

90

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

A Different Shape Grammar Approach for Automatic

Design Generation
Filipe Santos and Joaquim Esmerado

Abstract—This paper proposes a different approach for shape

grammars where designs are exclusively generated through

computations of symbols. This option has the advantage of

supporting declarative knowledge and thus facilitates shape

reasoning capabilities. Our approach also detached procedural

knowledge from shape knowledge using procedural notions that

capture sequences, alternatives and tests that should be applied

during design process. This decision provides good modular

specifications. Moreover, we follow a non-deterministic

procedural perspective in the characterization of design

processes. Its implementation supports exploratory automatic

design generation. Differences between this approach and the

conventional approach are discussed and a case study is explored.

Keywords—shape grammars, automatic design generation.

I. Introduction
We are particularly interested in the automatic generation

of designs based on shape grammars as a descriptive method
for shapes [18]. We are currently developing computational
tools for shape computing [14] and working on its application
in the generation of urban and architecture designs [11]
[12][13].

Shape grammars have successfully been used to generate a
variety of designs [1], [4], [5], [16], [17]. However, shape
knowledge within these specific design applications is
represented in a procedural and ad hoc way and is therefore
too rigid for generic automation.

We believe that a declarative knowledge-based approach
would offer more flexibility to face new design situations and
improve shape reasoning capabilities. We also believe that the
shape grammar formalism should be extended with convenient
abstractions for flexible design specification and generation.

In this paper we propose a different approach for shape
grammars. Shapes are directly represented by symbols. These
symbols support declarative knowledge representation and
shape reasoning capabilities. A preliminary sketch of this
approach has been presented in [13]. Herein we proceed
forward by clarifying the approach, addressing concrete
examples and discussing ways to support shape emergence.

An overview of the rest of the paper follows. We start by
presenting the conventional shape grammar formalism.
Subsequently, we present our approach based on symbols and
supplemented with procedural primitives for describing design
processes.

Filipe Santos and Joaquim Esmerado

Instituto Universitário de Lisboa (ISCTE-IUL), Portugal

Next, a case study on a constructive modular system with
wooden modules exemplifies our approach. We conclude by
mentioning our immediate research directions.

II. Shape Grammar
Shape grammar formalism was originally proposed by

Stiny and Gips [18] for creating and understanding designs
through computations with shapes, rather than through
computations with text or symbols. For an historic and
panoramic perspective on shape grammars see [2] or [3]. Stiny
and Gips have proposed that the computation of shapes should
be carried out in two steps: the recognition of a particular
shape and its possible replacement by another shape.

A shape grammar consists of:

- a vocabulary of primitive shapes;

- shape rules of the form AB, where A and B are shapes;

- an initial shape.

Two shapes s and u may be combined and form a new
shape s + u (shapes in s or in u) or s - u (shapes in s not in u).
Given an appropriate vocabulary of shapes we may form an
algebra where both operations are closed on the space of all
possible shape combinations. Given a shape combination u,
the recognition of a particular shape s in u can be supported by
a sub-shape operation, s<u denoting s is a sub-shape of u.
Application of an Euclidean transformation (translation,
rotation, reflection and scale) t to a shape A provides the
production of a new shape t(A).

Replacements of shapes are obtained through application

of shape grammar rules. A shape grammar rule AB applies
to a shape s whenever there is an Euclidean transformation t
such that t(A)<s. The result of the rule application is s-
t(A)+t(B), the shape obtained by replacing the sub-shape t(A)
of s by the shape t(B).

Given a shape grammar, shapes may be generated/derived
starting from the initial shape and sequentially applying shape
rules to the obtained shapes, i.e., a sequence of shapes s0, s1,
…, sn, where s0 is the initial shape and si+1 is the shape
obtained from si (i=0, …, n) by applying a rule of the shape
grammar. Each possible generated shape forms the shape
language defined by the shape grammar.

Figure 1. A shape grammar. (a) shape rule, (b) initial shape.

(a) (b)

91

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Let us consider an adaptation of the following example
from [16] of a shape grammar with lines as a vocabulary of
shapes. The shape grammar of Figure 1 yields a language of
inscribed squares as shown in Figure 2.

Figure 2. A language of inscribed squares.

