

36

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

DETIboot: A fast, wireless system to install operating

systems on students laptops
 Carlos Faneca, José Vieira, André Zúquete, João Cardoso

Abstract—This work presents a system conceived to deploy

temporary Linux systems into an unlimited number of client

hosts using a Wi-Fi source station (DETIboot server). The

ultimate goal of this system is to provide a simultaneous and just-

in-time installation of a custom Linux distribution on several tens

of laptops for being used in classes or exams. DETIboot uses a

server to endlessly broadcast a custom Linux distribution at

maximum Wi-Fi transmission speed, using an ad-hoc network

topology to reach all nearby target systems wishing to install it.

To deal with packet losses and avoid feedback from the client

hosts, we used Fountain Codes. With these codes, client hosts can

start at any time the reception and the expected time for

completing the download is mainly a function of the number of

codewords (wireless frames) effectively received. Field tests were

done to evaluate the performance of our system and in average it

took around 69 seconds to download a custom Linux image

(based on Slax) with a size of 225 MiB.

Keywords—operarating systems, ad-hoc networks, broadcast,

fountain codes, LT codes

I. Introduction
With the improvements in computer technology in the last

years, laptops have become powerful enough to satisfy the
storage, communication and processing needs of most of the
users with the advantage of the mobility, which is not possible
with desktops. So, nowadays, personal computers are mostly
laptops instead of desktop computers.

Although many students prefer to use their own laptops in
university labs, most of the universities still equip them with

desktop computers, which is a waste of resources in
maintenance and energy consumption. The main reasons to
maintain this situation are twofold, i) some software licensing
depends on specific machine characteristics (e.g. IP address)
and ii) some exams are performed on the desktop computers.

For the exams, teachers have privileged rights over the
desktop operating system, giving them the possibility to
restrict the access of the students to external sources of
information. In general, this is not possible to enforce when
student’s laptops are used.

To overcome these issues we considered an approach
where, in particular scenarios, the operating system of the
students’ computers is provided by teachers. With this
approach, teachers could either (i) deploy licensed software on
operating systems that could prevent its irregular exploitation
outside the classroom or (ii) deploy hardened operating
systems containing only the facilities and tools required to
participate in an exam, and nothing else (i.e., following the
principle of least privilege [1]).

To deploy the same operating system in many different
hardware platforms is by itself a challenge, but the current
operating system installation procedures are very powerful on
this task and usually handle it transparently to users (i.e., with
very few technical questions). On the other hand, many
installation problems typically arise when operating systems
have to deal with uncommon, external devices and not with
the hardware that one would ordinarily find inside laptops.

Another more difficult requirement is that students should
not be able to get the operating systems in advance because
that would give them the advantage to study it and the
possibility to overcome the deployed protection mechanisms.
If possible, operating systems should be downloaded to client
hosts just-in-time, i.e., immediately before being required, and
should not remain in the client host upon being used. This
poses a challenging requirement: how can we transfer an
operating system installation image to tens or hundreds of
machines in a very short time frame (say, a few minutes) to
enable this approach to be practical for classes and exams?

DETIboot [2] was designed to solve this problem, by
giving to the teachers the opportunity to easily deploy a
custom Linux operating system, configured by their own, to
run in students laptops. DETIboot uses a server to endlessly
broadcast the operating system over an ad-hoc network, using
Fountain Codes to deal with packets losses on the Wi-Fi
channel and avoid the use of a feedback channel from clients
to packet acknowledgment. A generic, first-stage boot
operating system was also developed for receiving the
transmitted file and boot then from it. Both operating systems
run from a RAM disk and at the end they vanish without
leaving any trace on the student’s laptop. In this paper we

Carlos Faneca

University of Aveiro / IEETA

Portugal

José Vieira

University of Aveiro - Department of Electronics, Telecommunications

and Informatics / IEETA

Portugal

André Zúquete

University of Aveiro - Department of Electronics, Telecommunications

and Informatics / IEETA

Portugal

João Cardoso
University of Aveiro / IT

Portugal

37

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

(C2) BIOS/UEFI

(C3) Loads bootstrap

(C5) Waits for encoded packets

(C6) File was decoded?

Yes

(C7) Saves the Operating System on
Disk RAM

(C8) Loads the Operating System
received with the kexec tool

No

(C1) USB
stick with

the
bootstrap

(C4) Connects to the ad-hoc network

(S1) Configures the ad-hoc
network

(S2) Send encoded packets

Figure 1. Block diagram of the architecture of the DETIboot system, with the high-level steps carried on by each participant.

provide a high-level description of DETIboot (further details
can be found in [2]) and we show practical results achieved
with a low cost setup on a typical class room.

