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Abstract— Software requirements that exist in natural 

language can easily be understood by various stakeholders. 

However, when it comes to extracting common requirements 

from the natural language requirement documents for reuse, 

manual extraction process can be arduous, expensive, and very 

error-prone on the results. In this paper, we describe a process of 

identifying similar requirement documents for reuse in Software 

Product Lines. Online product reviews were extracted and used 

as the input mainly due to the scarcity of publicly available 

requirement documents. Latent Semantic Analysis technique 

from Information Retrieval was used to identify similar 

requirement documents and filter out the unrelated ones after the 

text has been pre-processed. Similar documents were then 

clustered together by using K-means and Hierarchical 

Agglomerative Clustering algorithm. As a result, the output from 

the clustering process will be used to recommend group of related 

requirement documents to be used in requirement engineering 

phase for a SPL development.  

Keywords— Software Engineering, Requirements Similarities, 

Requirements Reuse, Software Product Lines, Latent Semantic 

Analysis, Text Clustering 

I.  Introduction  
Natural language software requirements were proven to be 

more popular because these forms of documents can easily be 

comprehended by various stakeholders; either from the 

technical or nontechnical background. However, when it 

comes to reusing requirements for a new similar system called 

the Software Product Lines (SPL), the tasks to manually 

extract the common and variant features from the natural 

language requirements can be arduous and error-prone. In 

addition, a simple survey conducted in [1] revealed that the 

unavailability of support mechanism and the nonexistence of 

requirements are among the important factors that hinder 

software practitioners in Malaysia from practising requirement 

reuse. This raises the need to have at least a semi-automated 

extraction process towards publicly available requirements, 

which can effectively assist the requirements reuse process.   
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In the context of SPL, few authors have addressed the 
solution to this problem. For example, to assist requirements 
reuse, Niu and Easterbrook [2] were concerned with the verb-
direct object to construct functional requirements profile. Yet, 
this approach is only suitable for organisations that already 
own accumulated software requirements. Some other forms of 
natural language requirements that exist (product reviews, 
online product descriptions, use cases, scenarios, etc.) are not 
suitable in the case of verb-direct-object extraction. In [3], the 
ARBOCRAFT tool uses the collection of requirement 
documents and merges them to create a single system 
description. Using Hierarchical Agglomerative Clustering, 
HAC algorithm, the tool produces a hierarchy of features, 
which are clusters of requirements. Both examples above 
assume organisations to have complete existing requirements 
that are easily accessible, in which are not applicable to all 
organisations. In a more recent research in requirements reuse 
for SPL, publicly available requirements such as online 
product reviews[4], brochures[5], or product descriptions[6] 
are mined for reuse due to the non-existence or unable to reach 
the actual requirement documents in SPL development.  

Applying the HAC, Ferarri et al. used nouns or acronyms 
to extract common and variant features from publicly available 
product brochures [5]. They were interested in the features that 
represented components of the product rather than the 
functionalities of the product which appeared in [2] & [3]. In a 
another work that appears in [4], feature descriptors from 
product summary listed in Softpedia were used as the input to 
the feature extraction process and Incremental Diffusive 
Clustering was used in the clustering process.    

Inspired by [5] & [4], we will add a contribution to the 
feature extractions from natural language requirements for 
reuse in terms of identifying similar requirement documents 
from online product reviews as a first step towards 
requirements reuse. Our work employed the technique called 
Latent Semantic Analysis (LSA) that is followed by clustering 
algorithms. In Software Engineering area, various authors 
used the LSA towards various software artefacts as appeared 
in [7], source code [8], and requirements [9] & [3]. For 
example, Marcus and Maletic in [8] used LSA to identify the 
traceability links from system documentation to programme 
source code. In addition, LSA and Vector Space Model 
(VSM) were used to identify common features from 
requirement documents, as appeared in [3], [10], and [9].   

Clustering algorithms has been used for grouping similar 
text [11][12][13]. For the experimental purposes, we use the 
K-Means and Hierarchical Agglomerative Clustering 
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algorithm to group similar requirement documents, in our case 
textual requirements existed in product review form. 

