

10

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 4 [ISSN 2374-1619]

Publication Date: 27 December, 2014

 Traditional Vs Agile Methodology: An Analysis on

Challenges faced in Testing Perspective

Balaji Sundramurthy, M.C.A.

Faculty of Computing Sciences,

Gulf College, Sultanate of Oman

Ronald S. Cordova, Ph.D.

Faculty of Computing Sciences,

Gulf College, Sultanate of Oman

M. Sundara Rajan, Ph.D.

Department Of Computer Science,

Government Arts College, India

Abstract - There are numerous methodologies available for

developing and testing software. The methodology we choose

depends on factors such as the nature of project, the project

schedule, and resource availability. Although most software

development projects involve periodic testing, some

methodologies focus on getting the input from testing early in

the cycle rather than waiting for input when a working model

of the system is ready. Those methodologies that require early

test involvement have several advantages, but also involve

tradeoffs in terms of project management, schedule, customer

interaction, budget, and communication among team members.

Agile Testing is a set of timesaving techniques specifically

designed to make the work of agile testing teams easier and

more productive. It is an empowering process that produces

great results and has a simple mission: Get the best possible

testing results with the least amount of work. These challenge-

and solution-based techniques do not require major changes in

your existing workflow. We can adopt them in increments,

which enables us to focus on one specific challenge and meet it

head-on with a precise, targeted solution. Common challenges

agile teams face and recommended solutions to handle them

quickly and effectively .This paper discusses how testing fits

and challenges into traditional/Agile methodology and then

discusses the test-driven development practice in Agile

Methodology in detail.

Keywords-Traditional methodology, Agile methodology,

Test-Driven development

I. Introduction
A Software Development Life Cycle (SDLC) adheres

to important phases that are essential for developers, such as

planning, analysis, design, and implementation, A number of

software development life cycle (SDLC) models have been

created: waterfall[11], spiral, V-Model [12], rapid

prototyping, incremental, Agile model. Different software

development models will focus the test effort at different

points in the development process. Newer development

models, such as Agile, uses test driven development [2] and

place an increased portion of the testing in the hands of the

developer, before it reaches a formal team of testers. In a

more traditional model, most of the test execution occurs

after the requirements have been defined and the coding

process has been completed. By using test-driven

development, we can ensure that each feature of an

application block is rigorously tested early in the project life

cycle. Early testing significantly would solve most of the

issues that will be encountered by the development team and

it will enable them to keep track of all the defects.

A. Key Differences between

 Traditional and Agile Methodology
 Development is incremental rather than sequential.

Software is developed in incremental, rapid cycles.

This results in small, incremental releases, with

each release building on previous functionality.

Each release is thoroughly tested, which ensures

that all issues are addressed in the next iteration.

 People and interactions are emphasized, rather than

processes and tools. Customers, developers, and

testers constantly interact with each other. This

interaction ensures that the tester is aware of the

requirements for the features being developed

during a particular iteration and can easily identify

any discrepancy between the system and the

requirements.

 Working software is the priority rather than detailed

documentation. Agile methodologies rely on face-

to-face communication and collaboration, with

people working in pairs. Because of the extensive

communication with customers and among team

members, the project does not need a detailed

requirements document.

 Customer collaboration is used, rather than contract

negotiation. All agile projects include customers as

a part of the team. When developers have questions

about a requirement, they immediately get

clarification from customers.

 Responding to change is done, rather than extensive

planning. However, it suggests changing the plan to

accommodate any changes in assumptions for the

plan, rather than trying to follow the original plan.

 Agile testing was different in many ways from

„traditional‟ software testing. The biggest difference

is that on an agile project, the entire development

team takes responsibility for quality. This means the

whole team is responsible for all software testing

tasks, including acceptance test automation. When

software testers and programmers work together,

the approaches to test automation can be creative.

11

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 4 [ISSN 2374-1619]

Publication Date: 27 December, 2014

Fig 1: Testing Aspects of Agile V-model Vs traditional V-model

II. Challenges in Traditional
Methodology

 Significant delays between when software is

written and development receives feedback

 Defects found late in the process can have

major implications when changed

 Changing business requirements affect test

cases that have already been developed

 Communications create risk that different

groups may have different expectations of the

final product

 Quality suffers and many QA activities get left

out when testing is the last activity before a

fixed release date

III. Benefits of Agile Testing
 On-going feedback to developers allows

testers to ask the right questions at the right

time.

 Early identification of dependencies, technical

or testing challenges and road blocks.

