
 

90 

International Journal of Advances in Computer Science & Its Applications– IJCSIA 
Volume 5: Issue 1   [ISSN : 2250-3765]      

Publication Date : 30 April, 2015 
 

A Different Shape Grammar Approach for Automatic 

Design Generation 
Filipe Santos and Joaquim Esmerado 

 
Abstract—This paper proposes a different approach for shape 

grammars where designs are exclusively generated through 

computations of symbols. This option has the advantage of 

supporting declarative knowledge and thus facilitates shape 

reasoning capabilities. Our approach also detached procedural 

knowledge from shape knowledge using procedural notions that 

capture sequences, alternatives and tests that should be applied 

during design process. This decision provides good modular 

specifications. Moreover, we follow a non-deterministic 

procedural perspective in the characterization of design 

processes. Its implementation supports exploratory automatic 

design generation. Differences between this approach and the 

conventional approach are discussed and a case study is explored. 
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I.  Introduction 
We are particularly interested in the automatic generation 

of designs based on shape grammars as a descriptive method 
for shapes [18]. We are currently developing computational 
tools for shape computing [14] and working on its application 
in the generation of urban and architecture designs [11] 
[12][13]. 

Shape grammars have successfully been used to generate a 
variety of designs [1], [4], [5], [16], [17]. However, shape 
knowledge within these specific design applications is 
represented in a procedural and ad hoc way and is therefore 
too rigid for generic automation. 

We believe that a declarative knowledge-based approach 
would offer more flexibility to face new design situations and 
improve shape reasoning capabilities. We also believe that the 
shape grammar formalism should be extended with convenient 
abstractions for flexible design specification and generation.  

In this paper we propose a different approach for shape 
grammars. Shapes are directly represented by symbols. These 
symbols support declarative knowledge representation and 
shape reasoning capabilities. A preliminary sketch of this 
approach has been presented in [13]. Herein we proceed 
forward by clarifying the approach, addressing concrete 
examples and discussing ways to support shape emergence. 

An overview of the rest of the paper follows. We start by 
presenting the conventional shape grammar formalism. 
Subsequently, we present our approach based on symbols and 
supplemented with procedural primitives for describing design 
processes. 
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Next, a case study on a constructive modular system with 
wooden modules exemplifies our approach. We conclude by 
mentioning our immediate research directions.  

II. Shape Grammar 
Shape grammar formalism was originally proposed by 

Stiny and Gips [18] for creating and understanding designs 
through computations with shapes, rather than through 
computations with text or symbols. For an historic and 
panoramic perspective on shape grammars see [2] or [3]. Stiny 
and Gips have proposed that the computation of shapes should 
be carried out in two steps: the recognition of a particular 
shape and its possible replacement by another shape.   

A shape grammar consists of: 

- a vocabulary of primitive shapes; 

- shape rules of the form AB, where A and B are shapes; 

- an initial shape. 

Two shapes s and u may be combined and form a new 
shape s + u (shapes in s or in u) or s - u (shapes in s not in u). 
Given an appropriate vocabulary of shapes we may form an 
algebra where both operations are closed on the space of all 
possible shape combinations. Given a shape combination u, 
the recognition of a particular shape s in u can be supported by 
a sub-shape operation, s<u denoting s is a sub-shape of u. 
Application of an Euclidean transformation (translation, 
rotation, reflection and scale) t to a shape A provides the 
production of a new shape t(A). 

Replacements of shapes are obtained through application 

of shape grammar rules. A shape grammar rule AB applies 
to a shape s whenever there is an Euclidean transformation t 
such that t(A)<s. The result of the rule application is s-
t(A)+t(B), the shape obtained by replacing the sub-shape t(A) 
of s by the shape t(B). 

Given a shape grammar, shapes may be generated/derived 
starting from the initial shape and sequentially applying shape 
rules to the obtained shapes, i.e., a sequence of shapes s0, s1, 
…, sn, where s0 is the initial shape and si+1 is the shape 
obtained from si  (i=0, …, n) by applying a rule of the shape 
grammar. Each possible generated shape forms the shape 
language defined by the shape grammar. 

 

Figure 1.  A shape grammar. (a) shape rule, (b) initial shape. 

 

 
(a)             (b) 
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Let us consider an adaptation of the following example 
from [16] of a shape grammar with lines as a vocabulary of 
shapes. The shape grammar of Figure 1 yields a language of 
inscribed squares as shown in Figure 2. 

