

81

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 1 [ISSN : 2319-7498]

Publication Date : 30 April, 2015

Studying the optimal height of the EFSM equivalent

for testing telecommunication protocols
Natalia Kushik, Maria Forostyanova, Svetlana Prokopenko, and Nina Yevtushenko

Abstract—The paper presents experimental results on the

optimal height of the EFSM equivalent for deriving high quality

tests for telecommunication protocols. The EFSM model is a

widely used finite state model, and its l-equivalent is an FSM

which behavior is equivalent to the initial EFSM for each input

sequence of the length l or less. The l-equivalent is known to be

more suitable for test derivation than the initial EFSM and thus,

it is often used as the specification EFSM for this purpose. In this

paper, test derivation the l-equivalent has been derived for the

following protocols: POP 3, SMTP, TIME, DCCP, TCP. EFSM

models have been extracted from the corresponding RFC

specifications, and mutation testing techniques have been utilized

in order to estimate the fault coverage of the test suites which

correspond to a transition tour of a corresponding l-equivalent.

Experimental results clearly show that even when the height l of

the l-equivalent is low, and moreover, equals two, many

functional faults can be detected in the protocol implementation.

Keywords—EFSM, l-equivalent, testing, telecommunication

protocols.

I. Introduction
As the complexity of telecommunication systems

increases, new methods and tools need to be developed in
order to carefully test and verify software and/or hardware
components of such systems. Telecommunication protocols
are considered to be some of crucial components of the
system, as at different levels protocols are „responsible‟ for
reliable transferring, storing and analyzing of the information
in telecommunication systems. Thus, corresponding protocol
implementations developed by many parties need to be
thoroughly tested, especially for those protocols that are used
in critical systems, such as banking, public transportation,
medicine, etc.

Once one is interested in tests with the guaranteed fault
coverage, formal models have to be strongly involved. More
precisely, a formal model is extracted from system
requirements that is further used to derive tests. Corresponding
tests are then applied to an implementation under test in order
to check if the implementation meets the system requirements
or not.

One of commonly used discrete models that is used for
deriving tests for protocol implementations, is a model of
Extended Finite State Machine (EFSM). An EFSM augments a
classical Finite State Machine (FSM) [1] with context
variables and input and output parameters.

Natalia Kushik, Maria Forostyanova, Svetlana Prokopenko, Nina
Yevtushenko

Tomsk State University, Russia

Since there are no constructive necessary and sufficient
conditions for checking whether two arbitrary EFSMs are
equivalent, most test derivation strategies are based on various
heuristics to derive the test suites. One of such heuristics is an
unfolding of the EFSM behavior up to the corresponding
FSM. One drawback of this approach is that the corresponding
FSM can be partial and nondeterministic, and testing against
such specifications still remains a hard problem [2]. Therefore,
various heuristics are applied against this FSM in order to
simplify a test derivation procedure. One of those is a use of so
called l-equivalent. The l-equivalent of the (Extended) FSM is
an (Extended) FSM that has the same behavior as the initial
(Extended) FSM for each defined input sequence of the length
l or less.

In this paper, we evaluate the efficiency of the use of an l-
equivalent, namely, we estimate the optimal value of the
integer l. Estimations are experimentally performed, and a
case study is performed for implementations of various
telecommunication protocols. In particular, we consider the
following protocols: POP 3, SMTP, TIME, DCCP, and TCP.
RFC specifications have been used in order to derive EFSMs
describing protocol behavior. The EFSMs have been unfolded,
and corresponding FSMs have been unrolled up to their l-
equivalents. The objective of experiments was to estimate the
fault coverage of tests derived on a basis of l-equivalents
depending on l and afterwards, to draw a conclusion about an
optimal value of the constant l. The fault coverage has been
estimated using mutation testing technique [3], i.e., faults have
been injected into protocol specifications/implementations in
order to verify if those can be detected by a test suite or not.
When injecting the faults into the FSM protocol specifications,
we considered transfer and output faults while in the case of
mutating Java protocol implementations, we considered the
faults that can be injected by the MuJava tool [4].
Experimental results clearly show that even when the value of
l is low, and moreover, equals two, many functional faults can
be detected in protocol implementations.