II. The DETIboot system

A. General architecture
DETIboot is a system that enables a quick, temporary

deployment of a Linux live operating system through a Wi-Fi
network [2]. The architecture of the DETIboot system is based
on a client-server model, where there is a node on the network
(server) responsible for transmitting the operating system. The
remaining nodes in the network act as clients; they receive the
operating system transmitted by the server and boot it after the
transfer is completed.

Figure 1 shows a block diagram with the architecture of
the DETIboot system and the high-level steps carried on by
each participant.

B. Network
As Linux images can have several hundreds of megabytes,

it is desirable for DETIboot to have a high transmission rate.
In order to achieve this, we started by minimizing the
requirements and responsibilities of the server.

The use of the Wi-Fi network in structured mode would
have meant that the server would act as an Access Point, being
responsible for the overall management of the network, such
as IP management and client registration. Thus, it was decided
to use an ad-hoc network, freeing the server from these tasks.
This way, it is only responsible for broadcasting the operating

system to all nearby clients. This network mode enables the
server to communicate with multiple clients simultaneously
and allows clients to enter and leave the network at any time
without disturbing the transmission of the server, since there is
no need for an explicit network association.

Finally, DETIboot does not even uses IP, since there is no
need to route packets from the source (server) to the
destination (clients); all intended clients are meant to be within
the Wi-Fi radio range. Therefore, DETIboot uses directly
broadcast link-layer frames (with an unused EtherType code)
to transmit operating system images.

The conventional Wi-Fi broadcast data transmission is
held to the minimum rate (1 Mbit/s), in order to maximize
compatibility with all system and increase the reception
probability (because received frames are not acknowledged).
This transmission rate is defined by the “basic rate” and we
had to modify it, since our system is intended to broadcast at
the maximum possible rate. This modification can be
accomplished in a Linux system at the network interfaces’
level. However, when we forced the “basic rate” set to the
802.11g maximum speed (54 Mbit/s), we verified that we
could not get it with many Wi-Fi interfaces (and their drivers);
instead, they forced a lower maximum speed, nevertheless
higher than 1 Mbit/s. This occurs because the standard
specification for ad-hoc network mode is fairly free, being the
only requirement to not interfere with structured networks.
Consequently, each chipset has its own properties according to
the manufacturer; it is even possible that the same Wi-Fi
interface exhibits different behavior while using the same
driver but different versions of Linux.

Table I shows the maximum effective data rate achieved
with DETIboot with several PCI and USB Wi-Fi interfaces.

38

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

Figure 2. ODROID-U3 as a DETIboot server.

The values presented are measured by the broadcasting
application, not by clients.

TABLE I. WI-FI BROADCAST SPEEDS ACHIEVED WITH DIFFERENT PCI
AND USB NETWORK DEVICES (MEASURED BY THE TRANSMITTER).

Model Type Chipset Driver Transmission

MicroNext USB --- RTL8192CU 1.6 Mb/s

LMtec USB --- RTL8192CU 1.6 Mb/s

MicroNext mini USB RLT8176 RTL8192CU 1.6 Mb/s

LMtec 300Mbs USB RTL8191s R8712u ---

Belkin N150 USB RTL8191s R8712u ---

Wi-Pi USB --- RT2800usb 33 Mb/s

AR5007 PCI AR5007 --- 33 Mb/s

RTL8187b PCI RTL8187b RTL8187b 43 Mb/s

Thomson TG123g USB RTL8187b RTL8187b 43 Mb/s

For the setup that we will evaluate in this paper we chose a
small, portable and powerful host for acting as DETIboot
server (ODROID-U3). Since it lacks a Wi-Fi interface, we
chose to explore it with a Wi-Pi USB interface (intended for
the Raspberry Pi). We didn’t use the Thomson 123g because it
is no longer being produced.

C. Server
The role of the DETIboot server can be performed by any

Linux-based computer with a Wi-Fi interface since the “basic
rate” can be configured for high speed broadcast on an ad-hoc
network. Due to its low cost (65 US$), high computing power
and excellent portability, we chose the ODROID-U3 system

1

(1.7 GHz Quad-Core ARM processor, 2 GiB of RAM, see
Figure 2), running the Xubuntu 13.10 Linux distribution.

In the rest of this section we will describe the tasks
performed by the DETIboot server, as shown in Figure 1.