 

Figure 2.  A language of inscribed squares. 

Each shape of the generated language is obtained starting 
from the initial shape and repeatedly applying the shape 
grammar rule to the innermost square, each application using 
different Euclidean transformations combining rotation and 
scale applied to the square of left side of the shape rule. 

Designing is the process of shape manipulation (2D or 3D) 
and materials information that is needed to guide the 
construction of an artifact. It is a iterative process of shape 
manipulation that ends when certain conditions are fulfilled. 
During this process, designers interpret the shapes obtained so 
far and their interpretation influences the progress of design. 
Designers frequently recognize emergent sub-shapes, i.e., 
shapes not explicitly introduced, thus providing new 
interpretations and new directions of design progress. 

Within shape grammars emergence is a foundational 
feature mentioned and discussed by many researchers 
[10][19][20].  Emergent shapes may be seen as shapes that are 
not added by shape rule applications, i.e. any shape that is not 
a shape t(B) added by a previous application of  a shape rule 

AB. 

The previous language also illustrates these phenomena of 
emergent sub-shapes. Shape on Figure 3(a) emerges in four 
places of Figure 3(b)  

 

Figure 3.  An emergent sub-shape within a shape. 

The sub-shape operation is crucial for supporting shape 
grammar rules application to shapes and mainly depends on 
the primitive vocabulary of shapes. For 2D shapes, Stiny 
proposed a canonical representation of shapes [16] – the 
maximal lines form – based on lines. In this representation, a 
line is determined by a set of two distinct end points and a 
shape is a finite set of lines. The maximal line representation 
of a shape is the unique smallest set of lines that represent the 
shape. 

Given a shape, the process for obtaining this maximal line 
representation consists in combining two collinear lines with 
the + shape operation only in the following four situations: 

(1) two lines share an end point and the remaining end 
point of one line is coincident with the other line. The 

maximal line is represented by the shared end point and the 
remaining end point of the other line (Figure 4(a)); 

(2) both end points of a line is coincident with the other 
line. The maximal line is the second line (Figure 4(b)); 

(3) one end point of each line is coincident with the other 
line. The maximal line is represented by the remaining end 
points  (Figure 4(c)); 

(4) the two lines share an end point and this point is 
coincident with the line formed by the two remaining unshared 
end points. The maximal line is represented by the remaining 
unshared end points (Figure 4(d)). 

Given two shapes s and u represented by maximal line 
representation, s is a sub-shape of u, i.e. s<u, if and only if the 
end points of every maximal line of s are both coincident with 
a maximal line of u. 

 

Figure 4.  Situations of line combination of maximal lines. 

Sub-shape detection (including emergent shapes) is 
supported by sub-shape operation when shapes are represented 
in maximal line form. The end points and cross points of the 
lines in the shapes represented in maximal line form are 
sufficient for the determination of an Euclidian transformation 
t such that t(u)<s. It is sufficient to find out a correspondence 
between 3 distinct non-collinear points p1, p2, p3 of u with 3 
distinct non-collinear points t(p1), t(p2), t(p3) of s. The 
remaining points p of u should also correspond to points t(p) 
of s.  

 

Figure 5.  Maximal line representation and four sub-shapes. 

The maximal line representation in Figure 5 (a) allows the 
detection of the emergent shape in Figure 3 (a) in 4 different 
places, since the Figures 5 (b) 5 (c) 5 (d) 5 (e) in Figure 5 (a) 
may be obtained from Figure 3 (a) by applying a rotation of 
45

o
, 135

o
, 225

o
 and 315

o
 respectively, followed by a 

convenient translation. 

Computing maximal line representation and finding 
Euclidian transformations for sub-shape operation is a time 
consuming process and appropriate computational forms of 
representation of shapes should be adopted if we want to avoid 
intractable algorithms [6][7][8][9]. 

The shape grammar formalism also employs labeled points 
as a way of controlling the application of shape rules during 

 

 

(a)     (b)           (c)            (d)    (e) 
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the design process. This control may avoid the application of 
particular Euclidian transformations or even completely block 
the application of one or more shape rules. Using labeled 
points, a sequential programming style can be used to describe 
the design process. Shape rules with labeled points on their 
right hand side must be used before other shape rules with the 
same labeled points on their left hand side. Moreover, the 
application of shape rules with labeled points on their left hand 
is blocked to shapes without the same labeled points. Using 
this strategy, shape grammars have been used to generate a 
variety of designs [1][4][5][16][17]. As a consequence, within 
these specific design applications shape knowledge and 
procedural knowledge are mixed together in an ad hoc way 
and is therefore too rigid for generic specification and 
automation. 

