

58

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

Towards Requirements Reuse: Identifying Similar

Requirements with Latent Semantic Analysis and

Clustering Algorithms
 Noor Hasrina Bakar, Zarinah M. Kasirun, Hamid A. Jalab

Abstract— Software requirements that exist in natural

language can easily be understood by various stakeholders.

However, when it comes to extracting common requirements

from the natural language requirement documents for reuse,

manual extraction process can be arduous, expensive, and very

error-prone on the results. In this paper, we describe a process of

identifying similar requirement documents for reuse in Software

Product Lines. Online product reviews were extracted and used

as the input mainly due to the scarcity of publicly available

requirement documents. Latent Semantic Analysis technique

from Information Retrieval was used to identify similar

requirement documents and filter out the unrelated ones after the

text has been pre-processed. Similar documents were then

clustered together by using K-means and Hierarchical

Agglomerative Clustering algorithm. As a result, the output from

the clustering process will be used to recommend group of related

requirement documents to be used in requirement engineering

phase for a SPL development.

Keywords— Software Engineering, Requirements Similarities,

Requirements Reuse, Software Product Lines, Latent Semantic

Analysis, Text Clustering

I. Introduction
Natural language software requirements were proven to be

more popular because these forms of documents can easily be

comprehended by various stakeholders; either from the

technical or nontechnical background. However, when it

comes to reusing requirements for a new similar system called

the Software Product Lines (SPL), the tasks to manually

extract the common and variant features from the natural

language requirements can be arduous and error-prone. In

addition, a simple survey conducted in [1] revealed that the

unavailability of support mechanism and the nonexistence of

requirements are among the important factors that hinder

software practitioners in Malaysia from practising requirement

reuse. This raises the need to have at least a semi-automated

extraction process towards publicly available requirements,

which can effectively assist the requirements reuse process.

University of Malaya

Malaysia

In the context of SPL, few authors have addressed the
solution to this problem. For example, to assist requirements
reuse, Niu and Easterbrook [2] were concerned with the verb-
direct object to construct functional requirements profile. Yet,
this approach is only suitable for organisations that already
own accumulated software requirements. Some other forms of
natural language requirements that exist (product reviews,
online product descriptions, use cases, scenarios, etc.) are not
suitable in the case of verb-direct-object extraction. In [3], the
ARBOCRAFT tool uses the collection of requirement
documents and merges them to create a single system
description. Using Hierarchical Agglomerative Clustering,
HAC algorithm, the tool produces a hierarchy of features,
which are clusters of requirements. Both examples above
assume organisations to have complete existing requirements
that are easily accessible, in which are not applicable to all
organisations. In a more recent research in requirements reuse
for SPL, publicly available requirements such as online
product reviews[4], brochures[5], or product descriptions[6]
are mined for reuse due to the non-existence or unable to reach
the actual requirement documents in SPL development.

Applying the HAC, Ferarri et al. used nouns or acronyms
to extract common and variant features from publicly available
product brochures [5]. They were interested in the features that
represented components of the product rather than the
functionalities of the product which appeared in [2] & [3]. In a
another work that appears in [4], feature descriptors from
product summary listed in Softpedia were used as the input to
the feature extraction process and Incremental Diffusive
Clustering was used in the clustering process.

Inspired by [5] & [4], we will add a contribution to the
feature extractions from natural language requirements for
reuse in terms of identifying similar requirement documents
from online product reviews as a first step towards
requirements reuse. Our work employed the technique called
Latent Semantic Analysis (LSA) that is followed by clustering
algorithms. In Software Engineering area, various authors
used the LSA towards various software artefacts as appeared
in [7], source code [8], and requirements [9] & [3]. For
example, Marcus and Maletic in [8] used LSA to identify the
traceability links from system documentation to programme
source code. In addition, LSA and Vector Space Model
(VSM) were used to identify common features from
requirement documents, as appeared in [3], [10], and [9].

Clustering algorithms has been used for grouping similar
text [11][12][13]. For the experimental purposes, we use the
K-Means and Hierarchical Agglomerative Clustering

59

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

algorithm to group similar requirement documents, in our case
textual requirements existed in product review form.

In this paper, we will describe our experiment of
hybridizing the LSA and clustering algorithms (LSA+K-
Means and LSA+HAC) to identify similar requirement
documents. Section II describes the method used in the
experiment. In Section III, the result obtained from the
experiment will be presented and discussed, and finally
Section IV will conclude the paper.