 Embraces change as a healthy and real part of

software development.

 Team collaboration helps everyone work

together toward a common goal.

 Quality comes first because final acceptance

criteria are established prior to the work

beginning.

IV. Analysis of Test Driven
Model in Agile Methodology

Test-driven development [2] is one of the core

practices of Extreme Programming. The practice

extends the feedback approach, and requires that we

develop test cases before we develop code. Developers

develop functionality to pass the existing test cases. The

test team then adds new test cases to test the existing

functionality, and runs the entire test suite to ensure that

the code fails (either because the existing functionality

needs to be modified or because required functionality

is not yet included). The developers then modify the

functionality or create new functionality so that the

code can withstand the failed test cases. This cycle

continues until the test code passes all of the test cases

that the team can create. The developers then refactor

the functional code to remove any duplicate or dead

code and make it more maintainable and extensible.

Test-driven development reverses the traditional

development process. Instead of writing functional code

first and then testing it, the team writes the test code

before the functional code. The team does this in very

small steps—one test and a small amount of

corresponding functional code at a time. The developers

do not write code for new functionality until a test fails

because some functionality are not present. Only when

a test is in place do developers do the work required to

ensure that the test cases in the test suite pass. In

subsequent iterations, when the team has the updated

code and another set of test cases, the code may break

several existing tests as well as the new tests. The

developers continue to develop or modify the

functionality to pass all of the test cases. Test-driven

development allows us to start with an unclear set of

requirements and relies on the feedback loop between

the developers and the customers for input on the

requirements. The customer or a customer

representative is the part of the core team and

immediately provides feedback about the functionality.

This practice ensures that the requirements evolve over

the course of the project cycle. Testing before writing

functional code ensures that the functional code

addresses all of the requirements, without including

unnecessary functionality. With test-driven

12

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 4 [ISSN 2374-1619]

Publication Date: 27 December, 2014

 development, we do not need to have a well-defined

architectural design before beginning the development

phase, as we do with traditional development life cycle

methodologies. Test-driven development allows us to

tackle smaller problems first and then evolve the system

as the requirements become clearer later in the project

cycle.

A. Advantages
 Test-driven development [2] promotes loosely

coupled and highly cohesive code, because the

functionality is evolved in small steps. Each piece

of the functionality needs to be self-sufficient in

terms of the helper classes and the data that it acts

on so that it can be successfully tested in isolation.

 The test suite acts as documentation for the

functional specification of the final system.

 The system uses automated tests, which

significantly reduce the time taken to retest the

existing functionality for each new build of the

system.

 When a test fails, we have a clear idea of the tasks

that must perform to resolve the problem. Also

have a clear measure of success when the test no

longer fails. This increases the confidence that the

system actually meets the customer requirements.

Test-driven development [2] helps ensure that

source code is thoroughly unit tested. However, we still

need to consider traditional testing techniques, such as

functional testing, user acceptance testing, and system

integration testing. Much of this testing can also be

done early in our project. In fact, in Extreme

Programming, the acceptance tests for a user task are

specified by the project stakeholder(s) either before or

in parallel to the code being written, giving stakeholders

the confidence that the system meets their requirements.

V. Approaches Taken on
Project: Agile Testing
 The test team and the development team were

not formally separated. The developers worked

in pairs, with one person developing the test

cases and the other writing the functionality

for the module.

 There was much more interaction among team

members than there is when following a

traditional development model. In addition to

using the informal chat-and-develop mode, the

team held a 30 minute daily stand up meeting,

which gave team members a forum for asking

questions and resolving problems, and weekly

iterative review meetings to track the progress

for each iterative cycle.

 Project development began without any formal

design document. The specifications were in

the form of user stories that were agreed upon

by the team members. In the weekly iterative

review meetings, team members planned how

to complete these task and how many

iterations to assign for each task.

 Each task was broken down into several tasks.

All of the stories and corresponding tasks were

written down on small cards that served as the

only source of design documentation for the

application block.

 While developing each task, NUnit test suites

were written to drive the development of

features.

 No formal test plans were developed. The

testing was primarily based on the tasks or

stories for feature development. The

development team got immediate feedback

from the test team. Having the test team create

the quick start samples gave the development

team a perspective on the real-life usage of the

application block.

 After the task passed all of the NUnit test cases

and was complete, quick start samples were

developed to showcase the functionality. The

quick start samples demonstrated the usage of

the application block and were useful for

further testing the code in the traditional way

(functional and integration tests). Any

discrepancies found in this stage were reported

immediately and were fixed on a case-by-case

basis. The modified code was tested again with

the automated test suites and then was handed

over to be tested again with the quick start

samples.