Each shape of the generated language is obtained starting
from the initial shape and repeatedly applying the shape
grammar rule to the innermost square, each application using
different Euclidean transformations combining rotation and
scale applied to the square of left side of the shape rule.

Designing is the process of shape manipulation (2D or 3D)
and materials information that is needed to guide the
construction of an artifact. It is a iterative process of shape
manipulation that ends when certain conditions are fulfilled.
During this process, designers interpret the shapes obtained so
far and their interpretation influences the progress of design.
Designers frequently recognize emergent sub-shapes, i.e.,
shapes not explicitly introduced, thus providing new
interpretations and new directions of design progress.

Within shape grammars emergence is a foundational
feature mentioned and discussed by many researchers
[10][19][20]. Emergent shapes may be seen as shapes that are
not added by shape rule applications, i.e. any shape that is not
a shape t(B) added by a previous application of a shape rule

AB.

The previous language also illustrates these phenomena of
emergent sub-shapes. Shape on Figure 3(a) emerges in four
places of Figure 3(b)

Figure 3. An emergent sub-shape within a shape.

The sub-shape operation is crucial for supporting shape
grammar rules application to shapes and mainly depends on
the primitive vocabulary of shapes. For 2D shapes, Stiny
proposed a canonical representation of shapes [16] – the
maximal lines form – based on lines. In this representation, a
line is determined by a set of two distinct end points and a
shape is a finite set of lines. The maximal line representation
of a shape is the unique smallest set of lines that represent the
shape.

Given a shape, the process for obtaining this maximal line
representation consists in combining two collinear lines with
the + shape operation only in the following four situations:

(1) two lines share an end point and the remaining end
point of one line is coincident with the other line. The

maximal line is represented by the shared end point and the
remaining end point of the other line (Figure 4(a));

(2) both end points of a line is coincident with the other
line. The maximal line is the second line (Figure 4(b));

(3) one end point of each line is coincident with the other
line. The maximal line is represented by the remaining end
points (Figure 4(c));

(4) the two lines share an end point and this point is
coincident with the line formed by the two remaining unshared
end points. The maximal line is represented by the remaining
unshared end points (Figure 4(d)).

Given two shapes s and u represented by maximal line
representation, s is a sub-shape of u, i.e. s<u, if and only if the
end points of every maximal line of s are both coincident with
a maximal line of u.

Figure 4. Situations of line combination of maximal lines.

Sub-shape detection (including emergent shapes) is
supported by sub-shape operation when shapes are represented
in maximal line form. The end points and cross points of the
lines in the shapes represented in maximal line form are
sufficient for the determination of an Euclidian transformation
t such that t(u)<s. It is sufficient to find out a correspondence
between 3 distinct non-collinear points p1, p2, p3 of u with 3
distinct non-collinear points t(p1), t(p2), t(p3) of s. The
remaining points p of u should also correspond to points t(p)
of s.

Figure 5. Maximal line representation and four sub-shapes.

The maximal line representation in Figure 5 (a) allows the
detection of the emergent shape in Figure 3 (a) in 4 different
places, since the Figures 5 (b) 5 (c) 5 (d) 5 (e) in Figure 5 (a)
may be obtained from Figure 3 (a) by applying a rotation of
45

o
, 135

o
, 225

o
 and 315

o
 respectively, followed by a

convenient translation.

Computing maximal line representation and finding
Euclidian transformations for sub-shape operation is a time
consuming process and appropriate computational forms of
representation of shapes should be adopted if we want to avoid
intractable algorithms [6][7][8][9].

The shape grammar formalism also employs labeled points
as a way of controlling the application of shape rules during

(a) (b) (c) (d) (e)

(a) (b) (c) (d)

(a) (b)

…

92

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

the design process. This control may avoid the application of
particular Euclidian transformations or even completely block
the application of one or more shape rules. Using labeled
points, a sequential programming style can be used to describe
the design process. Shape rules with labeled points on their
right hand side must be used before other shape rules with the
same labeled points on their left hand side. Moreover, the
application of shape rules with labeled points on their left hand
is blocked to shapes without the same labeled points. Using
this strategy, shape grammars have been used to generate a
variety of designs [1][4][5][16][17]. As a consequence, within
these specific design applications shape knowledge and
procedural knowledge are mixed together in an ad hoc way
and is therefore too rigid for generic specification and
automation.