We believe that shape knowledge and procedural 
knowledge should be detached from each other if we want to 
obtain a framework for flexible design generation and quick 
design specification. Detaching this knowledge would 
facilitate convenient abstraction and modularization for 
algorithmic development, one of most desirable properties in 
computer science. An approach for design generation should 
thus provide convenient abstractions for representing shape 
knowledge, procedural knowledge and also the definition of 
other relevant application concepts. 

III. Our Alternative Approach 
Like shape grammars our approach deals with shapes and 

shape rules. However, there is a fundamental difference: the 
emphasis is made on symbols, not on shapes. 

 

Figure 6.  Picture identified by Square. 

In our approach shapes are represented by identifiers 
associated with pictures. For instance, Square may be 
associated with the picture of Figure 6 defined in the 
respective coordinate system xOy.  

 

Figure 7.  Positioning Square within a new coordinate system. 

Positioning a shape defined in this way within a different 
coordinate system x’O’y’ is represented by a pair (shape, 
transformation) specifying the transformation (translation, 
rotation, scale, etc.) required for positioning the coordinate 
system xOy associated to the defined shape into the new 
coordinate system x’O’y’. Note that each shape is represented 
by the identity transformation Id when the shape is defined 
and in this case the identity transformation may be omitted 
within the representation.  

For instance, in Figure 7, Square is positioned into the 

coordinate system x’O’y’ by a scale S(c,d) and rotation R() 
followed by a translation T(a,b). 

Using a matrix representation within an homogeneous 
coordinate system, the previous shape may be represented by 

(Square, T(a,b)R()S(c,d)) where 

 

T(a,b) =              R() = 

  

   

S(c,d) =   

 

Shape compositions may be represented by sets of shapes 
positioned in the same coordinate system. For instance, for a 
1x1 unit Square, the 4 inscribed squares of Figure 3 (b) are 

represented by {Square, (Square, T(1/2, 0)R(45º)S(1/ , 

1/ )), (Square,T(3/4,1/4)R(90º)S(1/2,1/2)), (Square, T(3/4, 

1/2) R(135º) S(1/(2 ),1/(2 )))}. 

In this approach Shape Grammar Rules are represented by 
pairs of shape compositions. For instance, for a 1x1 unit 
Square, the shape grammar rule of Figure 1 (a) is represented 

by {Square}   {Square, (Square, T(1/2, 0)R(45º)S(1/ ,1/ )} 

 

Figure 8.  t transforms shape (Square,t1) into shape (Square,t2). 

Using this representation and given two shape 
compositions A and B, sub-shape operation is defined by A<B 

iff AB, i.e. all the shapes in A are also in B. And discovering 
an Euclidean transformation t such that t(A)<s for the 

application of a shape grammar rule AB is simply finding a 
transformation able to transform every shape of A into shapes 
within s. Note that, using a matrix representation within an 
homogeneous coordinate system, an Euclidean transformation 
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t able to transform shape (id,t1) into shape (id,t2) is easily 
obtained by t2t1

-1
 (see e.g. Figure 8).  

The following algorithm is used for obtaining such 
Euclidian transformation: 

Algorithm: Euclidean transformation t such that t(A)<s 

1. Find two shapes with the same identification id in both 

shape compositions A and s, i.e. (id,t1)A(id,t2)s; 

2. t = t2t1
-1

, i.e. t is the Euclidean transformation able to 
transform shape (id,t1) into shape (id,t2) (i.e. (id,t2)= (id,t1t)); 

3. Confirm that if (id’,t’)A then (id’,t’t)s,  i.e. t 
transforms every remaining shape in A into a shape of s. 

Given the previous representation of 4 inscribed squares, 
the previous shape grammar rule may be applied with four 
different Euclidian transformations since the shape of it left 
side Square may be transformed in each of the four shapes of 
the right side of the rule using the transformations: Id,  T(1/2, 

0) R(45º)S(1/ ,1/ ), T(3/4,1/4)R(90º)S(1/2,1/2) and  

T(3/4,1/2)R(135º)S(1/(2 ),1/(2 )). 