1) (S1) Configures the ad-hoc network
The first operation performed by the server is to configure

the ad-hoc network to broadcast the operating system. When
creating the ad-hoc network, the server first scans the
transmission medium in order to detect surrounding networks
and automatically chooses the Wi-Fi channel for the DETIboot
system. The channel choice is important, since we want to use
a channel that will not interfere with existing nearby Wi-Fi
networks (since the server will perform a very aggressive
medium occupancy and performs better on a free channel).
The server’s channel selection policy is to choose a free
channel, preferably, surrounded by the less powerful detected
channels. Finally, the “basic rate” of the Wi-Fi interface used
in the ad-hoc network is set to the maximum possible rate
(54 Mbit/s).

1
 www.hardkernel.com

2) (S2) Send packets with codewords
To broadcast the operating system image (a file), a

program was developed that receives as input the file name
and the output Wi-Fi interface. This program creates
codewords from file blocks (symbols) using Fountain Codes
[3]–[6] and broadcasts them (encapsulated) in link-layer
packets. Codewords are XOR sums of one or more symbols,
where the number of symbols and the symbols themselves are
randomly chosen.

The DETIboot server transmits random codewords
continuous and endlessly, allowing clients to initiate their
download at any time, as they only need to receive enough
codewords to recover the original file. Furthermore, this type
of coding deals well with packet losses without the need for a
feedback channel. However, clients need to receive, on
average, 5% more codewords than the total of symbols that
composes the original file (depending on the settings used for
the creation of the codewords).

D. Client
DETIboot clients will typically be laptops, which receive,

and boot from an operating system transmitted by the
DETIboot server. The minimum requisites to be a client of the
DETIboot system are: it should have a Wi-Fi card and
sufficient RAM to run the entire operating system on it. The
size of the RAM depends on the operating system that is being
broadcast, but 2 GiB of RAM is the minimum required. For
keeping the client laptop unchanged, the image of the received
operating system is never stored on disk.

Clients’ laptops tend to be a very heterogeneous set of
machines with 32 or 64-bit architectures, different processors
and instruction sets, not to mention a plethora of peripherals,
network cards, keyboards etc. To maximize the compatibility,
we used a custom Linux operating system with all possible
drivers in the image in order to increase the probability of the
client to work without any problems.

For the USB stick with a first-stage bootstrap system we
only have to maintain them with the wireless network drivers
updated, having the possibility, if needed, to have different
USB sticks customized for each laptop model.

Now, we will describe the process performed by a
DETIboot client, as shown in Figure 1.

39

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

1) (C1) USB stick with the bootstrap
system

To use DETIboot, a client has first to boot from an USB
stick with a first-stage bootstrap system, that contains only the
startup programs and the Wi-Fi drivers required to receive an
operating system image from a DETIboot server. Client
owners can create their own USB stick from an image
available online.

2) (C2) BIOS/UEFI
The bootstrap is prepared in order to perform a boot from a

Master Boot record (MBR) or Enhanced Firmware Interface
(EFI), depending on the client laptop hardware. The client
only has to change the “boot order” in its BIOS or UEFI to
boot from the USB stick, or directly enter the “boot from”
menu and choose the USB stick.

3) (C3) Loads bootstrap system
In this step, as the name implies, the DETIboot bootstrap

system starts, being in charge of: connecting to the ad-hoc
network of a DETIboot server; receive codewords and locally
reconstruct the operating system file being transmitted; and
finally reboot from the image just downloaded.

4) (C4) Connects to the ad-hoc network
The client ad-hoc network configuration consists in joining

the ad-hoc network of the DETIboot server. Note that this is
just a matter of local configuration, there is no traffic involved.

5) (C5) Waits for codeword packets
After joining the ad-hoc network, the client immediately

starts to receive packets with codewords send by the server.
These codewords are used to decode other already received
codewords, or are decoded with those, or otherwise stored for
both actions in the future.

6) (C6) File was decoded?
The received codewords are decoded into their individual

symbols using simpler codewords [2] (i.e., composed by less
symbols). Recovered symbols are organized to obtain the
original image of the operating system.

7) (C7) Saves the Operating System on
RAM Disk

The download process ends when the client possesses the
complete operating system image. This image is then
decompressed to allow booting from it. Then, the downloaded
file is removed in order to save space on the clients’ RAM.