The rest of the paper is organized as follows. Section II
contains Preliminaries. Section III presents the experimental
results of mutation testing when FSM transfer and output
faults are considered while in Section IV the experimental
results with Java protocol implementations are described.
Optimal height/length of the l-equivalent is estimated in both
cases. Section V concludes the paper.

II. Preliminaries
FSMs and l-equivalents

A finite state machine (FSM) [1], or simply a machine
throughout this paper is a 5-tuple S = (S, I, O, hS, S'), where S
is a finite nonempty set of states with a nonempty subset S' of

82

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 1 [ISSN : 2319-7498]

Publication Date : 30 April, 2015

initial states; I and O are finite input and output alphabets; hS

 S I O S is a behavior (transition) relation. If |S'| = 1
then the machine is initialized, otherwise, it is non-initialized
(weakly initialized). An FSM is nondeterministic (NFSM), if

for some pair (s, i) S I there exist several pairs (o, s') O

 S such that (s, i, o, s') hS, otherwise, S is deterministic. If

for each pair (s, i) S I there exists (o, s') O S such that

(s, i, o, s') hS then the FSM is complete, otherwise it is

partial. If for each triple (s, i, o) S I O there exists at

most one state s' S such that (s, i, o, s') hS then the FSM is
observable, otherwise it is non-observable. A state s' is called

an i/o-successor of a state s S if (s, i, o, s') hS. In usual
way, the FSM behavior under a single input is extended to
input sequences. In this paper, we consider FSMs that are
initialized but can be non-deterministic and partial. These
types of FSMs can be obtained when dealing with Extended
FSMs (EFSMs) and analyzing telecommunication protocols
specified by EFSMs. As an example of an FSM one may turn
to Fig. 1 where a deterministic complete FSM S with the set I
= {i1, i2} and the set O = {o1, o2} is presented. The FSM S has
two states; the initial state of the FSM is 1 that is labeled in
bold.

Figure 1. An FSM S

In order to effectively derive tests for protocol
implementations, we deal with l-equivalents of FSM protocol
specifications. The l-equivalent for an FSM S is the FSM L
such that the behavior of the FSM S coincides with that of L
for each input sequence of length l or less. The notion of the l-
equivalent is widely used when performing hardware
verification based on unfolding the behavior of a
corresponding logic circuit (l-frame derivation) [5].

Figure 2. The 2-equivalent of FSM S

One of the ways to derive an l-equivalent for an FSM S is

to unfold the behavior of the FSM S for each input sequence
of length 1, 2, …, l. Such unfolding procedure can be
performed by deriving a truncated successor tree [6] where the
root is labeled by the initial state of the FSM S. Nodes of the
tree are labeled by FSM subsets of states, and there is an edge
labeled by an input/output pair i/o from a node labeled by a
subset P of states to a node labeled by a subset P' is the subset

P' is the set of all i/o-successors of states from the set P. A
successor tree of the FSM S truncated at the height of l
represents the l-equivalent of the FSM S. In Fig. 2, the 2-
equivalent of the FSM S shown in Fig. 1 is represented.

Extended FSMs

An EFSM [7, 8] A is a pair (S, T) of a set of states S and a
set of transitions T between states from S, such that each

transition t T is a tuple (s, i, o, P, vp, op, s'), where s, s' S

are the initial and final states of a transition; i I is an input
with the sets Dinp-i of possible input vectors of corresponding

input parameter values, o O is output, where O is the set of
outputs (with the sets Dout-o of possible output parameter
values); P, vp, and op are functions, defined over input

parameters, and context variables, namely: P: Dinp-i DV
{True, False} is a predicate, where DV is a set of context

vectors; op: Dinp-i DV Dout-o is an output parameter update

function; vp: Dinp-i DV DV is a context update function.

According to [8], we use the following definitions. Given

an input i and a vector Dinp-i, the pair (i,) is called a
parameterized input, if there are no parameters for the input i
then i is a non-parameterized input. A sequence of
parameterized (possibly some of them are non-parameterized)
inputs is called a parameterized input sequence. A context

vector v DV is called a context of A. A configuration of A is
a pair (s, v). Usually, the initial state and the initial
configuration of the EFSM are given; thus, given a
parameterized input sequence of the EFSM, we can calculate
the corresponding parameterized output sequence by
simulating the behavior of the EFSM under the input sequence
starting from the initial configuration.

