

8

International Journal of Artificial Intelligence and Neural Networks – IJAINN
Volume 4 : Issue 4 [ISSN 2250 – 3749]

Publication Date : 27 December, 2014

Variant of Genetic Algorithm and its applications
[Chanchal Kumar, Shiv Prakash, Tarun Kumar Gupta and Dinesh Prasad Sahu]

For very long time, finding solutions to problems like

Travelling Salesmen Problem, Multiple Knapsack Problems,

scheduling in heterogeneous system etc. were considered very

tedious task. The solution to such problems was time consuming

and requires high end computations. Genetic Algorithm (GA)

emerged as an efficient solution and considered as a successful

tool to solve such problems for many years. With the passage of

time, researchers find GA traps near optimal solution. Therefore,

the concept of Quantum computing is merged with GA and

known as Quantum Genetic Algorithm (QGA). The evaluation of

the performance of proposed model is done over scheduling in

distributed computing.

Keywords— GA, GA and QGA Operators, QC, QGA, DC,

Scheduling

I. Introduction
In the field of research, many computational techniques

and models were inspired from natural phenomenon or from
deep observations of living systems. During early 1960‟s,
evolutionary computation technique originated and leading
researchers, industrialist, and scientists were influenced by its
wide range of applicability to solve combinatorial
optimization problems on a huge search space with a efficient
time/cost. Particle Swarm Optimization (PSO) technique is
inspired by the behavior of the bird flocking. Darwin‟s theory
over reproduction in nature helped to develop Genetic
Algorithm (GA). All these computational methodologies fall
in the category of soft computing [1, 22].

Quantum theory explained complicated behaviors of
atomic structure. It provided a uniform framework to construct
many modern physical concepts and considered as the one of
greatest scientific achievement of 20

th
 century.

Chanchal Kumar

Independent Researcher
India

Shiv Prakash

Jawaharlal Nehru University

India

Tarun Kumar Gupta

Jawaharlal Nehru University

India

Dinesh Prasad Sahu
Jawaharlal Nehru University

India

The concept of quantum computing was first proposed by

Feynman in early 80‟s.Researchers are working in the

direction of constructing a realistic quantum computer. Present

day computers can use binary bits i.e. either it can be 0 or 1 to

represent data. On the other hand, quantum computer would

use the concept of quantum bits or „qubits‟. Qubits can be

either zero or one or superposition of both. This concept has

been borrowed from concept of „quirks‟ of quantum

mechanics. This „quirks‟ give quantum computers a huge edge

in performing particular type of calculations. As the Quantum

Computing research area includes concepts like quantum

computers and quantum algorithms. Therefore, some quantum

algorithms had been introduced in the literature [3,4]. During

last decade some work has been reported in combining

Quantum computing concept with nature inspired evolutionary

computation [5, 6, 7, 11]. The quantum evolutionary algorithm

showed better performance than evolutionary algorithm such

as genetic algorithm. Ying had tried to explain the interplay

between quantum theory and artificial intelligence. The

researchers from all over the world are invited to fill up the

gaps in this direction [2].

II. Quantum Computing
In quantum computing, the smallest unit of information is

„Qubit‟, which may be in the 1 state or 0 states or in the

superposition of two states. In Quantum mechanics “State”

means all the aspects together, whatever information one can

have for the system should be contained in the description of

the state. If we say that we know the state of the system at any

instant that means we know everything about the system at

that instant that is possible to know. For Quantum systems of a

single particle, the information about the position, at time t, is

given by),(tx . At a given time t, there may not be a

definite position of the particle as the particle may be found at

various positions with probabilities proportional to

.),(
2

tx But to know anything about its position at a time t

we must know its wave function),(tx at a given instant of

time t.

III. Problem Structure
Many optimization problems like Multiple Knapsack problem

and Scheduling in heterogeneous system can‟t be solved by

mathematical methods (linear/nonlinear programming).This

paper focus on the basic structure of such problems and why

the mathematical methods are not capable to find a suitable

solution.

9

International Journal of Artificial Intelligence and Neural Networks – IJAINN
Volume 4 : Issue 4 [ISSN 2250 – 3749]

Publication Date : 27 December, 2014

A. Why Mathematical Techniques
Failed
There should be no doubt that mathematical methods were

very successful to find solutions of small real world problems.
Research is also moving in these fields for providing solutions
to such complex mathematical problem. But theoretically it
has its own limitations. Although the mathematical methods
have the ability to find the solution in a finite number of steps
and can be employed at reasonable cost for larger problems
but it can‟t be used due to oversimplifications of non linearity
towards linearity that throws away the optimal solutions at a
large distance. Designing of an EA Methods and Scope

The search space of most real world applications is defined by

a set of objects e.g. processors, number of machines, capacity,

reliability of each nodes, consumption of energy etc. The

evolutionary operators often work on abstract mathematical

objects like binary string in the case of genetic operators.