In this paper, we will describe our experiment of 
hybridizing the LSA and clustering algorithms (LSA+K-
Means and LSA+HAC) to identify similar requirement 
documents. Section II describes the method used in the 
experiment. In Section III, the result obtained from the 
experiment will be presented and discussed, and finally 
Section IV will conclude the paper. 

II. Method 
Our work is separated into five phases: Fetching Product 

Descriptions from Internet, Text Pre-processing, Term-
Weighting, Identifying Similar Requirement Documents and 
Clustering Similar Requirement Documents. The following 
subsections describe each of the phases involved in the 
experiment.   

A. Fetching Product Descriptions from 
Internet 
In Phase 1, product descriptions were fetched from the 

internet. We have used http://www.toptenreviews.com as the 
site to seek for the product descriptions. For initial experiment 
purpose, 27 product descriptions were randomly fetched from 
this website on children learning software, and downloaded 
into multiple text files.  

B. Text Pre-processing 
In this phase, each document has undergone the pre-

processing using Python 2.7 and data cleaning in MSExcel.  

TABLE I.  TEXT PREPROCESSING 

Step Activity 

Step 1 To tokenize sentences into words 

Step 2 To remove Stop Words 

Step 3 To lemmatize words 

Step 4 To count the term occurrences 

 

Processes in TABLE I is modelled in Python 2.7. Sentences 

are broken down into words via tokenisation process, followed 

by stop words removal. Stop words are words that occur 

frequently in a text but do not provide any added value if 

included. These words include “is”, “are”, “was”, “in”, “of”, 

etc., accomplished by applying the following code (Figure 1): 
raw=raw.lower()   

words = re.findall(r'\w+', raw,flags = re.UNICODE | 

re.LOCALE)  

important_words=[] 

for word in words: 

   if word not in stopwords.words('english'):  

   important_words.append(word) 

   important_words = filter(lambda x: x not in  

stopwords.words('english'), words)  

Figure 1. Removing stopwords in Python 

 

Lemmatisation is a process to group together the different 

inflected forms of a word so they can be analysed as a single 

item. For example, a word “learning”, “learned”, and “learns” 

will be grouped together as “learn”. Lemmatisation reduces 

the word into its canonical form. In this work, we are 

interested to see nouns because nouns can depict a feature. 

Features are represented by vector (term frequency t1 in 

document n), for example: 

 
VDn= (tf(t1,Dn),tf(t2,Dn),tf(t3,Dn),…tf(tn,Dn)) 

 

Each dimension of document vector is represented by the term 

in the dictionary. For example, Document 1 (D1) has the text 

in Figure 2. 

 

 

 

 

 

 

 

 

 
Figure 2. Raw text (product review) fetched from the internet 

 

After pre-processing Step 1 until Step 3, we count the 

occurrence of the words by using the Counter() method 

from TextBlob
1
 library in Python 2.7, as captured in Figure 3. 

 
for sent in stemmed_words:  

processed_words.append(l.lemmatize(sent,'n')) 

freqs=Counter(processed_words)   

#Counter method to count the occurrence of each 

lemmatized words 

x=[] 

x.append(freqs) 

wrtr.writerow(x)  #sending rows to Excel file 

Figure 3. Using TextBlob in Python to count word occurrences 

The data now are in the forms of terms and its count of 
occurrences (see Figure 4a), but need a cleaning up. The 
MSExcel functions “Text to Column” and “Paste 
SpecialTranspose” were used to clean up the data for each 
of the documents (see Figure 4b). Results from preprocessing 
stage were saved into spreadsheets. Figure 4 presents a 
snapshop for a sample of extracted terms from D1. 

 

 

 

 

a) Raw output in Python  

 

 

 

 

b) Terms stored in Excel 

Figure 4. Extracted terms  

*this process is repeated for n number of documents  

                                                           
1
 http://textblob.readthedocs.org/en/latest/api_reference.html 

http://www.toptenreviews.com/
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C.  Term-weighting (tf-idf) 
The next step (Phase 3) is to calculate the term weighting 

in each of the documents. For this case, the spreadsheets 

consisting collection of terms and its occurrences in each 

document are merged. This produces the term by document 

matrix, in which can also be seen as vector. Vector Space 

Model (VSM) is an idea originated in [14] describes algebraic 

model representing textual information as a vector; the 

components of this vector could represent the importance of a 

term (term frequency) or even the absence or presence of it in 

a document. In VSM, terms that occur in documents are 

represented as vector of numbers. The original term 

occurrence will record how many times each term occurs in 

each of the documents. 