II. Method
Our work is separated into five phases: Fetching Product

Descriptions from Internet, Text Pre-processing, Term-
Weighting, Identifying Similar Requirement Documents and
Clustering Similar Requirement Documents. The following
subsections describe each of the phases involved in the
experiment.

A. Fetching Product Descriptions from
Internet
In Phase 1, product descriptions were fetched from the

internet. We have used http://www.toptenreviews.com as the
site to seek for the product descriptions. For initial experiment
purpose, 27 product descriptions were randomly fetched from
this website on children learning software, and downloaded
into multiple text files.

B. Text Pre-processing
In this phase, each document has undergone the pre-

processing using Python 2.7 and data cleaning in MSExcel.

TABLE I. TEXT PREPROCESSING

Step Activity

Step 1 To tokenize sentences into words

Step 2 To remove Stop Words

Step 3 To lemmatize words

Step 4 To count the term occurrences

Processes in TABLE I is modelled in Python 2.7. Sentences

are broken down into words via tokenisation process, followed

by stop words removal. Stop words are words that occur

frequently in a text but do not provide any added value if

included. These words include “is”, “are”, “was”, “in”, “of”,

etc., accomplished by applying the following code (Figure 1):
raw=raw.lower()

words = re.findall(r'\w+', raw,flags = re.UNICODE |

re.LOCALE)

important_words=[]

for word in words:

 if word not in stopwords.words('english'):

 important_words.append(word)

 important_words = filter(lambda x: x not in

stopwords.words('english'), words)

Figure 1. Removing stopwords in Python

Lemmatisation is a process to group together the different

inflected forms of a word so they can be analysed as a single

item. For example, a word “learning”, “learned”, and “learns”

will be grouped together as “learn”. Lemmatisation reduces

the word into its canonical form. In this work, we are

interested to see nouns because nouns can depict a feature.

Features are represented by vector (term frequency t1 in

document n), for example:

VDn= (tf(t1,Dn),tf(t2,Dn),tf(t3,Dn),…tf(tn,Dn))

Each dimension of document vector is represented by the term

in the dictionary. For example, Document 1 (D1) has the text

in Figure 2.

Figure 2. Raw text (product review) fetched from the internet

After pre-processing Step 1 until Step 3, we count the

occurrence of the words by using the Counter() method

from TextBlob
1
 library in Python 2.7, as captured in Figure 3.

for sent in stemmed_words:

processed_words.append(l.lemmatize(sent,'n'))

freqs=Counter(processed_words)

#Counter method to count the occurrence of each

lemmatized words

x=[]

x.append(freqs)

wrtr.writerow(x) #sending rows to Excel file

Figure 3. Using TextBlob in Python to count word occurrences

The data now are in the forms of terms and its count of
occurrences (see Figure 4a), but need a cleaning up. The
MSExcel functions “Text to Column” and “Paste
SpecialTranspose” were used to clean up the data for each
of the documents (see Figure 4b). Results from preprocessing
stage were saved into spreadsheets. Figure 4 presents a
snapshop for a sample of extracted terms from D1.

a) Raw output in Python

b) Terms stored in Excel

Figure 4. Extracted terms

*this process is repeated for n number of documents

1
 http://textblob.readthedocs.org/en/latest/api_reference.html

http://www.toptenreviews.com/

60

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

C. Term-weighting (tf-idf)
The next step (Phase 3) is to calculate the term weighting

in each of the documents. For this case, the spreadsheets

consisting collection of terms and its occurrences in each

document are merged. This produces the term by document

matrix, in which can also be seen as vector. Vector Space

Model (VSM) is an idea originated in [14] describes algebraic

model representing textual information as a vector; the

components of this vector could represent the importance of a

term (term frequency) or even the absence or presence of it in

a document. In VSM, terms that occur in documents are

represented as vector of numbers. The original term

occurrence will record how many times each term occurs in

each of the documents.

The tf-idf stands for term frequency-inverse document

frequency. The tf-idf weight is a weight used in information

retrieval and text mining, used to evaluate how important a

word is to a document in a collection. The importance

increases proportionally to the number of times a word

appears in the document but is offset by the frequency of the

word in the collection [15].