We believe that shape knowledge and procedural
knowledge should be detached from each other if we want to
obtain a framework for flexible design generation and quick
design specification. Detaching this knowledge would
facilitate convenient abstraction and modularization for
algorithmic development, one of most desirable properties in
computer science. An approach for design generation should
thus provide convenient abstractions for representing shape
knowledge, procedural knowledge and also the definition of
other relevant application concepts.

III. Our Alternative Approach
Like shape grammars our approach deals with shapes and

shape rules. However, there is a fundamental difference: the
emphasis is made on symbols, not on shapes.

Figure 6. Picture identified by Square.

In our approach shapes are represented by identifiers
associated with pictures. For instance, Square may be
associated with the picture of Figure 6 defined in the
respective coordinate system xOy.

Figure 7. Positioning Square within a new coordinate system.

Positioning a shape defined in this way within a different
coordinate system x’O’y’ is represented by a pair (shape,
transformation) specifying the transformation (translation,
rotation, scale, etc.) required for positioning the coordinate
system xOy associated to the defined shape into the new
coordinate system x’O’y’. Note that each shape is represented
by the identity transformation Id when the shape is defined
and in this case the identity transformation may be omitted
within the representation.

For instance, in Figure 7, Square is positioned into the

coordinate system x’O’y’ by a scale S(c,d) and rotation R()
followed by a translation T(a,b).

Using a matrix representation within an homogeneous
coordinate system, the previous shape may be represented by

(Square, T(a,b)R()S(c,d)) where

T(a,b) = R() =

S(c,d) =

Shape compositions may be represented by sets of shapes
positioned in the same coordinate system. For instance, for a
1x1 unit Square, the 4 inscribed squares of Figure 3 (b) are

represented by {Square, (Square, T(1/2, 0)R(45º)S(1/ ,

1/)), (Square,T(3/4,1/4)R(90º)S(1/2,1/2)), (Square, T(3/4,

1/2) R(135º) S(1/(2),1/(2)))}.

In this approach Shape Grammar Rules are represented by
pairs of shape compositions. For instance, for a 1x1 unit
Square, the shape grammar rule of Figure 1 (a) is represented

by {Square} {Square, (Square, T(1/2, 0)R(45º)S(1/ ,1/)}

Figure 8. t transforms shape (Square,t1) into shape (Square,t2).

Using this representation and given two shape
compositions A and B, sub-shape operation is defined by A<B

iff AB, i.e. all the shapes in A are also in B. And discovering
an Euclidean transformation t such that t(A)<s for the

application of a shape grammar rule AB is simply finding a
transformation able to transform every shape of A into shapes
within s. Note that, using a matrix representation within an
homogeneous coordinate system, an Euclidean transformation

y

x O

c 0 0

0 d 0

0 0 1

cos -sen 0

sen cos 0

0 0 1

1 0 a

0 1 b

0 0 1

93

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

t able to transform shape (id,t1) into shape (id,t2) is easily
obtained by t2t1

-1
 (see e.g. Figure 8).

The following algorithm is used for obtaining such
Euclidian transformation:

Algorithm: Euclidean transformation t such that t(A)<s

1. Find two shapes with the same identification id in both

shape compositions A and s, i.e. (id,t1)A(id,t2)s;

2. t = t2t1
-1

, i.e. t is the Euclidean transformation able to
transform shape (id,t1) into shape (id,t2) (i.e. (id,t2)= (id,t1t));

3. Confirm that if (id’,t’)A then (id’,t’t)s, i.e. t
transforms every remaining shape in A into a shape of s.

Given the previous representation of 4 inscribed squares,
the previous shape grammar rule may be applied with four
different Euclidian transformations since the shape of it left
side Square may be transformed in each of the four shapes of
the right side of the rule using the transformations: Id, T(1/2,

0) R(45º)S(1/ ,1/), T(3/4,1/4)R(90º)S(1/2,1/2) and

T(3/4,1/2)R(135º)S(1/(2),1/(2)).

Without any further mathematical machinery, the
formalization that we have proposed so far does not allow the
detection of emergent sub-shapes. However, we believe that
the introduction of an equality operation on shape
compositions allows our approach to surpass this limitation in
the same fashion that the maximal line form does by
presenting an alternative representation of the same shapes.