When the specification domains of each context variable
and input parameter are finite an EFSM can be unfolded to an
equivalent FSM by simulating its behavior with respect to all
possible values of context variables and input vectors. The
equivalence means the set of traces of the FSM coincides with
the set of parameterized traces of the EFSM. Given a state s of

EFSM A, a context vector v, an input i and vector of input
parameters, we derive the transition from configuration sv

under input x in the corresponding FSM. We first determine
the outgoing transition (s, i, o, P, vp, op, s') from state s where

the predicate P is true for input vector and context vector v,
update the context vector to the vector v' according to the
assignment vp of this transition, determine the parameterized

output (o,) and add the transition (sv, i, o, s'v') to the set
of transitions of the FSM FSMsim(A). The obtained FSM has
the same number of states as the number of different
configurations (s, v) of the EFSM that are reachable from the
initial configuration. Therefore, the EFSM behavior cannot be
simulated when the specification domains of some context
variables and/or input parameters are infinite or the number of
generated transitions becomes huge; in this case, the behavior
is simulated up to the given number of transitions. Such
simulation can lead to a partial and non-deterministic FSM
that is further used to derive test sequences. As the test
derivation against these models is a complicated procedure,
one can obtain an l-equivalent of the FSM FSMsim(A) and
derive a transition tour for this l-equivalent. The corresponding

i1/o2 1
i2/o2

i2/o1

i1/o1

2

1 2

i1/o1

i2/o2

1

i2/o2

1 i1/o1

 2

i1/o2 i2/o1

 2 1

83

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 1 [ISSN : 2319-7498]

Publication Date : 30 April, 2015

transition tour returns input sequences of length l for which the
behavior of the specification FSM coincides with the l-
equivalent FSM. As the l-equivalent is represented as a tree
FSM, the length l is often called a height of the corresponding
equivalent. In this paper, we estimate the optimal height of
such equivalent when testing protocol implementations.

Mutants

When estimating the fault coverage mutation testing
techniques can be of a big help. These techniques can be
implicitly divided into two groups, i.e., methods that rely on a
source code of an implementation under test and those that are
based on the formal specification. The main idea of the
mutation testing is to change a program or a formal model in
such way that this change corresponds to possible errors in
program implementation. In this case, a program or a model
that contains a fault is called a mutant.

Test sequences are applied to a corresponding mutant (a
possibly faulty implementation) and a test engineer concludes
if the implementation behaves correctly or not. If the behavior
is correct, then the fault has not been detected. Note that the
more mutants are generated, the more precise is the evaluation
of the fault coverage. Normally, tools for the program based
mutation testing rely on a set of mutation operators and this set
describes types of errors that can be detected in the source
code by a corresponding test suite. The bigger is the set of
mutation operators, the more test sequences can be verified by
these mutants.

In this paper, we consider two types of mutants, namely,
mutants of FSMs FSMsim(A) derived from EFSM protocol
specifications, and mutants for Java protocol implementations
derived with the use of MuJava tool.

For the FSM FSMsim(A), we consider transfer and output
mutants. A transfer mutant is derived from FSMsim(A) by

changing a transition (s, i, o, s') hS to another transition (s, i,

o, s'') hS for s' s'', or the transition (s, i, o, s') hS is deleted
from the set hS or a new transition is added to the set hS. An
output mutant of the FSM FSMsim(A) contains a transition (s, i,

o', s') hS while the FSM FSMsim(A) has a transition (s, i, o, s')

 hS for o o'.

For Java implementations, we consider all the mutants that
can be generated using MuJava tool. MuJava supports simple
identifier/operator substitutions as well as 24 mutation
operators that specify object-oriented faults. We further
discuss which type of mutants have been generated for which
protocols in order to estimate the fault coverage of tests
derived on a basis of 2-, 3-, and 4- FSMsim(A) equivalents.

