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Abstract—This paper presents a new group of kernel 

functions – spline kernels. This group of kernels connects 

advantages of Epanechnikov kernel and a multiple 

differentiability, required in several aspects of building kernel 

estimators. 
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I.  Introduction 
Estimation of the regression function is a very common 

problem in machine learning [14][16]. Its aim is to find the 
hidden dependencies between known and modelled variables. 

These methods are divided into two groups: parametric and 
nonparametric. In the first group we are given a data and a 
class of function, in which we will be searching for the best fit 
into the data. In other word – the pattern with a finite set of 
parameters is given (e.g. the linear function requires setting or 
estimation of two parameters) and the aim of parametric 
regression is to find the best values of these parameters. In a 
case of nonparametric regression no pattern is given. 

The most popular methods of nonparametric regression are 
spline functions [2][5], additive (and generalized additive) 
models [8], LOWESS algorithm 0, Support Vector Machines 
[13] and kernel estimators [11][18].  

In this paper the new model of local kernel algorithms 
(with the limited domain where it takes non-zero values) is 
presented. Next section presents the backgrounds of 
nonparametric kernel regression estimator with a special 
attention paid to the method of selection of smoothing 
parameter. Then the definition and construction of spline 
kernels is described. It is followed by the part with the analysis 
of statistical properties of newly created kernels. The paper 
ends with a short discussion. 

II. Nonparametric Regression 
Function Estimation 

Nonparametric methods of regression function estimation 
can be described as a kind of black-box models. It is due to the 
fact, that we are given an answer of the model for a given 
input, but the nature of giving this answer cannot be 
interpreted. In this section kernel estimators – a very popular 
branch of nonparametric methods – are presented with a short 
overview of methods of smoothing parameter calculation. 
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A. Kernel Estimators 
Kernel estimator is generally a mapping function 

 ̃( )      of the following form: 
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where   is the number of training objects and   is an operator 
called a smoothing operator. Most popular kernel estimators 
are Nadaraya-Watson [11][18], Stone-Fan 0, Priestley-Chao 
[17] and Gasser-Mueller 0. 

Kernel function must fulfils the following conditions: 
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One of the most popular kernel function is an 
Epanechnikov kernel 0: 

 ( )      (    )  

which is one of the representatives of the kernels class:  
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B. Smoothing Parameter 
It is very known in the literature that the selection of the 

smoothing parameter value has much bigger influence on the 
final regression results that the selection of a kernel function. 

There exist a lot of methods of a smoothing parameter 
calculation. Method based on the approximation of the 
minimal regression error leads to two following result [12]: 
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where  ( ) and   
  are the following function statistics: 
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It causes some problems, because in the denominator of 
the fraction we need to know the form of the second derivative 
of the estimated (not known yet) function. Several 
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simplification (details can be found in [12]) lead to two 
formulas: 

        ̃                    ( ̃       ̃)        

where  ̃  is an estimator of the standard deviation of data 

sample   and   ̃ is its interquartile range. 

Amongst other method of smoothing parameter calculation 
maximal smoothing principle [15], cross validation methods 
[9]or nested methods [6] should be mentioned. 

A lot of mentioned methods use the derivatives of kernel 
functions or kernel estimators of derivatives of estimated 
function. This leads to the problem of assuring kernel 
functions to be many times differentiable. 

III. Spline Kernels 
The main idea of introducing spline kernels is to make it 

possible to use the advantages of Epanechnikov (and other 
polynomial kernels) with the property of their differentiability. 
At each of a kernel domain an original kernel equation is 
replaced with another polynomial, which provides the final 
kernel continuity and differentiability. 

Figure 1 presents the graphical illustration of this idea. 

 

Figure 1.  The idea of spline kernel with the cut at α=0.8: original 

Epanechnikov kernel (dotted), level of the cut (dashed) and the polynomial 
introduction (solid). 

In this part of the paper two steps of defining a spline 
kernel are presented. First step (construction) consists of 
choosing the degree of the polynomial ant the point of the 
kernel splining (cut) while the second helps to assure one of 
the conditions of kernel function to be fulfilled. 

A. Construction 
As it was mentioned, one of the popular kernels family is 

as follows: 
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(      )          [    ]                            

                                (     )  (   )      

 (1) 

To assure the continuity and differentiability (demanded 
number of times) the equality of polynomial and kernel 
derivatives will be required. In the case of this family of 
kernels its derivative value can be expressed with the kernel as 
follows: 
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With the assumption of the 3
rd

 degree polynomial  ( )  
               the following conditions must be 
satisfied: 

{
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which leads to the system of equations: 

{
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The solution of this system of equations for the cut level 
         (solved with the Matlab® software) is: 

,
                 

                   
  

At this point we have a definition of a spline kernel of this 
form: 
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In the presented case its form can be presented as: 
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B. Scaling 
Due to the modification of the kernel equation on the ends 

of its domain, it is no longer integrable to one. Then it requires 
a scaling parameter i, that is dependent of the α. The scaled 
kernel equation will be as follows: 

   ( )  {

               | |   
 ( ) ( )             

 ( ) (| |)      | |   
  

This scaling factor can be calculated from the following 
equation: 
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For the once-differentiable kernel with the α=0.95 the 
scaling factor is: 

 (     )  
   

       
           

what leads to the final form of the once-differentiable 
spline kernel: 
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IV. Statistical Properties of Spline 
Kernels 

Theorem 1: A spline kernel, generated on the basis of the 
kernel K, is an asymptotically statistically equivalent to the 
kernel K with    . 

As the statistical equivalence of two kernel functions, two 
conditions are considered, due to their influence on methods of 
smoothing parameter estimation:  ( )  and   

 , which 
definitions are presented in the section II.B. 

The proof of this theorem will be divided into two proofs – 
each one for a mentioned parameter. These proofs are based 
on the following lemmas ( ( ) is a polynomial): 
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Lemma 4.        ( )     

In proofs, numbers preceded with # marks the used lemma. 

Theorem 1.1 – Thesis: 
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Theorem 1.2 – Thesis  
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Proof: 
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V. Discussion and Conclusions 
In this paper the new family of kernel functions was 

presented. The developed kernels are dedicated for methods of 
kernel regression which requires higher orders of kernel 
function derivatives.  
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