The tf-idf stands for term frequency-inverse document 

frequency. The tf-idf weight is a weight used in information 

retrieval and text mining, used to evaluate how important a 

word is to a document in a collection. The importance 

increases proportionally to the number of times a word 

appears in the document but is offset by the frequency of the 

word in the collection [15].  

D. Document Similarity Identification 
In Phase 4, the tf-idf values were obtained by a 

function in MATLAB against the term-document matrix to 

create a vector space model representation. Vector space 

representation can be used for information retrieval, 

classification, clustering, and more. For our case, at this step 

we are going to perform the LSA to determine document 

similarity before we can cluster the similar documents.  

SVD computation in LSA is what distinguishes the LSA 

from the more traditional VSM. SVD computation reduces the 

dimension of the document so that only relevant vectors are 

considered, while the traditional VSM uses the original 

dimension of the document which makes it less effective than 

LSA. Moreover, VSM uses the keyword matching techniques 

as compared to concept-based techniques that are applied in 

LSA. The detailed explanation of LSA implementation with 

the SVD calculation is available in [16]. Singular Value 

Decomposition (SVD calculation) was applied to reduce the 

dimension of matrix representation to three different matrices: 

S, U, and V. In MATLAB R2011a, the following command is 

used to decompose the term-by-document matrix into matrices 

S, U, and V: 

 [S U V] = svd(A) 

Then, matrix V was transposed to be VT. By keeping the 

dimension to lower dimensions, the SVD computation should 

bring together the terms with similar co-occurrences. Thus, in 

our experiment, rank 2 approximation was implemented, so 

that the first two columns of matrix U and V are kept: 
 

 Uk=U(:,1:2) 

 Vk=V(:,1:2)   

As a result, rows in Vk contain the coordinates of individual 

document vectors. These coordinates when projected to an x-y 

plane will indicate the position of all documents in the 

problem space (See Figure 5). Document that are far apart 

indicate the dissimilarities. 

E. Clustering Similar Documents 
In the clustering stage (Phase 5), similar documents are 

grouped together using two clustering algorithms: the K-
Means and the Hierarchical Agglomerative Clustering 
algorithms.  

1) K-Means clustering 
The K-means algorithm is a commonly used clustering 

algorithm with the aim to optimise an objective function (the 
distance) that is described by the equation: 

  ∑∑  (    )
    

 

   

 

Equation (1) 

mi is the centre of cluster Ci, while d(x,mi) is the Euclidean 
distance between point x and mi. The following is the 
algorithm for K-means [17]: 

1. Set a fixed number of clusters, c. 

2. Randomly pick up a cluster centre.  

3. Assign all points in the dataset to the 

cluster whose centre is the nearest (closest 

centroid). 

4. Recompute the centres for each centroid. 

5. Repeat the process in steps 3 & 4 until the 

centres stop changing. 

  

Although K-Means was pronounced to be one of the 
simplest clustering algorithms and efficient, there are still 
problems that exist with the k-means clustering. The obvious 
one is that the need to know the number of clusters in advance. 
Additionally, the k-means algorithm tends to go to the local 
minima that are very sensitive to the starting centroid location. 
A scatter plot can be produced to view the K-means clustering 
result. 

2) Hierarchical Agglomerative Clustering 
To compare the clustering result, we used HAC to group 

similar product reviews. 

HAC was reported to produce better clustering quality [18] 
[19] as compared to K-means, especially for building 
document hierarchies. Hierarchical technique produces a 
series of nested sequence of partitions, starting with a single, 
all-inclusive cluster at the top which is then split into 
subclusters at the bottom.  

The following is the algorithm for HAC
2
: 

1. Identify the similarity between all pairs of 

documents and present it in a square form (in 

which ij
th
 entry gives the similarity between the 

i
th
 and j

th
 document).  