D. Document Similarity Identification
In Phase 4, the tf-idf values were obtained by a

function in MATLAB against the term-document matrix to

create a vector space model representation. Vector space

representation can be used for information retrieval,

classification, clustering, and more. For our case, at this step

we are going to perform the LSA to determine document

similarity before we can cluster the similar documents.

SVD computation in LSA is what distinguishes the LSA

from the more traditional VSM. SVD computation reduces the

dimension of the document so that only relevant vectors are

considered, while the traditional VSM uses the original

dimension of the document which makes it less effective than

LSA. Moreover, VSM uses the keyword matching techniques

as compared to concept-based techniques that are applied in

LSA. The detailed explanation of LSA implementation with

the SVD calculation is available in [16]. Singular Value

Decomposition (SVD calculation) was applied to reduce the

dimension of matrix representation to three different matrices:

S, U, and V. In MATLAB R2011a, the following command is

used to decompose the term-by-document matrix into matrices

S, U, and V:

 [S U V] = svd(A)

Then, matrix V was transposed to be VT. By keeping the

dimension to lower dimensions, the SVD computation should

bring together the terms with similar co-occurrences. Thus, in

our experiment, rank 2 approximation was implemented, so

that the first two columns of matrix U and V are kept:

 Uk=U(:,1:2)

 Vk=V(:,1:2)

As a result, rows in Vk contain the coordinates of individual

document vectors. These coordinates when projected to an x-y

plane will indicate the position of all documents in the

problem space (See Figure 5). Document that are far apart

indicate the dissimilarities.

E. Clustering Similar Documents
In the clustering stage (Phase 5), similar documents are

grouped together using two clustering algorithms: the K-
Means and the Hierarchical Agglomerative Clustering
algorithms.

1) K-Means clustering
The K-means algorithm is a commonly used clustering

algorithm with the aim to optimise an objective function (the
distance) that is described by the equation:

 ∑∑ ()

Equation (1)

mi is the centre of cluster Ci, while d(x,mi) is the Euclidean
distance between point x and mi. The following is the
algorithm for K-means [17]:

1. Set a fixed number of clusters, c.

2. Randomly pick up a cluster centre.

3. Assign all points in the dataset to the

cluster whose centre is the nearest (closest

centroid).

4. Recompute the centres for each centroid.

5. Repeat the process in steps 3 & 4 until the

centres stop changing.

Although K-Means was pronounced to be one of the
simplest clustering algorithms and efficient, there are still
problems that exist with the k-means clustering. The obvious
one is that the need to know the number of clusters in advance.
Additionally, the k-means algorithm tends to go to the local
minima that are very sensitive to the starting centroid location.
A scatter plot can be produced to view the K-means clustering
result.

2) Hierarchical Agglomerative Clustering
To compare the clustering result, we used HAC to group

similar product reviews.

HAC was reported to produce better clustering quality [18]
[19] as compared to K-means, especially for building
document hierarchies. Hierarchical technique produces a
series of nested sequence of partitions, starting with a single,
all-inclusive cluster at the top which is then split into
subclusters at the bottom.

The following is the algorithm for HAC
2
:

1. Identify the similarity between all pairs of

documents and present it in a square form (in

which ij
th
 entry gives the similarity between the

i
th
 and j

th
 document).

2. The most similar document (closer distance

value) will be merged to form a cluster.

3. The similarity matrix will be updated to

reflect the pairwise similarity between the

newly formed cluster and the original documents.

4. Steps 2 and 3 will be repeated until only a

single cluster remains.

2 Complete linkage was used as the cluster distance measure for HAC

61

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

A dendogram is plotted to indicate the result of HAC (See Fig.
7).

III. Results and discussions
We have experimented the method described in Section II

towards 27 documents of online product reviews taken from

toptenreviews.com. The randomly selected product reviews

came from three different product lines in the domain of

children educational software: Preschool Learning Software,

Algebra Learning Software, and Creative Writing Software.