Without any further mathematical machinery, the 
formalization that we have proposed so far does not allow the 
detection of emergent sub-shapes. However, we believe that 
the introduction of an equality operation on shape 
compositions allows our approach to surpass this limitation in 
the same fashion that the maximal line form does by 
presenting an alternative representation of the same shapes.  

Let’s consider again the previous shape of 4 inscribed 
squares of Figure 3(b). We already represent it using Square as 
a primitive shape. However, considering now the shapes Line 
and Triangle of Figure 9, the shape of 4 inscribed squares may 
be alternatively represented by 16 lines (Figure 10 (a)), as in 
the maximal line form, or even by 8 triangles (Figure 10 (b)). 

 

Figure 9.  Pictures identified by Line and Triangle. 

 

Figure 10.  Different representations of Figure 3 (b) using Line and Triangle. 

Considering a defined 1 unit long Line and a right Triangle 
with 1 unit long in both sides opposite to hypotenuse, the 4 

inscribed squares may be alternatively represented by { Line, 
(Line, T(1,0)R(90º)), (Line, T(1,1)R(180º)), (Line, T(0,1) 

R(270º)),  (Line, T(1/2,0)R(45º)S(1/ ,1)), (Line, T(1,1/2) 

R(135º)S(1/ ,1)), (Line,T(1/2,1)R(225º)S(1/ ,1)), (Line, 

T(0,1/2)S(1/ ,1)R(315º)), (Line, T(1/4,1/4)S(1/2,1)), (Line, 

T(3/4,1/4)R(90º)S(1/ ,1)), (Line, T(3/4,3/4)R(180º) 

S(1/ ,1)),  (Line, T(1/4,3/4)R(270º)S(1/2,1)), (Line, 

T(1/2,1/4)R(45º)S(1/(2 ),1)), (Line, T(3/4,1/2)R(135º) 

S(1/(2 ),1)), (Line, T(1/2, 3/4)R(225º)S(1/(2 ),1)), (Line, 

T(1/4,1/2)R(315º)S(1/(2 ),1))} or by {(Triangle, 

S(1/2,1/2)), (Triangle, T(1,0)R(90º)S(1/2,1/2)), (Triangle, 
T(1,1)R(180º)S(1/2,1/2)), (Triangle,T(0,1)R(270º) S(1/2,1/2)), 
(Triangle, T(1/4,1/4)S(1/4,1/4)), (Triangle, T(3/4,1/4)R(90º) 
S(1/4,1/4)), (Triangle, T(3/4,3/4)R(180º)S(1/4,1/4)), (Triangle, 
T(1/4,3/4)R(270º)S(1/4,1/4))}. 

Let’s consider now the following shape composition Fish 
presented in Figure 11 represented by 

 

Figure 11.  A shape composition identified by Fish. 

{ (Triangle, T(1/(4 ),1/(2 ))R(135º)S(1/4,1/4)), (Triangle, 

T(3/(4 ),1/(2 ))R(135º)S(1/2,1/2))} 

Given the previous Triangle representation of 4 inscribed 
squares, Fish may be transformed in each of the four corners 
shapes using the transformations:  

1. T(1/4,1/4)S(1/4,1/4)(T(1/(4 ),1/(2 ))S(1/4,1/4)))
-1

  

2. T(3/4,1/4)R(90º)S(1/4,1/4)(T(1/(4 ),1/(2 ))R(135º)S(

1/4,1/4)))
-1

 

3. T(3/4,3/4)R(180º)S(1/4,1/4)(T(1/(4 ),1/(2 ))R(135º)S

(1/4,1/4)))
-1

  

4. T(1/4,3/4)R(270º)S(1/4,1/4)(T(1/(4 ),1/(2 ))R(135º)S

(1/4,1/4)))
-1

. 

Although it needs further research, we believe that an 
equality operation on shape compositions based on a defined 
shape hierarchy allows the approach to deal with sub-shape 
operation applied to shapes with different representations. The 
main idea is to precise how a shape may be defined using 
other shapes. The definition may form a hierarchy that may be 
used to deduce other equalities and find a common 
representation for shapes. For instance, the following 
definitions may relate Square and Triangle with their 
composed lines and may be used to reduce shapes to lines:  

{Square} = { Line, (Line, T(1,0)R(90º)), (Line, T(1,1) 
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R(180º)), (Line, T(0,1)R(270º)) } 

{Triangle} = { Line, (Line, R(90º)), (Line, T(1,0) 

R(135º)S( ,1)) }. 