Genetic operators are cross over, mutation and inversion. The

crossover explores search space while the mutation and

inversion exploits search space. By using these operators, job

will be assigned in such a way that make span should be

minimum. Depending upon the nature of problem, initially the

structure of chromosome is decided. After that the population

is randomly create depending on its size. Then the fitness of

chromosome is calculated. Out of various chromosomes, some

chromosomes are selected as per selection process. EA

operators are applied on these selected chromosomes. After a

number of generations, the near optimum solution is obtained.

 Each one of them has their own benefits and drawbacks. On

one side in the first approach empirical and theoretical results

are available for the standard instances of evolutionary

algorithms.

IV. Proposed Quantum Genetic
Algorithm

We have elaborated QGA in the following subsections.

A. Genetic Algorithm (GA)
Genetic algorithms (GA) [8, 9] are inspired by Darwinian‟s

theory of natural selection and evolution. The simple genetic

algorithm initiate with a population of randomly generated

chromosomes, all chromosome are eligible to be a solution to

the concrete problem but the best one is selected as per

selection policy. Further three natural operators selection or

reproduction, crossover and mutation are applied on

chromosomes. Over the period of time, the population evolves

through successive iteration process of controlled and

competition variation. Every state of population is known as

generation.

B. Quantum Inspired -GA
 QGA introduced the idea of quantum computing with

genetic algorithms. The concept of superposition,

entanglements and intervention are taken from QC while

selection, crossover and mutation are taken from GA. The Q

bit population is used encode the chromosomes while quantum

rotation and quantum mutation are used for updating the

solution [12, 13, 14, 15]. A Q bit solution is m Q-bit string can

be defined as follows:

mi

ttt

ttt

ii

m

m

,......2,1,1where

(1) ,
)(...)()(

)(...)()(

22

21

21




















Initial Population & Q bit Encoding

 Initial population is randomly generated as:

(2))}()......(),(),({)(4321 tptptptptpQ 


where
)(tpi is defined as follows:

(3)
)(...)(2)(1

)(...)(2)(1)(









tmtt

tmtt
tp j 





Quantum Rotation Operations

 Quantum rotation gate is used for updating solution. The

Quantum Rotation Gate)(U for a chromosome of length

unto 2 had been defined in the literature as:

)4(
)cos()sin(

)sin()cos(
)(

















U 

 The magnitude and direction of rotation angle  are

crucial. Method of obtaining  directly impacts the

convergence speed and algorithm‟s searching efficiency. The

phase of chromosomes is moved by quantum rotation

operation for each Q bit by  to moves toward global

optimal chromosomes. By studying the phase relation between

these Q bits rotated population can be determined as follows:

)5(
)(

)(
)(

)1(

)1(






















t

t
U

t

t












Quantum Mutation Operator

To increase the searching ability in local space, the diversity

of individual is increased and the probability of immature

10

International Journal of Artificial Intelligence and Neural Networks – IJAINN
Volume 4 : Issue 4 [ISSN 2250 – 3749]

Publication Date : 27 December, 2014

convergence is reduced through quantum mutation operator. In

general quantum „Not‟ operation is used widely for mutation

operation in quantum inspired evolutionary techniques. In

each generation, a random number is generated in the range of

0 and 1. If the mutation probability Pm, is higher than this

random number then chromosome is selected randomly and

the positions of two quality parameter will be swapped. For

example, if the randomly chosen chromosome is

 Ttt)()( and two randomly chosen quality parameter

is first and the last then after mutation it will be converted

according to following equation

)6(
)(

)(

)('

)('


















t

t

t

t










Proposed Algorithm

1. At t=0, Initialize population

)(tPQ = {)(1 tp ,)(2 tp ,…,)(tpN }

2. Decode)(tPQ in accordance with the problem.

3. Evaluate the fitness value of each individual solution in

decoded population)(tPQ

4. Observe the best solution and store it.

5. If the stopping criteria is satisfied, then go to step 9;

6. At t = t+1 update)(tPQ to)1(tPQ by applying

quantum rotation

7. Again decode)1(tPQ in accordance with the

problem.

8. Evaluate the fitness value of each individual solution in

decoded population)(tPQ

9. Observe the best solution and store it.

10. Execute mutation operator.

11. If the stopping criterion is not satisfied, go to step 5.
12. Display the output

V. Applications
The mentioned algorithm can be applied on the problem like

TSP, Knapsack, and Scheduling etc. In this paper only

scheduling in distributed computing problem is focused.

A. Scheduling problem in a Distributed
Computing

A distributed computing system has emerged as a powerful

platform for providing higher computational power. The task

assignment problem on such systems is a NP-complete

problem. It is a mapping which assigns task of a program

among different processors of distributed computer systems in

order to optimize some characteristic parameters. The goal can

be achieved by maximizing the utilization of resources and

reducing the communication time between processors. These

two criteria of the goal increases the complexity of the

problem and a conflict arises in the problem as first criteria

requires to distributes the tasks among different processors

where second criteria require to distribute them on the same

processors. Because of the intractable nature of the task

assignment problem, it is desirable to develop good heuristic

algorithm/hybrid algorithm according to the need of the

problem.