III. Experimental results for
FSMsim(A) transfer and output

faults
When estimating the optimal length l of the EFSM l-

equivalent we considered transfer and output faults in the
corresponding FSM FSMsim(A). The EFSMs have been
extracted from RFC specifications of following protocols:
POP 3, SMTP, TIME, and DCCP. Furthermore, EFSMs have

been unfolded, and the 2-, 3-, and 4-equivalents have been
derived. For each l-equivalent, a transition tour has been
performed, in order to derive test sequences. For estimating
the fault coverage of the above test suite, we randomly
injected single transfer or output faults into the FSM
FSMsim(A). Therefore, only transfer and output mutants have
been considered for POP 3, SMTP, TIME, and DCCP.
Experimental results show that even 1-equivalent allows to
detect more than 20% of transfer and output faults in the FSM
FSMsim(A). Table 1 contains results on estimation of an
optimal lengths (height) l, for the l-equivalent when tests are
derived based on its transition tour. Columns NS (number of
states) and NT (number of transitions) of EFSM A correspond
to numbers of states and transitions of EFSMs obtained from
RFC specifications of the protocols. NT of FSMsim(A)
corresponds to a number of transitions of FSM unfolded from
EFSM of the protocol. FC means the percentage of detected
single transition and output faults when performing a
transition tour based on the l-equivalent of a corresponding
protocol.

TABLE I. EXPERIMENTAL RESULTS FOR DETECTING TRANSFER AND

OUTPUT FAULTS

Protocol EFSM A NT of
FSMsim(A)

FC of transition tour, %

NS NT l=1 l=2 l=3 l=4

POP 3 4 16 44 22,3 45,5 70,5 100

SMTP 2 8 14 42,9 100

TIME 2 2 5 60 100

DCCP 5 11 56 25 50 75 100

We note, that predicates of EFSMs for SMTP and TIME

protocol depend on context variables only. Moreover, the

cardinality of the specification domains of these variables

equals two. That is the reason why a number of states and

transitions of corresponding FSMs does not increase

essentially, and all single transfer and output faults are

detected by test sequences of length two.
Predicates of EFSMs of POP 3 and DCCP depend on

context variables and input parameters, and their specification
domains are big. Therefore, a number of configurations and
transitions of the unfolded FSM becomes 3-4 times bigger that
the number of transitions and states of the initial EFSM. In
order to detect all single transfer and output faults for such
protocols we have had to utilize a transition tour of an l-
equivalent, for l = 4.

IV. Experimental results for Java
protocol implementations

We also experimented with one of commonly used
telecommunication protocols, namely with TCP (Transmission
Control Protocol) for Windows that is utilized for providing
reliable communication between hosts. The EFSM A for TCP
has been taken from [9] where only server part of the protocol
specification has been considered. The EFSM (Fig. 3) has six
states and a single context variable that is responsible for a

84

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 1 [ISSN : 2319-7498]

Publication Date : 30 April, 2015

timeout, i.e., at state 'CLOSE WAIT' the system waits for an
input 'Close' during 3 ms; if the input was not applied the
system moves to state 'Closed'.

Figure 3. The EFSM A for TCP

Similar to the previous case, we estimated the fault
coverage of the transition tour derived against the FSM
FSMsim(A). However, differently from Section 3, when
estimating the fault coverage we considered Java
implementation mutants of the corresponding TCP
implementation. In particular, we have implemented the TCP
in Java, in order to further utilize the MuJava tool that is
developed for injecting various faults into Java programs. As a
result, 121 Java mutants have been obtained. Among those,
112 mutants are „classical‟/„traditional‟ mutants that
correspond to a wrong identifier, „forgetting else‟ by a
programmer, etc. Nine mutants of the TCP Java
implementation contained OOP faults, for example, faults
related to incorrect classes definitions. Seven mutants that
have been generated by MuJava were equivalent to the initial
Java implementation. Note, when injecting errors we have
considered only server implementation of TCP.

After deriving a transition tour of the 2-equivalent of the
FSM FSMsim(A), we applied corresponding test sequences to
each of mutants. Excluding equivalent mutants, MuJava
detects only 23.14% of faulty mutants. Once the length of the
l-equivalent is increased up to 3, the fault coverage of the
corresponding transition tour „improves‟ up to 38,84%. For l
being equal to 4, the fault coverage becomes 62,8%.
Nevertheless, it does not reach 100% as it happens in the
previous case. The reason is the difference between EFSM
structures used in both cases. As TCP is „responsible‟ for
reliable connection between hosts, it contains „quite some‟
FSM preamble in each input/output sequence. In other words,
transitions that are labeled with predicates and/or updating
functions are reached from the initial state by an input
sequence of length equal or greater than 5. Meanwhile, the

EFSMs for POP 3, SMTP, TIME, and DCCP protocols have
corresponding functions much earlier, namely, on transitions
that are reachable from the initial state by a sequence of length
2. That is the reason why the fault coverage in Section 2 is
higher than that in Section 3; in this section, for l = 5 the fault
coverage becomes 88,4%.