Let’s consider again the previous shape of 4 inscribed
squares of Figure 3(b). We already represent it using Square as
a primitive shape. However, considering now the shapes Line
and Triangle of Figure 9, the shape of 4 inscribed squares may
be alternatively represented by 16 lines (Figure 10 (a)), as in
the maximal line form, or even by 8 triangles (Figure 10 (b)).

Figure 9. Pictures identified by Line and Triangle.

Figure 10. Different representations of Figure 3 (b) using Line and Triangle.

Considering a defined 1 unit long Line and a right Triangle
with 1 unit long in both sides opposite to hypotenuse, the 4

inscribed squares may be alternatively represented by { Line,
(Line, T(1,0)R(90º)), (Line, T(1,1)R(180º)), (Line, T(0,1)

R(270º)), (Line, T(1/2,0)R(45º)S(1/ ,1)), (Line, T(1,1/2)

R(135º)S(1/ ,1)), (Line,T(1/2,1)R(225º)S(1/ ,1)), (Line,

T(0,1/2)S(1/ ,1)R(315º)), (Line, T(1/4,1/4)S(1/2,1)), (Line,

T(3/4,1/4)R(90º)S(1/ ,1)), (Line, T(3/4,3/4)R(180º)

S(1/ ,1)), (Line, T(1/4,3/4)R(270º)S(1/2,1)), (Line,

T(1/2,1/4)R(45º)S(1/(2),1)), (Line, T(3/4,1/2)R(135º)

S(1/(2),1)), (Line, T(1/2, 3/4)R(225º)S(1/(2),1)), (Line,

T(1/4,1/2)R(315º)S(1/(2),1))} or by {(Triangle,

S(1/2,1/2)), (Triangle, T(1,0)R(90º)S(1/2,1/2)), (Triangle,
T(1,1)R(180º)S(1/2,1/2)), (Triangle,T(0,1)R(270º) S(1/2,1/2)),
(Triangle, T(1/4,1/4)S(1/4,1/4)), (Triangle, T(3/4,1/4)R(90º)
S(1/4,1/4)), (Triangle, T(3/4,3/4)R(180º)S(1/4,1/4)), (Triangle,
T(1/4,3/4)R(270º)S(1/4,1/4))}.

Let’s consider now the following shape composition Fish
presented in Figure 11 represented by

Figure 11. A shape composition identified by Fish.

{ (Triangle, T(1/(4),1/(2))R(135º)S(1/4,1/4)), (Triangle,

T(3/(4),1/(2))R(135º)S(1/2,1/2))}

Given the previous Triangle representation of 4 inscribed
squares, Fish may be transformed in each of the four corners
shapes using the transformations:

1. T(1/4,1/4)S(1/4,1/4)(T(1/(4),1/(2))S(1/4,1/4)))
-1

2. T(3/4,1/4)R(90º)S(1/4,1/4)(T(1/(4),1/(2))R(135º)S(

1/4,1/4)))
-1

3. T(3/4,3/4)R(180º)S(1/4,1/4)(T(1/(4),1/(2))R(135º)S

(1/4,1/4)))
-1

4. T(1/4,3/4)R(270º)S(1/4,1/4)(T(1/(4),1/(2))R(135º)S

(1/4,1/4)))
-1

.

Although it needs further research, we believe that an
equality operation on shape compositions based on a defined
shape hierarchy allows the approach to deal with sub-shape
operation applied to shapes with different representations. The
main idea is to precise how a shape may be defined using
other shapes. The definition may form a hierarchy that may be
used to deduce other equalities and find a common
representation for shapes. For instance, the following
definitions may relate Square and Triangle with their
composed lines and may be used to reduce shapes to lines:

{Square} = { Line, (Line, T(1,0)R(90º)), (Line, T(1,1)

y

x

 (a) (b)

y

x

y

x

 (a) (b)

94

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

R(180º)), (Line, T(0,1)R(270º)) }

{Triangle} = { Line, (Line, R(90º)), (Line, T(1,0)

R(135º)S(,1)) }.