 Traditional test phases typically fit with an

agile testing approach

 Unit testing is still completed by developers as

usual, but ideally there‟s a much stronger

emphasis on automated testing at the code/unit

level.

 In eXtreme Programming (XP) [8], there is

also a strong emphasis on test driven

development, which is the practice of writing

tests before writing code. This can start simply

with tests (or „confirmations‟) being identified

when a „task‟ is written, and can go as far as

actually writing automated unit tests before

writing any code.

 System testing and integration testing are

rolled together. As there is at least a daily

build, and ideally continuous integration,

features can be tested as they are developed, in

an integrated environment. As per waterfall,

this stage of testing is ideally carried out by

professional testers. Importantly, each feature

is tested as it‟s developed, not at the end of the

sprint or iteration, and certainly not at the end

of the project.

 Towards the end of each sprint, when all

features for the iteration have been completed

13

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 4 [ISSN 2374-1619]

Publication Date: 27 December, 2014

 (i.e. developed and tested in an integrated

environment), there needs to be time for a

short regression test before releasing the

software. Regression testing should be short

because it is automated; test driven

development, with features tested continuously

in an integrated environment, and it should not

result in many surprises.

 Finally, on a very large project, where a

release must practically span multiple sprints

to be of any value, a „stabilisation‟ sprint may

be worthwhile to make sure everything is okay

before release. This should, however, be a

short duration and the need for a stabilisation

sprint should be avoided if at all possible, by

trying to deliver releasable quality in each and

every sprint along the way. If it is required,

this sprint should be all about reducing any

defects prior to launch, and the scope of

development should at that time be frozen

VI. Tester Role in Traditional
Model

 A Tester will receive a requirements document

which he/she proceed to review.

 A Tester eventually gets a requirements

document that is considered baseline or

signed-off

 A Tester analyzes these requirements to create

test conditions and test cases

 A Tester writes the test procedures

 A Tester then waits for a piece of software to

deploy in test environment by developer.

 A Tester now starts executing the tests

 A Tester begins re-executing some of these

tests as now starts iterating through new builds

which are released to fix bugs or they may

even include new functionality

 A Tester then reaches the acceptable risk and

software is released

VII. Key Challenges for Tester
in Agile Project

 No traditional style business requirements or

functional specification documents. Tester will

have small documents which only detail one

feature. Any additional details about the

feature are captured via collaborative meetings

and discussions.

 A Tester will be testing as early as possible

and run the tests continuously throughout the

lifecycle so expect that the code won‟t be

complete and is probably still being written.

 Acceptance Test cases are part of the

requirements analysis process as tester are

developing them before the software is

developed

 The development team has a responsibility to

create automated unit tests which can be run

against the code every time a build is

performed.

 With multiple code deliveries during the

iteration, regression testing requirements have

now significantly increased and without test

automation support, Tester ability to maintain

a consistent level of regression coverage will

significantly decrease.

VIII. Processes Followed in
Agile Testing

 The Customer prepares the Business

Requirements and the Business Analyst or the

Engineering team reviews it. Ideally, the

Quality Assurance/Testing team is also

involved in reviewing these requirements in

order to be able to plan further stages

accordingly.

 During the Design and Implementation stages,

the Engineering team writes User Stories and

the analysis of issues at various stages. The

Customer reviews these on regular basis and

updates the Requirement specifications

accordingly. The Testing team would follow

up on regular basis at every stage until a

consolidated documentation is prepared. This

is to ensure that the Customer, the Engineering

team and the Testing team are at the same page

always and thus ensuring complete test

coverage.

 While the Engineering team starts the

implementation, the Testing team starts with

test planning, test strategies and test cases

preparation. These would be properly

documented and handed over to the Customer

and the Engineering team for review. This is to

ensure the complete test coverage and avoid

unnecessary or redundant test cases.

 As and when the Developer implements the

code, the Testing team identifies if the

application can be built using this code for a

quick testing. This is to identify the defects at

the early stage so that the developer can fix

them in the next round on priority basis and

continue with further development. This

iteration continues until the end of the code

implementation. Once the testing cycle starts,

the Test team can now focus more on major

test items such as Integration, Usability

Testing and System Testing

14

International Journal of Advances in Software Engineering & Research Methodology– IJSERM

Volume 1 : Issue 4 [ISSN 2374-1619]

Publication Date: 27 December, 2014

IX. Processes Followed in

Traditional Testing

 Receive requirements document from the

customer then proceed to review

 Eventually will get requirements document

that is considered baselined or signed-off

 Analyse these requirements to create test

conditions and test cases

 Write test procedures

 Then wait for a piece of software to

miraculously appear in test environment.