There are various possibilities for defining sub-shape 
operation in this approach, e.g. given two shape compositions 
A and B: 

A<B iff A’=A B’=B such that A’B’; 

A<B iff CA DB D’=D such that {C}D’; 

The first possibility proposes finding a common 
representation for shapes to which the sub-shape operation 
may apply, in the same fashion of maximal line representation 
proposed by Stiny, but not necessarily a canonical form in the 
bottom of the hierarchy of shapes. The second possibility 
proposes only a common representation for each shape in the 
shape composition A. 

One main advantage of our approach is that it easily 

supports shape composition properties by using predicates  
whose evaluation depends on the relative position of shapes 
within a shape composition s, i.e. given a boolean valuation v: 

Shape LF  boolean on logical formulas LF, the property  

hold in s iff v(s,) = true. Examples are presented in the next 
section. 

Instead of using labeled points for controlling the 
application of shape rules during the design process, our 
approach detached procedural knowledge from shape 
knowledge using procedural notions that capture sequences, 
alternatives and tests that should be applied to the initial shape 
during design process. The following BNF rules represent our 
language syntax for defining design processes: 

< Design Process > ::=  < Shape Grammar Rule > 

 | < Alternative Design Process > 

 | < Sequential Design Process > 

 | < Test > 

< Shape Grammar Rule > ::=  

< Shape Composition  >  < Shape Composition  > 

< Alternative Design Process > ::=  

( < Design Process > or < Design Process> ) 

< Sequential Design Process > ::=  

< Design Process >;< Sequential Design Process > |  

< Test > ::= Verify( < Boolean Condition > )  

The meaning of the previous procedural notions is easily 

sketched by the following function exec:Proc Shape  2
Shape

 

that characterizes the changes of a shape composition sShape 

by the application of the design processes AB, (p1 or p2), (p1; 

p2), Verify() (for Transf the set of Euclidean transformations 

and a boolean valuation v: Shape LF  boolean on logical 
formulas LF): 

exec(AB,s) = {s-t(A)+t(B)| tTransf t(A)<s} 

exec((p1 or p2),s) = exec(p1,s)  exec(p2,s) 

exec((p1 ; p2) ,s) = 
 sexec(p1,u

exec(p2,u)  

exec(Verify(),s) = {s| v(s,) = true}  

A shape composition s may be generated by p starting 

from the initial shape composition s0 iff sexec(p,s0).  

Note that a design process applies repeatedly shape rules to 
the intermediate shapes obtained so far according to the order 
establish sequentially in the process. The shape grammar rules 
and the alternative compositions of the process offer the 
possibility to generate a shape composition among different 
alternatives. This means that we follow a non-deterministic 
perspective in the characterization of design processes. 

However, operationally designs in exec(p,s0) may be produced 
by forward chaining using some operational preference in the 
choice of the alternatives. Each time a test process Verify fails 
or a shape grammar rule fails to apply, the system backwards 
trying to build a different solution.  

IV. A Case Study 
Our approach uses as a case study a work in shape 

grammars applied to a constructive modular system with 
wooden modules for building houses in a flexible way [15]. 
The proposed shape grammar uses plans for a variety of 
wooden modules for walls, some with windows and some 
others with doors. Walls may be connected by a fix set of 
connection beams within a set of different predefined areas or 
basements. Figure 12 gives an idea of the obtained houses. 

 

Figure 12.  Houses built with wooden modules. 

The proposed grammar offers a relative degree of freedom 
in the internal division of space. The wooden modules may be 
combined in different ways provided that some restrictions are 
satisfied. For instance, the kitchen should be placed near a 
circulation area and the living room but not near the bedroom. 

The design process follows a specific order. First a 
basement is selected, second the living areas are placed, next 
walls are chosen and finally connections beams are 
conveniently placed between walls. This imposes a procedural 
order for the application of the shape rules. 

Let us illustrate the application of our approach 
emphasising the representation of the design process until the 
placement of living areas.  Here we use an = to associate 
symbols/identifiers with their visual representations. We also 
use identifiers for shape compositions, rule processes and 
shape rules. 
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Let us consider the following basic shapes: 

BasicSquare =  , CirculationArea =  , Outside = , 

BathRoom =  , BedRoom = , Kitchen = , 

LivingRoom = . 