8) (C8) Loading the received Operating
System with kexec

The startup of the operating system is performed by the
kexec tool. This uses a homonym Linux system call that
enables rebooting a new kernel from the currently running
kernel. Essentially, kexec skips the bootloader stage (hardware
initialization phase by the system firmware, BIOS or UEFI)
and directly loads the new kernel into memory, where it starts
executing immediately.

The remaining boot process, after the execution of kexec,
is a responsibility of the imported operating system. Thus, it is
necessary to modify the operating system to be ready for this
boot by kexec, as discussed in the following section.

E. Preparing an Operating System for
DETIboot broadcasting
When kexec command is executed, it “cleans” the entire

RAM, leaving only the kernel and the initial RAM disk
(initrd) of the operating system to perform the boot. So, the
initrd temporarily loads a file system that decompresses and
loads the OS file system that is usually on a ROM location,
like CD drive, USB ports, or network. Thus, the OS file
system is lost after running kexec because it only “saves” the
kernel and initrd.

The solution is to modify the initrd in order to contain the
OS file system and modify it so it searches the OS file system
within the initrd. Thus, the OS file system is not lost after
executing the kexec command because it is loaded into RAM
along with the initrd.

Furthermore, the OS file system is modified in order to be
as light as possible and contain the customizations needed to
perform the exams, namely: user permissions, file
permissions, Wi-Fi access control, restricted web access and
the class programs and files for the exam.

III. Evaluation
For the system evaluation we performed field tests for

measuring the efficiency of our system and analyzed the
impact of packet losses, due to interferences and to the
distance between the DETIboot server and the client, in the
overall file reception time.

A. Measurement scenario
For all field tests we chose a realistic scenario, a classroom

with 92.25 m
2
, in the Department of Electronics

Telecommunications and Informatics (University of Aveiro).
The university has eduroam Wi-Fi access all over it, thus this
classroom is a noisy Wi-Fi environment. We placed the
DETIboot server at the teacher’s desk and placed 4 equal
laptops clients in the places displayed in Figure 3.

As mentioned before, for the DETIboot server we used an
ODROID-U3 with a Wi-Pi interface.

For the clients we used four Asus K54HR laptops
(i3-2350M CPU @ 2.30 GHz, 4 GiB RAM) without any extra
equipment besides an USB stick with the DETIboot bootstrap
system.

In this classroom we found many Wi-Fi networks in the
environment and we have recorded their SSID as well as an
average value for the Received Signal Strength Indicator
(RSSI) observed by each client and by the server. The
campus-wide “eduroam” network was detected in 3 channels
(1, 6 and 11) and their RSSI was around -90 dBm, -60 dBm
and -75 dBm, respectively. Other temporary networks were
also found on channels 1 (-55 dBm) and 9 (-85 dBm).

The DETIboot server broadcast with the BSSID (Basic
Service Set IDentifier) “DETIbootWiFi” and chose channel 11
to do so. Near the server we measured an average channel 11
RSSI of -50 dBm; this value decreased as we move away from

40

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

it, measuring over the client’s 1, 2, 3 and 4 an average RSSI of
-60 dBm, -55 dBm, -75 dBm and -75 dBm, respectively.

On each reception place we measured, for each complete
file download and decoding, the percentage of missed packets,
several time figures (elapsed time, user CPU time and system
CPU time) and the maximum amount of memory used by the
decoding process.

B. Results
For analyzing the file downloading and decoding

processes, we took 15 independent measurements on each of
the four places displayed in Figure 3 for a continuous
broadcast of an operating system image (Linux Slax) with
nearly 225 MiB. The results obtained are presented in Table II,
Figure 4 and Figure 5.

The observed percentage of packet losses is small all over
the classroom (below 30%, maximum), and increases with the
distance from the DETIboot server (ranging on average from
1.8% to 15.3%). As expected, this degradation will affect the
time to successfully decode the OS image, ranging on average
from 62.4 to 73.1 seconds (c.f. Table II). The distribution of
all observed values is presented in Figure 4.

The relationship between the decoding elapsed time and
the percentage of packet losses can be observed in Figure 5.
The somewhat linear relationship between these two values is
highlighted by the computed linear trend line that can be
observed in Figure 5.

However, the shape of the distribution of decoding times is
not only a result of particular loss rates on clients, but also an
expected result of Fountain Codes (c.f. Figure 7 in [4]). In
other words, higher decoding times are not exclusively due to
higher codeword losses, it can happen due to the combination
of codewords received. This is a consequence of the random
nature of Fountain Codes, which is empirically demonstrated
by the test where the client 2 has a packet loss of only 14% but
takes 107 seconds to decode the operating system, see
Figure 5.