2. The most similar document (closer distance 

value) will be merged to form a cluster.  

3. The similarity matrix will be updated to 

reflect the pairwise similarity between the 

newly formed cluster and the original documents. 

4. Steps 2 and 3 will be repeated until only a 

single cluster remains. 

                                                           
2 Complete linkage was used as the cluster distance measure for HAC 
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A dendogram is plotted to indicate the result of HAC (See Fig. 
7).  

III. Results and discussions 
We have experimented the method described in Section II 

towards 27 documents of online product reviews taken from 

toptenreviews.com. The randomly selected product reviews 

came from three different product lines in the domain of 

children educational software: Preschool Learning Software, 

Algebra Learning Software, and Creative Writing Software. 

TABLE II shows the number of documents and terms 

extracted. 
TABLE II.  DOCUMENTS RETRIEVED FOR THE EXPERIMENT 

Software Category No. of documents *Total terms 

Preschool Learning 10 795 

Algebra Learning 7 574 

Creative Writing 10 835 

Total 27 2204 

*selected terms after the pre-processing stage 

a) Similar Documents 
All selected documents are projected on the document space, 

after applying the LSA algorithm towards the tf-idf terms 

weights. As a result, the Vk matric in LSA shows the position 

of each document in the problem space (the coordinates). The 

cosine similarity calculation was also applied towards the 27 

documents to confirm the distance between each coordinate 

produced by LSA. From the plot in Figure 6, documents that 

are far apart imply dissimilarity in which D16 and D25 are the 

most obvious ones.  

a) Cluster of Documents 
We then applied the K-Means clustering by initialising 5, 6, 

and 8 clusters respectively. We then compared the K-Means 

cluster results with the result produced by the HAC algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Position of documents in the problem space 

 

The results from both clustering algorithms indicate that D16 
and D25 fall apart from other documents as well, while with 8 
clusters, k-means discriminate D13, D16, and D25 (TABLE 
III). Figure 6 and Figure 7 illustrate the clustering results 
produced by both algorithms. 

 

TABLE III.  CLUSTERING RESULTS AFTER APPLYING K-MEANS AND HAC 

K-Means HAC 

C1 

D1,D2,D6,D7,D8,D9,D10

,D18,D19,D20,D23,D26 C1 

D7,D10,D6,D8,D20,D

23,D26 

C2 D3,D24 C2 D1,D2,D9,D18,D19 

C3 D11,D12,D17 C3 D3,D24 

C4 D4,D5,D21,D22,D27 C4 D11,D12,D17 

C5 D14,D15 C5 D4,D5,D21,D22,D27 

C6 D13 C6 D13,D14,D15 

C7 D25 C7 D16 

C8 D16 C8 D25 

 

 

 

 

 

 

 

Figure 6. Clusters produced by K-Means algorithm 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Clusters produced by HAC algorithm 

 

a) Evaluation of Cluster Quality 
We used the Average Distance of Documents to cluster 
Centroid (ADDC) to evaluate the compactness of clusters 
produced by both algorithms as an internal quality measure. 
This same measure was also used in [11] and [20] for data 
clustering problems. 

ADDC as the Internal Quality Measure 

The following formula is used to obtain the ADDC value, as 
also used in [11] and [20]: 

   

∑ {
∑  (      )
  
   

  
}

  
   

  
 

     Equation (2) 

where:     indicates the jth column vector which belongs to cluster i, 

    denotes the centroid vector of the ith cluster, 

  (     ) is the distance between data vector     and the cluster 

centroid   ; 
                    is the number of documents which belongs to the cluster   ; and 

                   stands for the number of clusters 
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The lower ADDC value obtained indicates a better clustering 
quality. As for measuring an external quality, entropy was 
used to measure the “goodness” for un-nested clusters. The 
best entropy is obtained when each cluster contains exactly 
one data point.   