Shapes BasicSquare, CirculationArea and Outside have an 
area of 1.5X1.5. Shapes  BedRoom and Kitchen have 3.2x3.2. 
Shape LivingRoom have 4.9x3.2 and shape BathRoom 
have1.5x3.2.  

Using these basic shapes, we may define the following 
basements of Figure 13 with different dimensions and 
configurations using the following shape compositions, where 
shapes BasicSquare are spaced by 0.2 units:  

Basement1 =  , Basement2x3 =  , 

Basement1x2 = ,  Basement2x1 = ,  

Basement2x2 = , Basement3x2 =   

Figure 13.  Different basements for modular houses. 

Basement1 = { BasicSquare, (BasicSquare, T(1.7,0)), 
(BasicSquare, T(3.4,0)), (BasicSquare, T(5.1,0)), 
(BasicSquare, T(6.8,0)), (BasicSquare, T(0,1.7)), 
(BasicSquare, T(1.7,1.7)), (BasicSquare, T(3.4,1.7)), 
(BasicSquare, T(5.1,1.7)), (BasicSquare, T(6.8,1.7)), 
(BasicSquare, T(0,3.4)), (BasicSquare, T(1.7,3.4)), 
(BasicSquare, T(3.4, 3.4)), (BasicSquare, T(5.1,3.4)), 
(BasicSquare, T(6.8,3.4)), (BasicSquare, T(0,5.1)), 
(BasicSquare, T(1.7,5.1)), (BasicSquare, T(3.4,5.1)), 
(BasicSquare, T(5.1,5.1)), (BasicSquare, T(6.8,5.1)), 
(BasicSquare, T(0,6.8)), (BasicSquare, T(1.7,6.8)), 
(BasicSquare, T(3.4,6.8)), (BasicSquare, T(5.1,6.8)), 
(BasicSquare, T(6.8,6.8)) } 

Basement1x2 = { BasicSquare, (BasicSquare, T(0,1.7))} 

Basement2x1 = { BasicSquare, (BasicSquare, T(1.7,0))} 

Basement2x2 = { BasicSquare, (BasicSquare, T(1.7,0)), 
(BasicSquare, T(0,1.7)), (BasicSquare, T(1.7,1.7))} 

Basement3x2 = { BasicSquare, (BasicSquare, T(1.7,0)), 
(BasicSquare, T(3.4,0)), (BasicSquare, T(0,1.7)), 
(BasicSquare, T(1.7,1.7)), (BasicSquare, T(3.4,1.7))} 

Basement2x3 = { BasicSquare, (BasicSquare, T(1.7,0)), 
(BasicSquare, T(0,1.7)), (BasicSquare, T(1.7,1.7)), 
(BasicSquare, T(0,3.4)), (BasicSquare, T(1.7,3.4))} 

Based on the previous shape compositions we may now 

characterize the following shape grammar rules of Figure 14 
used for generating space occupation of living areas: 

PlaceBasement =     

PlaceBathRoom1 =    

PlaceBathRoom2 =    

PlaceBedRoom =    

PlaceKitchen =     

PlaceLivingRoom1 =    

PlaceLivingRoom2 =    

PlaceCirculationArea =    

PlaceCirculationArea =    

Figure 14.  Shape grammar rules for modular houses. 

PlaceBasement = {BasicSquare}  Basement1 

PlaceBathRoom1 = Basement1x2  {BathRoom}  

PlaceBathRoom2 = Basement2x1  {(BathRoom, 
T(3.2,0)R(90º))} 

PlaceBedRoom = Basement2x2  {BedRoom} 

PlaceKitchen = Basement2x2  {Kitchen} 

PlaceLivingRoom1 = Basement3x2  {LivingRoom}  

PlaceLivingRoom2 = Basement2x3  {(LivingRoom, 
T(3.2,0)R(90º))} 

PlaceCirculationArea = {BasicSquare}  {CirculationArea}  

PlaceOutside = {BasicSquare}  {Outside} 

The shape compositions Basement1x2 and Basement2x1 
are necessary to ensure facing up or down the non-squared 
shape BathRoom. The same happens with shape LivingRoom 
with respect with shape compositions Basement3x2 and 
Basement2x3. This is due to the fact that shapes BasicSquare, 
(BasicSquare,T(1.5,0)R(90º)), (BasicSquare, T(1.5,1.5) 
R(180º)) and (BasicSquare, T(0,1.5)R(270º)) have all the same  
visual representation. But without explicitly turn them equals, 
the only solution is considering different shape compositions 
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for substitution.  