 Then now start executing tests

 Now begin re-executing some of these tests as

you now start iterating through new builds

which are released to fix bugs or they may

even include new functionality

 Then reach the acceptable risk, enough testing

point (or the fixed immovable deadline) and

the software is released

X. Conclusion
In this paper, we described the different testing

approaches to software development through traditional

and agile methodologies [1]. Furthermore, we initially

criticized on both traditional and agile methodologies

followed by the comparison. Further, we discussed on

benefits, analysis on test driven development & tester

challenges in both traditional and agile methodology.

The need for business to respond rapidly to the

environment in an innovative, cost effective and

efficient way is compelling the use of agile methods to

developing software. The future of agile methodologies

seems very dominant. In general, there are some aspects

of software development project that can benefit from

an agile testing approach and others can benefit from a

more predictive traditional testing approach.

References

[1] Beck, Kent, et al. (2001). "Manifesto for Agile Software

Development". Agile Alliance. Retrieved on 7 April 2014,
http://agilemanifesto.org .

[2] Beck, Kent (2002). “Test-Driven Development by Example”.
Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA.

[3] Palmer, Steve & Felsing, Mac (2001). “A Practical Guide to
Feature-Driven Development(1st ed.)”. Pearson Education.

[4] Peterson, K. (2010a). "Doctoral research in Sweden

Implementing Lean and Agile Software Development in Industry”.

[5] Koskela, Lasse. (2007). "Test Driven: Practical TDD and

Acceptance TDD for Java Developers". Manning Publications Co.
Greenwich, CT, USA.

[6] Pettichord, Bret. (2002). "Agile Testing: What is it? Can it

work?" Retrieved on 9 April 2014 from
http://www.sasqag.org/pastmeetings/AgileTesting20021121. pdf.

[7] Hendrickson, Elisabeth (2008). "Agile Testing, Nine Principles
and Six Concrete Practices for Testing on Agile Teams” Retrieved on

15 April 2014 from http://testobsessed.com/wp-

content/uploads/2011/04/ AgileTestingOverview.pdf.

[8] Crispin, Lisa (2003). "XP Testing Without XP: Taking Advantage

of Agile Testing Practices”. Retrieved on 17 April 2014 from
http://www.methodsandtools.com /archive.php?id=2.

[9] Highsmith, Jim and Cockburn, Alistair (2001). “Agile Software

Development: The Business of Innovation”. Addison-Wesley, 2001.

[10] Larman, Craig (2003). “Agile and Iterative Development: A

Manager's Guide”. Pearson Education.

[11]Weisert, Conrad (2003). “Waterfall Methodology: there's no such

thing!”. Retrieved on 18 April 2014 from

http://idinews.com/waterfall.html.

[12] “Overview of the Activity Model of the V-Model”(2006).

Retrieved on 20 April 2014 from http://v-modell.iabg.de/v-modell-xt-
html-english/.

[13] Peterson, K. (2010b). "Doctoral research in Sweden

Implementing Lean and Agile Software Development in Industry”.

[14] North, Dan (2006). “Introducing Behaviour Driven

Development”. Retrieved on 21 April 2014 from
http://dannorth.net/introducing-bdd/.

About Authors:

Mr. Balaji Sundramurthy is a Lecturer in

Gulf College, Sultanate of Oman. He has

published over 8 papers about Agile

methodology and he has received STC

Testing certificate. He is currently a PH.D

student under the supervision of Dr.

M.Sundara Rajan and his research is based

on Agile Methodology.

Ronald Cordova received his PhD in

Information Technology from Hannam

University, South Korea in 2009.

Presently, he is a Lecturer and Research

Coordinator at Gulf College, Sultanate of

Oman. He has authored and co-authored

several scientific publications. His

research interests are software engineering

and Internet applications.

Dr. M. Sundara Rajan is working as

Assistant Professor in Government Arts

College, Nandanam, Chennai. He is an

experienced educationist with over 20

years of experience in teaching. He

encourages research and is currently

supervising research work of many

students especially in areas of Software

Engineering, Data Mining and

Warehousing, computer Networking and

Natural Language Processing.

http://en.wikipedia.org/wiki/Kent_Beck
http://agilemanifesto.org/
http://agilemanifesto.org/