There are various possibilities for defining sub-shape
operation in this approach, e.g. given two shape compositions
A and B:

A<B iff A’=A B’=B such that A’B’;

A<B iff CA DB D’=D such that {C}D’;

The first possibility proposes finding a common
representation for shapes to which the sub-shape operation
may apply, in the same fashion of maximal line representation
proposed by Stiny, but not necessarily a canonical form in the
bottom of the hierarchy of shapes. The second possibility
proposes only a common representation for each shape in the
shape composition A.

One main advantage of our approach is that it easily

supports shape composition properties by using predicates
whose evaluation depends on the relative position of shapes
within a shape composition s, i.e. given a boolean valuation v:

Shape LF boolean on logical formulas LF, the property

hold in s iff v(s,) = true. Examples are presented in the next
section.

Instead of using labeled points for controlling the
application of shape rules during the design process, our
approach detached procedural knowledge from shape
knowledge using procedural notions that capture sequences,
alternatives and tests that should be applied to the initial shape
during design process. The following BNF rules represent our
language syntax for defining design processes:

< Design Process > ::= < Shape Grammar Rule >

 | < Alternative Design Process >

 | < Sequential Design Process >

 | < Test >

< Shape Grammar Rule > ::=

< Shape Composition > < Shape Composition >

< Alternative Design Process > ::=

(< Design Process > or < Design Process>)

< Sequential Design Process > ::=

< Design Process >;< Sequential Design Process > |

< Test > ::= Verify(< Boolean Condition >)

The meaning of the previous procedural notions is easily

sketched by the following function exec:Proc Shape 2
Shape

that characterizes the changes of a shape composition sShape

by the application of the design processes AB, (p1 or p2), (p1;

p2), Verify() (for Transf the set of Euclidean transformations

and a boolean valuation v: Shape LF boolean on logical
formulas LF):

exec(AB,s) = {s-t(A)+t(B)| tTransf t(A)<s}

exec((p1 or p2),s) = exec(p1,s) exec(p2,s)

exec((p1 ; p2) ,s) =
 sexec(p1,u

exec(p2,u)

exec(Verify(),s) = {s| v(s,) = true}

A shape composition s may be generated by p starting

from the initial shape composition s0 iff sexec(p,s0).

Note that a design process applies repeatedly shape rules to
the intermediate shapes obtained so far according to the order
establish sequentially in the process. The shape grammar rules
and the alternative compositions of the process offer the
possibility to generate a shape composition among different
alternatives. This means that we follow a non-deterministic
perspective in the characterization of design processes.

However, operationally designs in exec(p,s0) may be produced
by forward chaining using some operational preference in the
choice of the alternatives. Each time a test process Verify fails
or a shape grammar rule fails to apply, the system backwards
trying to build a different solution.

IV. A Case Study
Our approach uses as a case study a work in shape

grammars applied to a constructive modular system with
wooden modules for building houses in a flexible way [15].
The proposed shape grammar uses plans for a variety of
wooden modules for walls, some with windows and some
others with doors. Walls may be connected by a fix set of
connection beams within a set of different predefined areas or
basements. Figure 12 gives an idea of the obtained houses.

Figure 12. Houses built with wooden modules.

The proposed grammar offers a relative degree of freedom
in the internal division of space. The wooden modules may be
combined in different ways provided that some restrictions are
satisfied. For instance, the kitchen should be placed near a
circulation area and the living room but not near the bedroom.

The design process follows a specific order. First a
basement is selected, second the living areas are placed, next
walls are chosen and finally connections beams are
conveniently placed between walls. This imposes a procedural
order for the application of the shape rules.

Let us illustrate the application of our approach
emphasising the representation of the design process until the
placement of living areas. Here we use an = to associate
symbols/identifiers with their visual representations. We also
use identifiers for shape compositions, rule processes and
shape rules.

95

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Let us consider the following basic shapes:

BasicSquare = , CirculationArea = , Outside = ,

BathRoom = , BedRoom = , Kitchen = ,

LivingRoom = .

Shapes BasicSquare, CirculationArea and Outside have an
area of 1.5X1.5. Shapes BedRoom and Kitchen have 3.2x3.2.
Shape LivingRoom have 4.9x3.2 and shape BathRoom
have1.5x3.2.