TABLE II shows the number of documents and terms

extracted.
TABLE II. DOCUMENTS RETRIEVED FOR THE EXPERIMENT

Software Category No. of documents *Total terms

Preschool Learning 10 795

Algebra Learning 7 574

Creative Writing 10 835

Total 27 2204

*selected terms after the pre-processing stage

a) Similar Documents
All selected documents are projected on the document space,

after applying the LSA algorithm towards the tf-idf terms

weights. As a result, the Vk matric in LSA shows the position

of each document in the problem space (the coordinates). The

cosine similarity calculation was also applied towards the 27

documents to confirm the distance between each coordinate

produced by LSA. From the plot in Figure 6, documents that

are far apart imply dissimilarity in which D16 and D25 are the

most obvious ones.

a) Cluster of Documents
We then applied the K-Means clustering by initialising 5, 6,

and 8 clusters respectively. We then compared the K-Means

cluster results with the result produced by the HAC algorithm.

Figure 5. Position of documents in the problem space

The results from both clustering algorithms indicate that D16
and D25 fall apart from other documents as well, while with 8
clusters, k-means discriminate D13, D16, and D25 (TABLE
III). Figure 6 and Figure 7 illustrate the clustering results
produced by both algorithms.

TABLE III. CLUSTERING RESULTS AFTER APPLYING K-MEANS AND HAC

K-Means HAC

C1

D1,D2,D6,D7,D8,D9,D10

,D18,D19,D20,D23,D26 C1

D7,D10,D6,D8,D20,D

23,D26

C2 D3,D24 C2 D1,D2,D9,D18,D19

C3 D11,D12,D17 C3 D3,D24

C4 D4,D5,D21,D22,D27 C4 D11,D12,D17

C5 D14,D15 C5 D4,D5,D21,D22,D27

C6 D13 C6 D13,D14,D15

C7 D25 C7 D16

C8 D16 C8 D25

Figure 6. Clusters produced by K-Means algorithm

Figure 7: Clusters produced by HAC algorithm

a) Evaluation of Cluster Quality
We used the Average Distance of Documents to cluster
Centroid (ADDC) to evaluate the compactness of clusters
produced by both algorithms as an internal quality measure.
This same measure was also used in [11] and [20] for data
clustering problems.

ADDC as the Internal Quality Measure

The following formula is used to obtain the ADDC value, as
also used in [11] and [20]:

∑ {
∑ ()

}

 Equation (2)

where: indicates the jth column vector which belongs to cluster i,

 denotes the centroid vector of the ith cluster,

 () is the distance between data vector and the cluster

centroid ;
 is the number of documents which belongs to the cluster ; and

 stands for the number of clusters

D1 D2

D3

D4 D5

D6 D7 D8
D9

D10

D11

D12

D13

D14
D15

D16

D17

D18 D19
D20

D21

D22

D23

D24

D25

D26
D27

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-1 -0.5 0 0.5 1 1.5

62

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

The lower ADDC value obtained indicates a better clustering
quality. As for measuring an external quality, entropy was
used to measure the “goodness” for un-nested clusters. The
best entropy is obtained when each cluster contains exactly
one data point.

TABLE IV. PERFORMANCE COMPARISON WITH REGARD TO CLUSTER

COMPACTNESS (ADDC VALUE)

 ADDC value

LSA+K-means LSA+HAC

Cosine 4.0410 3.0686

Euclidean 3.1261 2.0521

A good cluster is the one with minimised ADDC value. We
used two distance measures for comparison purposes (Cosine
and Euclidean). Table IV indicates the ADDC value
comparison with regard to the cluster compactness. Clustering
solution produced by LSA+HAC produces a lower ADDC
value (better cluster), which means that objects within clusters
produced by HAC algorithm are more related as compared to
the one produced by K-Means algorithm.

Entropy as the External Quality Measure

Entropy is a metric that measures how the various semantic

classes are distributed within each cluster. The smallest

possible value for entropy is 0.0, which occurs when all

symbols in a vector are the same, which means a perfect

clustering solution. We adopted Shannon’s Entropy

calculation as follows:

 () ∑ ()

 (()) Equation (3)

where:

 n = number of clusters

 P(xi)=probability that a member belongs to class xi

For the entropy value, our experiment indicates that LSA+K-
means produce slightly better entropy value (2.403) as
compared to LSA+HAC (2.7408). However, when comparing
our entropy result with the one reported in [9], our entropy
values were higher than theirs. The study in [9] used
requirement or specification documents which were validated,
but in our case we used the online product review that is raw
and un-validated. This could explain the huge difference
between entropy values obtained.