To sum it up, when testing implementations of
telecommunication protocol, one can unroll the EFSM up to
the FSMsim(A) from which test sequences are generated.
Experimental results show that the unrolling can be done up to
sequences of length 6 depending on the EFSM properties.

V. Concluding Remarks
In this paper, we have discussed how l-equivalents of

(Extended) FSMs can be used for deriving high quality tests
when testing implementations of telecommunication protocols.
As testing against the EFSM directly is not always feasible as
well as against its completely unfolded FSM, such „tree like‟
equivalents seems to be useful for efficient test derivation. The
main objective of the paper was to estimate the optimal height
of these „tree like‟ equivalents, i.e., to evaluate the optimal
value of the constant l. Experimental results with EFSMs for
protocols POP 3, SMTP, TIME, DCCP, TCP are rather
promising, as they clearly show that even when l equals two,
many functional faults can be detected. As a future work, we
plan to study l-equivalents and their optimal heights for other
types of state models, for example, for Timed (Extended)
FSMs.

References

[1] A. Gill, Introduction to the Theory of Finite-State Machines, McGraw-

Hill, 1962.

[2] Natalia Kushik, Nina Yevtushenko, and Ana Cavalli, “On testing against
partial non-observable specifications,” The 9th International Conference
on the Quality of Information and Communications Technology, 2014.

[3] U. Praphamontripong, J. Offutt, “Applying Mutation Testing to Web
Applications,” In proceedings of the ICST Workshops, pp. 132–141,

2010.

[4] Yu-Seung Ma, J. Offutt, and Yong Rae Kwon "MuJava : An Automated
Class Mutation System," Journal of Software Testing, Verification and
Reliability,15(2), pp. 97–133, 2005.

[5] V. Karibskiy, P. Parhomenko, E. Sogomonyan, V. Halchev, Basics of
technical diagnostics, M.: Energya, 1976 (in Russian).

[6] Z. Kohavi, Switching and Finite Automata Theory. McGraw- Hill, New
York ,1978.

[7] A. Petrenko, S. Boroday, and R. Groz, “Confirming Configurations in
EFSM Testing,” IEEE Trans. Software Eng. 30(1), pp. 29-42, 2004.

[8] A. Faro, and A. Petrenko, “Sequence Generation from EFSMs for
Protocol Testing,” In Proc. of COMNET‟90, Budapest, 1990.

[9] Raid Y. Zaghal and Javed I. Khan, “EFSM/SDL modeling of the original
TCP standard (RFC793) and the Congestion Control Mechanism of TCP
Reno, ” Kent State University, 49 p., 2005.

Acknowledgment
The work is partially supported by RFBR grant № 14-08-

31640 мол_а (Russia).

Nina Yevtushenko joined Tomsk State

http://www.informatik.uni-trier.de/~ley/pers/hd/p/Praphamontripong:Upsorn.html
http://www.informatik.uni-trier.de/~ley/db/conf/icst/icstw2010.html#PraphamontripongO10

85

International Journal of Advancements in Electronics and Electrical Engineering– IJAEEE
Volume 4 : Issue 1 [ISSN : 2319-7498]

Publication Date : 30 April, 2015

About Authors:

Natalia Kushik has received her diploma

degree in Applied Mathematics from

Tomsk State University, Russia, in 2010.

She has got a PhD degree in 2013 and

worked as a PostDoc at Telecom

SudParis, France. Her research interests

include automata theory, service quality

evaluation, software testing and

verification.

Svetlana Prokopenko received a PhD

degree in computer science in 2000 from

Tomsk State University. Her scientific

interests include automata theory, protocol

and software system testing.

Maria Forostyanova has gor the master

degree from Radiophysics department

Tomsk State University, Russia, in 2014.

Her research is related to the study of

mutation testing. Currently Maria is PhD

student in the area of system analysis, data

processing and control systems.

Nina Yevtushenko joined Tomsk State

University in 1991 as a professor and

presently she leads a research team

working on the synthesis and analysis of

discrete event systems. Her research

interests include formal methods,

automata theory, distributed systems,

protocol and software testing.

