

21

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

Encryptor resulted from beating the 7z for

incompressible files
 [João Silvestre – Coimbra, Portugal]

Abstract— The generation of incompressible files to 7z led to a

new encryption algorithm. In this paper is presented the new

encryption algorithm and the results of testing the new

encryption technique, named Encryptor. The new algorithm, is a

private algorithm, with only 64 bits in the state variable, but can

be extended to other lengths. The Encryptor is protected from

password attacks by a very long hash algorithm.

The inferred characteristics of the algorithm are of infinite

length sequence, and therefore can not be attacked by the

sequence. The characteristics of sequence are Gold code. Hitting

the mark is only a result that can decrypt, everything else is

noise. The algorithm is not a maximum length sequence, but a

random length sequence. For example a sequence with four bytes

repeats almost at four Gigabytes of data. The statistics of data at

various lengths is flat.

The brute force attack can take 264 executions of the

Encryptor that is a sequential algorithm and takes to long to

attack. The only way to attack the Encryptor is the DNA

algorithm but has the problem of processing 16Exabytes.

The implementation of this new algorithm is very fast and can

be suitable for hardware implementations for its simplicity.

Keywords— encryption, Gold code

I. Introduction
The generation of pseudo random sequences (PRN) uses

characteristic polynomials to define the points of sequence
feedback. The polynomials typically chosen, generate
maximum length sequences 2n -1, where n is the number of
bits in the polynomial of the sequence. The random number
generator of the C programming language was used to try to
generate incompressible files, however 7z could build a
dictionary and compress the file very significantly. In another
attempt we used a characteristic polynomial that generates
maximum length sequences to generate a pseudo-random
number file, again 7z could build a dictionary and compress
the file very significantly. Then I consulted my notes on
Analog and Digital Communication Systems in the theme of
PRN sequences generation and the generation of Gold codes.
The result was the encryption of the random number generator
of the C programming language, generating two sequences
and making the XOR of the two to try to generate a Gold code.
This result was then divided by a cousin number to generate a
file of pseudo random numbers, so was beaten 7z that could
not compress the file.

II. Detailed Encryptor study
The encryption algorithm resulting from this study is

presented below. A more detailed study of the algorithm
robustness for presenting this work, indicates that the
sequence was estimated to be 2

64
, actually has a lower

strength. By studying the C random number generator, a
sequence of two random numbers repeated in 2

31
, however

checking the real sequence and with different seed, it is found
that repeats after 1Giga, or 30 bits. The PRN sequence
generator has two state variables, a 32-bit variable and another
32-bit variable of the random number generator that
corresponds to 30 bits, resulting in a sequence that is estimated
to be between 2

62
 and 2

64
. Figure 1 shows the statistics of the

length of the sequence of two random numbers.

C Random number generator

-5,00E+08

0,00E+00

5,00E+08

1,00E+09

1,50E+09

2,00E+09

2,50E+09

0 1E+07 2E+07 3E+07 4E+07 5E+07 6E+07 7E+07

Length of sequence

Max length of

sequence

Figure 1. – Sequence length of two random numbers (sampled).

The C code for the encryption is the following:

for (i=0;i<bytes;i++)

 {

 key = ((rand()<<16)^rand()^key^keyMSB);

 encrypted_buffer[i] = buffer_data[i]^(key%255);

 keyMSB = key>>16;

 }

Authors Name/s per Affiliation (Author)

line 1 ISEC / Instituto Politécnico de Coimbra

line 2: Portugal

22

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

Of course it is easy to decrypt if we know the seed of the
random number generator. The first step is to seed the random
number generator based on password keys. In the second step
we need to hash the password keys before start to encrypt.
There is a initialization process of the state variable by the
password keys, and the next step a very long random key hash.

length = key;

for ((register unsigned int)i=0;i<(register unsigned

int)length;i++)

 {

 (register unsigned int)key =

((rand()<<16)^rand()^key^keyMSB);

 (register unsigned int)keyMSB = key>>16;

 }

The proposed algorithm corresponds to a multiplication

(XOR) of two random sequences to form a Gold code. The
feedback points do not correspond to a particular polynomial
as is classically used, but random feedback points. As a result
the sequence does not have maximum length but have random
length. It is therefore a completely deterministic random
sequence, which sequence is known only by the sender and by
the receiver.

What is the hidden message in the sequence of numbers in

PI? There will be something hidden there?

The Encryptor is just noise, there will be some hidden
message? Sure there are, but to demodulate is necessary to
know the sequence of the noise and only the sender and the
receiver is in the know.

For a good encryption, the state variable of the sequence

was divided by a prime number and the rest of the division
used to make the XOR byte by byte with the message.

A. Unraveling the secrets of Encryptor.

Studying the Encryptor sequence it appears that the
statistical sequence of bytes is flat as shown in Figure 2, as
well as the statistics of the two bytes sequence (Figure 3),
lacking only the multiple N*256-1 due to the rest of the
division by 255.

Statistics of sequence bytes

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 50 100 150 200 250 300

Figure 2. – Flat statistic of sequence bytes.

Statistics of two bytes sequence

-100

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000 35000

Figure 3. – Flat statistic of two bytes sequence.