From the experiment conducted, we observe that both
clustering algorithms discriminated almost similar documents
that are not related (refer Table 3). Although product
descriptions taken from the toptenreviews.com are already
domain specific, our experiment indicated that there are still
documents that are dissimilar.

As for evaluating the clustering quality, the LSA+HAC
produces a better ADDC value for the internal cluster quality,
taking the consideration to use the Cosine and Euclidean
distance measure in the ADDC formula. For both distance
measures, LSA+HAC produces better internal cluster quality.
This is similar with the result obtained by Cui et al. in [11] in
their experiment. Authors in [9] used HAC + LSA to compare
the performance with HAC + VSM. Their purpose is to
compare the effect of adopting LSA and VSM that is
combined with HAC clustering. The result from their

experiment indicated that the use of HAC + VSM produced a
lower entropy value, in which it outperformed the algorithm
that uses HAC + LSA. This is because LSA will only obtain a
better performance in a larger corpus. In their case the
experiment only used 28 and 59 requirements

3
 – a smaller

corpus compared to ours.

From this observation, at this moment it is not easy to tell
which clustering algorithm is better. Obtaining good clustering
results is always dependent on the input parameters (the data
sets) [21]. For example, to get a good clustering result with k-
means, an optimum number of clusters to be created is needed
to be taken into consideration: with the question to ask is what
is the optimal number of clusters to use when applying the k-
means. To get a better view of the external cluster validation,
we might need to add the F-measure, NMI-Measure, and
Purity, thus compare the results obtained rather than relying on
the Entropy alone.

IV. Conclusion and future works
In this paper, we have described an approach to identify

similar requirements that appear in natural language extracted
from online product reviews. We have used the product
reviews obtained from the toptenreviews.com as an input to
our experiment. We have obtained the initial result of
implementing LSA to find similar documents, which were
then seeded into K-means and HAC algorithm. The clusters
produced are evaluated using average distance as an internal
compactness measure and by using the Shannon’s entropy
formula for evaluating the external quality measure.

In the near future, we are going to seed a larger number of
documents provided by the LSA into an optimisation
algorithm, the Particle Swarm Optimisation (PSO), since this
optimisation algorithm will not require us to specify initial
number of clusters to use. Requirement documents that are
clustered together will act as recommendation for
requirements engineer prior to selecting features for a
particular software product line. Although product
descriptions taken from the internet are already domain
specific, our experiment shows that there are still documents
that are dissimilar. We believe having the initial filtering stage
by using LSA combined with clustering can be a significant
contribution for identifying common requirements from
natural language requirements for reuse in the Software
Product Lines area.

Acknowledgment

This research project is supported by Ministry of Higher

Education Malaysia, Grant # FP050 / 2013A.

References

[1] N. H. ; Bakar and Z. M. Kasirun, “Exploring Software Practitioners

Perceptions and Experience in Requirements Reuse An Survey in

Malaysia,” Int. J. Softw. Eng. Technol., vol. 1, no. 2, 2014.

3 the number of requirements (28 and 59) in this sentence means the functionality, which

only contains one or two sentences. In our case, we use 27 documents (product reviews),

where in each of the documents, usually more than five sentences are used.

63

International Journal of Advances in Computer Science & Its Applications– IJCSIA
Volume 5: Issue 1 [ISSN : 2250-3765]

Publication Date : 30 April, 2015

[2] N. Niu and S. Easterbrook, “Extracting and Modeling Product Line

Functional Requirements,” 2008 16th IEEE Int. Requir. Eng. Conf.,
pp. 155–164, Sep. 2008.

[3] N. Weston, R. Chitchyan, and A. Rashid, “A Framework for
Constructing Semantically Composable Feature Models from

Natural Language Requirements,” in Software Product Lines

Conference, 2009, pp. 211–220.

[4] H. Hariri, C. Castro-Herera, M. Mirarkholi, J. Cleland-Huang, and

B. Mobasher, “Supporting Domain Analysis Through Mining and
Recommending features from ONline Product Listings,” IEEE

Trans. Softw. Eng., vol. 39, no. 12, pp. 1736–1752, 2013.

[5] A. Ferrari, G. O. Spagnolo, and F. Dell’Orletta, “Mining

commonalities and variabilities from natural language documents,”

in Proceedings of the 17th International Software Product Line

Conference on - SPLC ’13, 2013, p. 116.