TABLE IV.  PERFORMANCE COMPARISON WITH REGARD TO CLUSTER 

COMPACTNESS (ADDC VALUE) 

 ADDC value 

LSA+K-means LSA+HAC 

Cosine  4.0410 3.0686 

Euclidean 3.1261 2.0521 

A good cluster is the one with minimised ADDC value. We 
used two distance measures for comparison purposes (Cosine 
and Euclidean). Table IV indicates the ADDC value 
comparison with regard to the cluster compactness. Clustering 
solution produced by LSA+HAC produces a lower ADDC 
value (better cluster), which means that objects within clusters 
produced by HAC algorithm are more related as compared to 
the one produced by K-Means algorithm.     

Entropy as the External Quality Measure 

Entropy is a metric that measures how the various semantic 

classes are distributed within each cluster. The smallest 

possible value for entropy is 0.0, which occurs when all 

symbols in a vector are the same, which means a perfect 

clustering solution. We adopted Shannon’s Entropy 

calculation as follows: 

 ( )  ∑  (  )
 
        (  (  ))     Equation (3) 

where: 

     n = number of clusters 

     P(xi)=probability that a member belongs to class xi 

For the entropy value, our experiment indicates that LSA+K-
means produce slightly better entropy value (2.403) as 
compared to LSA+HAC (2.7408). However, when comparing 
our entropy result with the one reported in [9], our entropy 
values were higher than theirs. The study in [9] used 
requirement or specification documents which were validated, 
but in our case we used the online product review that is raw 
and un-validated. This could explain the huge difference 
between entropy values obtained. 

From the experiment conducted, we observe that both 
clustering algorithms discriminated almost similar documents 
that are not related (refer Table 3). Although product 
descriptions taken from the toptenreviews.com are already 
domain specific, our experiment indicated that there are still 
documents that are dissimilar.  

As for evaluating the clustering quality, the LSA+HAC 
produces a better ADDC value for the internal cluster quality, 
taking the consideration to use the Cosine and Euclidean 
distance measure in the ADDC formula. For both distance 
measures, LSA+HAC produces better internal cluster quality. 
This is similar with the result obtained by Cui et al. in [11] in 
their experiment. Authors in [9] used HAC + LSA to compare 
the performance with HAC + VSM. Their purpose is to 
compare the effect of adopting LSA and VSM that is 
combined with HAC clustering. The result from their 

experiment indicated that the use of HAC + VSM produced a 
lower entropy value, in which it outperformed the algorithm 
that uses HAC + LSA. This is because LSA will only obtain a 
better performance in a larger corpus. In their case the 
experiment only used 28 and 59 requirements

3
 – a smaller 

corpus compared to ours.  

From this observation, at this moment it is not easy to tell 
which clustering algorithm is better. Obtaining good clustering 
results is always dependent on the input parameters (the data 
sets) [21]. For example, to get a good clustering result with k-
means, an optimum number of clusters to be created is needed 
to be taken into consideration: with the question to ask is what 
is the optimal number of clusters to use when applying the k-
means. To get a better view of the external cluster validation, 
we might need to add the F-measure, NMI-Measure, and 
Purity, thus compare the results obtained rather than relying on 
the Entropy alone. 

IV. Conclusion and future works 
In this paper, we have described an approach to identify 

similar requirements that appear in natural language extracted 
from online product reviews. We have used the product 
reviews obtained from the toptenreviews.com as an input to 
our experiment. We have obtained the initial result of 
implementing LSA to find similar documents, which were 
then seeded into K-means and HAC algorithm. The clusters 
produced are evaluated using average distance as an internal 
compactness measure and by using the Shannon’s entropy 
formula for evaluating the external quality measure.  

In the near future, we are going to seed a larger number of 
documents provided by the LSA into an optimisation 
algorithm, the Particle Swarm Optimisation (PSO), since this 
optimisation algorithm will not require us to specify initial 
number of clusters to use. Requirement documents that are 
clustered together will act as recommendation for 
requirements engineer prior to selecting features for a 
particular software product line. Although product 
descriptions taken from the internet are already domain 
specific, our experiment shows that there are still documents 
that are dissimilar. We believe having the initial filtering stage 
by using LSA combined with clustering can be a significant 
contribution for identifying common requirements from 
natural language requirements for reuse in the Software 
Product Lines area. 
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