IV. Conclusion
In this work we described an efficient, wireless system to

distribute custom Linux images to a large number of laptops in
a classroom. This was an engineering work where we have
combined different areas of knowledge to achieve an
innovative solution to this problem. We have used ad-hoc Wi-
Fi networks and a broadcast link-layer protocol with a
maximized bit rate, combined with Fountain Codes that allows
an efficient broadcast of the data without a feedback channel.
We also build a custom boot solution that guarantees a flexible
and manageable booting system.

The ultimate motivation behind this project is the
realization of exams in a class room using students’ laptops,
where the teacher must be the administrator of their operating
system. Fast and wireless downloading and booting of a
custom operating system was the very first step towards this
ambitious goal, but many other critical steps need to be given
in the future to accomplish our goal. In particular, we need to
perform thoroughly tests to find out what students can do to
work around the security of this system and fix them.
Furthermore, this system requires constant maintenance
especially in drivers’ updates on the bootstrap and on the
custom Linux image to maximize the compatibility with new
laptop models.

In section III we evaluated the performance of our system
exploring an ODROID-U3 server host. We observed that the
percentage of packet losses is relatively small all over the
classroom (below 30%, maximum), increasing with the
distance from the DETIboot server and ranging in average
from 1.8% to 15.3%. A way to decrease packet losses is to
change the server Wi-Fi interface for a more powerful one, but
nonetheless with Wi-Pi we got great results transferring a Slax
Linux image with approximately 225 MiB in 69.1 seconds, on
average.

1

2

3

4

S

,12.3 m

7
.5

 m

Figure 3. Diagram showing the places where we placed the DETIboot
server (S) and the 4 clients in the classroom.

TABLE I. MINIMUM, MAXIMUM, AVERAGE AND STANDARD DEVIATION OF THE MEASUREMENTS RELATED WITH THE DECODING OF A 225 MIB

OPERATING SYSTEM IMAGE BY THE 4 CLIENT LAPTOPS PLACED IN THE LOCATIONS PRESENTED IN FIGURE 3.

Laptop
lost packets (%) max RSS (MiB) elapsed time (s)

min avg max σ min avg max σ min avg max σ

1 1.3 1.8 2.4 0.4 473.1 544.0 567.6 35.8 60 62.4 68 2.3

2 3.8 9.2 20.5 5.5 476.5 557.2 572.1 23.1 63 69.9 107 11.5

3 4.2 13.1 37.5 8.6 555.0 563.8 574.0 5.2 63 71 103 9.8

4 9.0 15.3 29.5 5.8 476.2 556.1 579.4 22.4 66 73.1 104 9.6

41

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

DETIboot is very attractive to deploy live Linux setups to
be used temporarily into a large number of nearby laptops.
This is the case, for instance, for giving classes or hands-on
tutorials with specially crafted operating system distributions,
or to temporarily distribute proprietary software for testing or
demonstration. The fact that the system architecture is based
on a standalone server station broadcasting through Wi-Fi
makes it very convenient to deploy the system anywhere, since
it is not dependent of the existing network infrastructure.

Acknowledgment

This research is part of the R\&D project, CodeStream,
with the reference PTDC/EEI-TEL/3006/2012 financed by the
FCT - Foundation for Science and Technology. This Research
Unit is funded by National Funds through FCT - Foundation
for Science and Technology, in the context of the project
PEst-OE/EEI/UI0127/2014.

References

[1] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[2] J. Cardoso, “DETIboot : distribuição e arranque de sistemas Linux com
redes WiFi,” University of Aveiro, Aveiro, Portugal, 2013.

[3] L. M. M. M. Byers John W. and A. Rege, “A Digital Fountain
Approach to Reliable Distribution of Bulk Data,” in SIGCOMM, 1998,

pp. 56–67.

[4] D. J. C. Mackay, “Fountain Codes,” IEE Proc. - Commun., vol. 152,

no. 6, pp. 1062–1068, 2005.

[5] D. J. C. MacKay, Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, 2006.

[6] M. Luby, “LT codes,” Proc. 43rd Annu. IEEE Symp. Found. Comput.

Sci., pp. 271 – 280, 2002.

Figure 5. Distribution of the decoding elapsed time considering the observations of all the 4 receiving laptops.

Figure 4. Observed relationship between decoding elapsed time and percentage of packet losses. Dots represent observations in all 4 receiving laptops; the

solid line represents a linear trend calculated from those observations.