Using these basic shapes, we may define the following
basements of Figure 13 with different dimensions and
configurations using the following shape compositions, where
shapes BasicSquare are spaced by 0.2 units:

Basement1 = , Basement2x3 = ,

Basement1x2 = , Basement2x1 = ,

Basement2x2 = , Basement3x2 =

Figure 13. Different basements for modular houses.

Basement1 = { BasicSquare, (BasicSquare, T(1.7,0)),
(BasicSquare, T(3.4,0)), (BasicSquare, T(5.1,0)),
(BasicSquare, T(6.8,0)), (BasicSquare, T(0,1.7)),
(BasicSquare, T(1.7,1.7)), (BasicSquare, T(3.4,1.7)),
(BasicSquare, T(5.1,1.7)), (BasicSquare, T(6.8,1.7)),
(BasicSquare, T(0,3.4)), (BasicSquare, T(1.7,3.4)),
(BasicSquare, T(3.4, 3.4)), (BasicSquare, T(5.1,3.4)),
(BasicSquare, T(6.8,3.4)), (BasicSquare, T(0,5.1)),
(BasicSquare, T(1.7,5.1)), (BasicSquare, T(3.4,5.1)),
(BasicSquare, T(5.1,5.1)), (BasicSquare, T(6.8,5.1)),
(BasicSquare, T(0,6.8)), (BasicSquare, T(1.7,6.8)),
(BasicSquare, T(3.4,6.8)), (BasicSquare, T(5.1,6.8)),
(BasicSquare, T(6.8,6.8)) }

Basement1x2 = { BasicSquare, (BasicSquare, T(0,1.7))}

Basement2x1 = { BasicSquare, (BasicSquare, T(1.7,0))}

Basement2x2 = { BasicSquare, (BasicSquare, T(1.7,0)),
(BasicSquare, T(0,1.7)), (BasicSquare, T(1.7,1.7))}

Basement3x2 = { BasicSquare, (BasicSquare, T(1.7,0)),
(BasicSquare, T(3.4,0)), (BasicSquare, T(0,1.7)),
(BasicSquare, T(1.7,1.7)), (BasicSquare, T(3.4,1.7))}

Basement2x3 = { BasicSquare, (BasicSquare, T(1.7,0)),
(BasicSquare, T(0,1.7)), (BasicSquare, T(1.7,1.7)),
(BasicSquare, T(0,3.4)), (BasicSquare, T(1.7,3.4))}

Based on the previous shape compositions we may now

characterize the following shape grammar rules of Figure 14
used for generating space occupation of living areas:

PlaceBasement =

PlaceBathRoom1 =

PlaceBathRoom2 =

PlaceBedRoom =

PlaceKitchen =

PlaceLivingRoom1 =

PlaceLivingRoom2 =

PlaceCirculationArea =

PlaceCirculationArea =

Figure 14. Shape grammar rules for modular houses.

PlaceBasement = {BasicSquare} Basement1

PlaceBathRoom1 = Basement1x2 {BathRoom}

PlaceBathRoom2 = Basement2x1 {(BathRoom,
T(3.2,0)R(90º))}

PlaceBedRoom = Basement2x2 {BedRoom}

PlaceKitchen = Basement2x2 {Kitchen}

PlaceLivingRoom1 = Basement3x2 {LivingRoom}

PlaceLivingRoom2 = Basement2x3 {(LivingRoom,
T(3.2,0)R(90º))}

PlaceCirculationArea = {BasicSquare} {CirculationArea}

PlaceOutside = {BasicSquare} {Outside}

The shape compositions Basement1x2 and Basement2x1
are necessary to ensure facing up or down the non-squared
shape BathRoom. The same happens with shape LivingRoom
with respect with shape compositions Basement3x2 and
Basement2x3. This is due to the fact that shapes BasicSquare,
(BasicSquare,T(1.5,0)R(90º)), (BasicSquare, T(1.5,1.5)
R(180º)) and (BasicSquare, T(0,1.5)R(270º)) have all the same
visual representation. But without explicitly turn them equals,
the only solution is considering different shape compositions

96

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

for substitution.

