() commands of a standard bus protocol.

V. The Related Work
Even though AADL is extensively used to model

architecture of many embedded software [5], it lacks an
exhaustive framework for formally verifying AADL models
against its requirements. By using the Event-B method and
model decomposition, we address this deficiency.

In [12], the authors take a synchronous scheduler specified
in AADL and model it using Event-B. Their Event-B model is
similar to the one discussed here in terms of a step by step
translation and successive refinements. For the considered
problem, the authors verify architectural properties involving
schedulability. However, they consider only a synchronous
subset of AADL where only thread components are modelled
and translated to event-B. This paper does not discuss about
model decomposition and the refinement of component
models.

CAN Bus

sw1

sw
3

sw
2

Control
Plant

Sensor
Sensed
speed TH1

5ms
TH2
10ms

DRIVER
CONTROLLER

PLANT

Gap
sens

or

GTimer:
counter1 % 5 ≠ 0  ounter1=0

 
counter2 % 10 ≠ 0  unter2=0
THEN counter1++
 counter2++

TH1-sync:
 counter1 % 5=0

 
 counter1 ≠ 0
 THEN

 counter1 := 0

TH2-sync:
 counter2 % 10=0

 
 counter2 ≠ 0

 THEN

 counter2 := 0

119

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Figure 4. Communication synchronization between the
Timer, the Bus and the individual components.

In [12], the authors take a synchronous scheduler specified
in AADL and model it using Event-B. Their Event-B model is
similar to the one discussed here in terms of a step by step
translation and successive refinements. For the considered
problem, the authors verify architectural properties involving
schedulability. However, they consider only a synchronous
subset of AADL where only thread components are modelled
and translated to event-B. This paper does not discuss about
model decomposition and the refinement of component
models.

VI. Conclusion
The results presented in this paper are preliminary results

towards use of AADL and AADL refinements – and their
formalization – in the context of cyber physical systems. Our
proposed framework uses a series of refinements and
decompositions in Event-B to capture semantics of AADL
models defined through successive refinements. Using the
translation of AADL components here, we are able to formally
prove architectural requirements of CPS. Our framework can
also prove timing properties like end-to-end latency.

We can translate the Bus component into the commands of a
bus protocol like the CAN bus. For the remaining components,
we can derive Simulink models as discussed in [5].

References

[1] J.R-.Abrial, Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

[2] J.R-.Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L.
Voisin, “Rodin: an open toolset for modelling and reasoning in
Event-B,”, STTT, Vol. 12, pp 447-466, Novemner 2010.

[3] J.-P. Bodeveis, M. Filali, ―Event B development of a
synchronous AADL scheduler,‖ ENTCS Vol. 280, pp 23-
33,2011.

[4] S.Corrigan, “Introduction to the Controller Area Network
(CAN),” Application Report, Texas Instruments, 2008.

[5] P.H. Feiler, D.P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design
Language, Addison Wesley, 2012.

[6] E.A. Lee & S.A. Seshia, Introduction to Embedded Systems: a
Cyber Physical Systems Approach, Lulu.com publishers, 2013.

[7] Mathworks, ―Simulink – Simulation and model based design,‖
www.mathworks.com

[8] M. Satpathy, S. Ramesh, C. Snook, N.K. Singh, M. Butler, ―A
mixed approach to development of control designs,‖ 2013 IEEE
CCSD-SU, Hyderabad, August 2013.

[9] M.Satpathy, C. Snook, S. Arora, S. Ramesh, M. Butler,
―Systematic Development of Control Designs via Formal
Refinement,‖ Intl. Conf. on Model Driven Engineering and
Software Development, Barcelona, Feb 2013.

[10] R. Silva, C. Pascal, T.S. Hoang, M. Butler. Decomposition tool
for Event-B, Software: Practice and Experience, Vol. 41(2),
2011.

[11] M. D’Souza, S. Ramesh, M. Satpathy, Architectural Semantics
of AADL using Event-B, to be presented at the IEEE IC3I,
November 2014.

[12] J.-P. Bodevis, ―Event-B development of a synchronous AADL
scheduler,‖ ENTCS, Volume 280, pp. 23-33, 2001.

About Author:

 Dr M. Satpathy is an Associate Professor in Computer Science at IIT
Bhubaneswae, India. His research interests are Software Design, Testing
and Verification.

 Event-B modelling and the model

decomposition mechanism can address the

informality that is inherent in an AADL

model.

TIMER

Driver

Bus

Controller Plant

Gap
Sensor