The statistic of the three bytes sequence, shown in
Figure 4, that shows the statistic is apparently flat. In the graph
were used four gigabytes of data, but would need to be much
more to get good statistics. In the graph arises suspicion that
the sequences have not equal probability and the following
study of length of 4 bytes sequences shows that are not
random but pseudo-random numbers. The zeros of the graph
are the multiple N*256-1 due to the rest of the division by
255.

0

20

40

60

80

100

120

140

160

0 5000 10000 15000 20000 25000 30000 35000

Figure 4. – Flat statistic of three bytes sequence.

23

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

Although the statistical of the bytes being flat (equal
probability) and two-byte statistical also be flat, lacking only
the multiple N*256-1, it is verified that the sequence length of
5 bytes is equal to the sequence length of 4 bytes, are not
found all sequences, in 4,29E9 sequences of 4 bytes are only
present 4,21E6 sequences that repeat after 1,07E9 bytes length
(2

30
). Then a problem is identified, the Encryptor has only 30

bits, each random number is only 15 bits and are used two
random numbers means that the algorithm has less 2 bits.
Although the two 32 bits state variables, it was thought that
the result would be a complexity of 64 bits, but the algorithm
generates a sequence of fixed length of only 30 bits (2

30
).

What saves the algorithm is the initialization of the state
variable and random number generator with the password
keys. This process generates a different 30 bits sequence (One
Gigabyte sequence) for each different password, tested and
proven. Thus by statistical analysis of the 4 bytes sequences,
are added over 10 bits by initialization with password keys.
The initial hash algorithm added indeterminacy in positioning
of sequence. It is estimated that the robustness of Encryptor is
between 40 bits and 64 bits contrary to what was thought to be
between 62 and 64 bits. Analyzing the sequences for various
initializations it is found that different and interferents
sequences are generated, i.e. different sequences have some
equal patterns of 4 bytes, this is due to the two state variables
of the algorithm the 32 bits state variable and the random
number generator state variable. So is estimated to be more
than 10 bits of complexity added due to initialization. The
probability is that the algorithm can generate four Giga
sequences of one Giga bytes, meaning 62 bits of complexity,
although the typical password reduce this complexity by 4 or
60 bits, but does not mean that someone can use a more
complex password or more 2 bits.

Before this detailed study by earlier work it was thought
that the length of the sequence was random as shown in
Figure 5. The 3 bytes sequence repeats after a maximum of
426E6 bytes.

Length of 3 bytes repeating sequence

-50000000

0

50000000

100000000

150000000

200000000

22900 22920 22940 22960 22980 23000

Figure 5. – Length of 3 bytes repeating sequence.

In detailing the study it was found that a sequence of four
bytes is repeated after one gigabytes, as well as the sequence
of five bytes, etc.

-200000000

0

200000000

400000000

600000000

800000000

1000000000

1200000000

0 500 1000 1500 2000 2500 3000 3500 4000

Figure 6. – Length of 4 bytes repeating sequence.

Figure 6 shows the sequence of repeating the 4 bytes
sequence length and the random sequence length detail of
repeating the 4 bytes sequence length. The graph shows the
data of the sequence length after the first gigabyte. As can be
seen four bytes are not enough to identify a possible start of
the sequence, however the study done with 5 bytes (to detect
sequences of one Tera failed got a Giga) showing that the 5
bytes sequence has not random length, but has a fixed length
of one Gigabytes.

Finally a spectrogram was made and it was concluded that
the Encryptor is a good white noise generator, the messages to
encrypt will suffer a spread spectrum to be confused with
white noise.

Figure 7. – Spectrogram of a Encrypted message.

Figure 8 shows the autocorrelation of a Encrypted message
and the figure indicates that the Encrypted message is white
noise as expected. The Encryptor is not a Gold code is white
noise with better autocorrelation characteristics.

24

International Journal of Advances in Computer Networks and Its Security– IJCNS
Volume 5: Issue 1 [ISSN : 2250-3757]

Publication Date : 30 April, 2015

Figure 8. – Autocorrelation of a Encrypted message.

Conclusions
The myth that Encryptor was very robust with only 64 bits

was scrapped. The Encryptor remains good with strength of
the order of 64 bits but the sequence has only 30 bits (2

30
 in

length). The improvements that can be made, a hash in the
positioning of the encrypted file, so that it can not be attacked
by knowing the file header, thus adding some garbage to the
result file, or scrambling the file and then encrypt. Another
improvement will be to move the state variable to 64 bits and
eliminate the fixed zero bits.

References

[1] Bruce Schneier, Applied cryptography : protocols, algorithms, and

source code in C, 2nd ed, John Wiley & Sons.

About Author (s):

Bibliography:

João Silvestre obtained his

Licenciatura end MSc degrees in

1990 and 1995, from Coimbra

University. Silvestre is now a full

time invited Adjunct Professor at

Instituto Superior de Engenharia de

Coimbra, in the Electrotechnical

Department, teaching mainly

electronics topics. His current

research interests include power

electronics, fast digital electronics,

signal processing and electrical

vehicles.