Let us now represent the design process for the placement
of living areas:

ModularHouse = PlaceBasement; PlaceLivingAreas

PlaceLivingAreas = PlaceLivingRoom; PlaceKitchen;
PlaceBedRoom; CirculationAreaProcess; OutsideProcess;
Verify(LivingAreaRestrictions)

PlaceBathRoom = PlaceBathRoom1 or PlaceBathRoom2

PlaceLivingRoom = PlaceLivingRoom1 or PlaceLivingRoom2

CirculationAreaProcess = Verify(EverythingElseConnected)

or(Verify(EverythingElseConnected); PlaceCirculationArea;
CirculationAreaProcess)

OutsideProcess = Verify(exists(BasicSquare)) or (Verify(
exists(BasicSquare)); PlaceOutside;OutsideProces)

These processes uses testes on predicates
LivingAreaRestrictions and EverythingElseConnected

defined by the following equivalences (where , and
represents respectively the propositional conectives of
conjunction, negation and equivalence):

LivingAreaRestrictions (next(Kitchen, LivingRoom)

next(Kitchen, CirculationArea) next(BedRoom,Kitchen)
next(Outside, LivingRoom))

EverythingElseConnected (connected(LivingRoom,

BedRoom) connected(LivingRoom, BathRoom))

The predicate next(Id1,Id2) is satisfied by a shape
composition s iff there are shapes (Id1,t1) and (Id2,t2) in s
occupying contiguous areas spaces. This property is easily
defined knowing the extreme points of each area occupied by
shapes (Id1,t1) and (Id2,t2). The predicate exists(Id) is
satisfied by a shape composition s iff there is a shape (Id,t) in
s. The predicate connected(Id1,Id2) is satisfied by a shape
composition s iff there are shapes (Id1,t1) and (Id2,t2) in s
occupying contiguous areas spaces or connected by
contiguous CirculationArea shapes.

Almost all processes are self-explanatory. The design
processes CirculationAreaProcess and OutsideProcess are just
iterative processes using the previous design primitives, the
former to ensure that all living areas are connected and the
later to occupy the remaining spaces by outside space. Note

that a conventional while()c loop may be represented in the

following way: Procid = Verify() or (Verify(); c; Procid);

and the usual alternative if() c else d may be represented by

(Verify(); c) or (Verify(()); d).

The ModularHouse design process allows the following
evolution of shapes compositions in Figure 15 satisfying
internal division of space restrictions defined in design process
identified by PlaceLivingAreas.

V. Conclusion
We believe that the declarative knowledge-based approach

herein sketched supports shape reasoning capabilities and is

thus more convenient for automatic design generation. This
approach also detached procedural knowledge from shape
knowledge facilitating a convenient abstraction and
modularization for algorithmic development.

 …

Figure 15. A design generation of house space.

The procedural part is essentially non-deterministic, either
by shape rule application, either by the application of
alternative processes. This option is strongly influenced by our
research goals on the generation of urban and architecture
designs. But we also consider the necessity of procedural
determinism in cases where we want to block freedom in
solution or partial solution generation. We are also aware that
other procedural primitives would be necessary. We would
consider different primitives as long we explore different case
studies.

Figure 16. Alternative Shaper Workbench.

A workbench supporting our approach has been developed

97

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

for exploring diverse case studies (see Figure 16). This first
tool was implemented in SWI-prolog in order to explore a
depth first search strategy of the design solution space. We are
aware that, due to the exponential nature of the search space,
an intelligent guided search should be adopted in order to
obtain tractable algorithms.

There are other issues that need further research, namely:

1. a complete development of a case study in order to find out
approach limitations and propose other convenient
abstractions;

2. study an appropriate algebra for shape manipulation using
our approach and allowing a combination with the traditional
shape grammar approach;

3. Define properly an equality operation on shapes and an
adequate sub-shape operation;

4. study appropriate computational forms of representation of
shapes and implementation of processes for avoiding
intractable algorithms.

References

[1] M. Agarwal and J. Cagan, “A blend of different tastes: the language of

coffeemakers”, in Environment and Planning B, 25, 1998, pp. 205-226.

[2] S.C. Chase, Shape grammar implementations: the last 36 years (Shape
grammar implementation: from theory to useable software), presentation
in Design Computing and Cognition workshop, Stuttgart, July2010.
http://www2.mech-eng.leeds.ac.uk/users/men6am/documents/DCC2010
grammarsworkshop-Chase-revised.pdf.