Let us now represent the design process for the placement 
of living areas: 

ModularHouse  = PlaceBasement; PlaceLivingAreas 

PlaceLivingAreas =  PlaceLivingRoom; PlaceKitchen; 
PlaceBedRoom; CirculationAreaProcess; OutsideProcess; 
Verify(LivingAreaRestrictions) 

PlaceBathRoom = PlaceBathRoom1 or PlaceBathRoom2 

PlaceLivingRoom = PlaceLivingRoom1 or PlaceLivingRoom2  

CirculationAreaProcess =  Verify(EverythingElseConnected) 

or(Verify(EverythingElseConnected); PlaceCirculationArea; 
CirculationAreaProcess)  

OutsideProcess = Verify(exists(BasicSquare)) or (Verify( 
exists(BasicSquare)); PlaceOutside;OutsideProces) 

These processes uses testes on predicates 
LivingAreaRestrictions and EverythingElseConnected  

defined by the following equivalences (where ,  and  
represents respectively the propositional conectives of 
conjunction, negation  and equivalence): 

LivingAreaRestrictions  ( next(Kitchen, LivingRoom)  

next(Kitchen, CirculationArea)  next(BedRoom,Kitchen)  
next(Outside, LivingRoom) ) 

EverythingElseConnected  ( connected(LivingRoom, 

BedRoom)   connected(LivingRoom, BathRoom) ) 

The predicate next(Id1,Id2) is satisfied by a shape 
composition s iff there are shapes (Id1,t1) and (Id2,t2) in s 
occupying contiguous areas spaces. This property is easily 
defined knowing the extreme points of each area occupied by 
shapes (Id1,t1) and (Id2,t2). The predicate exists(Id) is 
satisfied by a shape composition s iff there is a shape (Id,t) in 
s. The predicate connected(Id1,Id2) is satisfied by a shape 
composition s iff there are shapes (Id1,t1) and (Id2,t2) in s 
occupying contiguous areas spaces or connected by 
contiguous CirculationArea shapes.  

Almost all processes are self-explanatory. The design 
processes CirculationAreaProcess and OutsideProcess are just 
iterative processes using the previous design primitives, the 
former to ensure that all living areas are connected and the 
later to occupy the remaining spaces by outside space.  Note 

that a conventional while()c loop may be represented in the 

following way:  Procid = Verify() or (Verify(); c; Procid); 

and the usual alternative if() c else d may be represented by 

(Verify(); c) or (Verify(()); d).  

The ModularHouse design process allows the following 
evolution of shapes compositions in Figure 15 satisfying 
internal division of space restrictions defined in design process 
identified by PlaceLivingAreas.  

V. Conclusion 
We believe that the declarative knowledge-based approach 

herein sketched supports shape reasoning capabilities and is 

thus more convenient for automatic design generation. This 
approach also detached procedural knowledge from shape 
knowledge facilitating a convenient abstraction and 
modularization for algorithmic development. 

          

       

        …   

               
Figure 15.  A design generation of house space. 

The procedural part is essentially non-deterministic, either 
by shape rule application, either by the application of 
alternative processes. This option is strongly influenced by our 
research goals on the generation of urban and architecture 
designs. But we also consider the necessity of procedural 
determinism in cases where we want to block freedom in 
solution or partial solution generation. We are also aware that 
other procedural primitives would be necessary. We would 
consider different primitives as long we explore different case 
studies. 

 

Figure 16.  Alternative Shaper Workbench. 

A workbench supporting our approach has been developed 
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for exploring diverse case studies (see Figure 16). This first 
tool was implemented in SWI-prolog in order to explore a 
depth first search strategy of the design solution space. We are 
aware that, due to the exponential nature of the search space, 
an intelligent guided search should be adopted in order to 
obtain tractable algorithms.  

There are other issues that need further research, namely:  

1. a complete development of a case study in order to find out 
approach limitations and propose other convenient 
abstractions;  

2. study an appropriate algebra for shape manipulation using 
our approach and allowing a combination with the traditional 
shape grammar approach;  

3. Define properly an equality operation on shapes and an 
adequate sub-shape operation;  

4. study appropriate computational forms of representation of 
shapes and implementation of processes for avoiding 
intractable algorithms. 
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