[6] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections

of informal product descriptions,” Proc. 2013 9th Jt. Meet. Found.

Softw. Eng. - ESEC/FSE 2013, p. 290, 2013.

[7] H. Kruger and P. S. Kritzinger, “Software Traceability using Latent

Semantic Analysis and Relevance Feedback.”

[8] a. Marcus and J. I. Maletic, “Recovering documentation-to-source-

code traceability links using latent semantic indexing,” 25th Int.
Conf. Softw. Eng. 2003. Proceedings., pp. 125–135, 2003.

[9] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P.
Rayson, C. Pohl, and A. Rummler, “An Exploratory Study of

Information Retrieval Techniques in Domain Analysis,” 2008 12th
Int. Softw. Prod. Line Conf., pp. 67–76, Sep. 2008.

[10] K. Kumaki, R. Tsuchiya, H. Washizaki, and Y. Fukazawa,
“Supporting commonality and variability analysis of requirements

and structural models,” Proc. 16th Int. Softw. Prod. Line Conf. -

SPLC ’12 -volume 1, p. 115, 2012.

[11] X. Cui, T. E. Potok, and P. Palathingal, “Document clustering using

particle swarm optimization,” in Swarm Intelligence Symposium,
2005. SIS 2005. Proceedings 2005 IEEE, 2005, pp. 185 – 191.

[12] E. Hasanzadeh, M. Poyan, and H. A. Rokny, “Text clustering on

latent semantic indexing with particle swarm optimization (PSO)

algorithm,” Int. J. Phys. Sci., vol. 7, no. 1, pp. 116–120, Jan. 2012.

[13] K. Chen, W. Zhang, H. Zhao, and H. Mei, “An approach to

constructing feature models based on requirements clustering,” 13th

IEEE Int. Conf. Requir. Eng., pp. 31–40, 2005.

[14] G. Salton, A. Wong, and C. S. Yang, “Vector Space Model for

Automatic Indexing,” Commun. ACM, vol. 18, no. 11, 1975.

[15] G. Salton and C. Buckley, “Term Weighting Approaches in

Automatic Text Retrieval,” Inf. Process. Manag., vol. 24, no. 5, pp.
513 – 523, 1988.

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, and T. K. Landauer,
“Indexing by Latent Semantic Analysis,” J. Am. Soc. Inf. Sci., vol.

41, no. 6, p. 391, 1998.

[17] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining,

Adaptive C. MIT Press, 2001, p. 461.

[18] R. C. Dubes and A. K. Jain, Algorithms for Clustering Data. Engle-

wood Cliffs, N.J.: Prentice Hall, 1988.

[19] M. Steinbach, G. Karypis, and V. Kumar, “A Comparison of

Document Clustering Techniques,” in Proc. KDD-2000 Workshop
TextMining, 2000.

[20] van der D. Merwe and A. Engelbrecht, “Data clustering using
particle swarm optimization,” in Proceedings of IEEE Congress on

Evolutionary Computation 2003 (CEC 2003), 2003, pp. 215 – 220.

[21] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal

versus External cluster validation indexes,” Int. J. Comput.

Commun., vol. 5, no. 1, 2011.

About Author (s):

Noor Hasrina Bakar received her BSc (Information

Technology) from Marquette University in

Milwaukee, Wisconsin in 1998, and MSc (Computer
Science) from University of Malaya in 2009.

Currently, she is a full-time PhD student in Software

Engineering Department at the Faculty of Computer
Science and Information Technology, University of

Malaya. Her current research is in the area of feature

extractions from requirements for reuse in software
product lines.

Zarinah Kasirun is an Associate Professor in

Software Engineering Department at the Faculty of
Computer Science and Information Technology,

University of Malaya. Her research interests

include requirements engineering, requirements
visualization, software metrics and quality, and

software product line engineering.

Hamid Jalab received his B.S. degree in electrical

engineering from the University of Technology,
Baghdad, Iraq, and his M.S. and Ph.D. degrees in

computer system from the Odessa National

Polytechnic University, Odessa, Ukraine. He
currently works as a Senior Lecturer in the Faculty of

Computer Science and Information Technology at

the University of Malaya, Kuala Lumpur, Malaysia.
His research interests include mathematical

computing, signal processing, digital image

processing, wavelets, neural networks, and image
retrieval.