[3] H.H. Chau, “Evaluation of a 3D Shape Grammar Implementation”, in
Design Computation and Cognition’04, J.S. Gero, Eds., 2004, pp. 357-
376.

[4] J.P. Duarte, “A Discursive Grammar for Customizing Mass Housing: the
case of Siza's houses at Malagueira”, in Automation in Construction,
14(2), Elsevier Science, 2005, pp. 265-275.

[5] J. Heisserman, “Generative Geometric Design”, in IEEE Computer
Graphics and Applications, 14, 1994, pp. 37-45.

[6] R. Krishnamurti, “The arithmetic of shapes”, in Environment and
Planning B, 7, 1980, pp. 463-484.

[7] R. Krishnamurti, “The construction of shapes”, in Environment and
Planning B, 8, 1981, pp. 5-40.

[8] R. Krishnamurti, “The maximal representation of a shape”, in
Environment and Planning B, 19, 1992, pp. 267-288.

[9] R. Krishnamurti and R. Stouffs, “Spatial change: continuity,
reversibility, and emergent shapes”, in Environment and Planning B, 24,
1997, pp. 359-384.

[10] W. Mitchell, “A Computational View of Disign Creativity”, in
Modelling Creativity and Knowledge-Based Design, J. Gero and M.
Maher, Eds., Lawrence Erlbaum Associates, 1993, pp. 25-42.

[11] A. Paio, J. Reis, F. Santos, P. Lopes, S. Eloy and V. Rato,
“Emerg.cities4all: Towards a shape grammar bases computational
system tool for generating a sustainable and integrated urban design”, in
Proceedings Conference eCAADe2011 respecting Fragile Places,
eCAADe (Education and Research in Computer Aided Architectural
Design in Europe), 2011, pp. 133-139.

[12] A. Paio, S. Eloy, J. Reis, F. Santos, V. Rato and P. Lopes,
“Emerg.cities4all: Towards a sustainable and integrated urban design”,
in Proceedings 24th World Congress of Architecture, UIA2011, 2011.

[13] F. Santos, J. Reis, “A Language for Automatic Design Generation”, in
Proc. International Conference on Information Systems and Design of
Communication, ISDOC 2013, 2013, pp. 64-68.

[14] F. Santos, J. Reis, P. Lopes, A. Paio, S. Eloy and V. Rato, “A Multi-
Agent Expert System Shell for Shape Grammars”, in Proc. 17th
International Conference of the Association for Computer-Aided
Architectural Design Research in Asia, CAADRIA 2012, 2012,409-414.

[15] R. Sousa and A. Santos, Uma gramática para um sistema construtivo
com painéis de madeira, Technical Report, ISCTE-IUL, 2012.

[16] G. Stiny, “Introduction to shape and shape grammars”, in Environment
and Planning B, 7(3), 1980, pp. 343-351.

[17] G. Stiny, “Kindergarten grammars: designing with Froebel’s building
gifts”, in Environment and Planning B, 7, 1980, pp. 409-462.

[18] G. Stiny and J. Gips, “Shape Grammars and the Generative Specification
of Painting and Sculpture”, in Information Processing, 71, C. V.
Freiman, Eds., Amsterdam: North- Holland, 1972, pp. 1460-1465.

[19] G. Stiny, “Shape Rules: closure, continuity and emergence”, in
Environment and Planning B, 21, 1994, pp. S49-S78.

[20] K. Terry, “Computing with Emergence”, in Environment and Planning
B: Planning and Design, 30, 2003, pp. 125-155.

About Author (s):

Filipe Santos has a PhD in Computer Science

and Assistant Professor at Lisbon University

Institute. Research topics: Institutional and

Legal Knowledge Representation; Design

Generation in Architecture.

Joaquim Esmerado has a PhD in Computer

Science and Assistant Professor at Lisbon

University Institute. Research topics:

Computer Graphics.

http://www2.mech-eng.leeds.ac.uk/users/men6am/documents/DCC2010%20grammarsworkshop-Chase-revised.pdf
http://www2.mech-eng.leeds.ac.uk/users/men6am/documents/DCC2010%20grammarsworkshop-Chase-revised.pdf