The architecture of the Distributed Computing System

(DCS) is shown in Fig. 1 below [17].In distributed computing

systems all the stand alone machines have their own storage

and connected through Internet. Being distributed over

different geographical location such systems are loosely

coupled and have high latency [18, 19, 20].

 Scheduling of task among different machines is the main

challenge in parallel and distributed computing systems.

Scheduling is a fundamental issue to achieve high computing

performance. Due to the involvement of large numbers of

resources, prime objective is to optimize global use of

resources. The scheduling problem of local resources on single

system is already solved to much extend. There are two types

of scheduler terms as local scheduler and global scheduler.

Local scheduler is responsible of the scheduling inside each

element of DC locally while global scheduler will take care of

scheduling globally. In this paper, it is assumed that the local

scheduler works in FCFS manner. Scheduling of jobs on DC

nodes with appropriate resources is a NP-hard problem [21].

In more realistic cases, various issues have to consider during

design of scheduling algorithm. To obtain parallelism, task

graphs structure is considered. Other factors like arbitrary

computation, task granularity and communication costs can be

also considered to achieve parallelism.

The priorities of nodes are also determined statically before

the beginning of scheduling process. The nodes with higher

priority are preferred first for the scheduling. On the next, the

best processor i.e. the processor with minimum task

completion time is selected which results in better scheduling.

The static approach may leads to an inefficient schedule. It

may possible that some higher priority task can arrive after

priority assignment during the scheduling. In such scenario, as

there is no option to change the priority once after it has been

decided. Thus it will reduce the overall performance of the

system. In distributed computing system, nodes are connected

via network but unaware about location of other computing

nodes. All the nodes are capable to access the service of any

other node.

The parameters considered during scheduling [22] might be

turnaround time, system utilization, response time, throughput

and waiting time etc. The factors that may have an effect on

the scheduling decision are as below [22]

 Node speed: The speed of the computing processor on

which the job is to execute. Faster job execution is expected

on faster machine.

 Number of processors in the node: A node may consist of

multiple processors. The performance of a node is directly

propositional the number of processors.

11

International Journal of Artificial Intelligence and Neural Networks – IJAINN
Volume 4 : Issue 4 [ISSN 2250 – 3749]

Publication Date : 27 December, 2014

 Existing workload: This refers to the number of modules

(jobs) already allocated on the node. If the pre-assigned

workload is higher, then turnaround time will also be higher.

 Node’s local scheduling policy: DC scheduler only

schedules the job on the appropriate nodes. The local

scheduler is equally important to achieve high performance. It

is impossible to achieve peak performance of DC with

considering local scheduling policy.

Figure 1. Architecture of a Distributed Computing System

B. Scheduling in DC
Initially, the tasks are distributed randomly by global

scheduler. Makespan is defined as time required finishing

latest task. Assumption for scheduling in distributed

environment, tasks are independent, computing nodes have

different computing speed, and uniform task migration cost.

We have m computing node in distributed environment and n

jobs. We want distributed the n jobs in m computing node so

that the make span is minimal. This is combinatorial problem

falls in NP Class [21]. GA is applied scheduling in distributed

[22].Therefore we apply QGA for solving this. For

implementing scheduling in distributed environment we

generate the initial population using equation (1). Apply the

initial coding using equation (2). Perform evolutionary

rotation using equation (3) and equation (4). Mutation can be

performed using equation (5). Generate random numbers

uniformly between 0 to1, and generate randomly n/2+1

threshold points. Here threshold points map the parameters of

the problem. If square of the random number lies between l
th

and (l+1)
th

 threshold then we select)(ti and)(ti . For

scheduling problem in distributed computing environment

generate random numbers uniformly between 0 to1, and

generate randomly. If square of the random number lies

between l
th

 and (l+1)
th

 threshold then we select)(ti and

)(ti . Fitness of Population is calculated by using

makespan. We perform the experiments after implementing

algorithm discussed above in C++. The integrated

development environment is Visual C++. System requirement

is Windows 7, OS with 2 GB RAM and 3.2 GHz processor

speed. The experiments have been simulated in C++.

VI. Experimental Results

Makespan Observation

500

5500

10500

15500

20500

1 41 81 121 161 201 241 281 321 361 401 441 481

Generation

M
a
k
e
s
p

a
n 4 Nodes

8 Nodes

16 Nodes

32 Nodes

Figure 2. Makespan Observation with varying nodes

Generations- 500, Number of Task-500, Population Size-
100 Arrival Rate Range 1-100 MIPS, Service Rate 101-200
MIPS, Range of Task Size 2000-5000 MI.The observations
drawn from the above graphs are as follows:

1. By 300 generations solution converges.

2. From Fig. 2, it is observed that makespan decreases with

increment of the number of distributed nodes i.e. in the case of

for 500 tasks the makespan with 4 nodes is 10529.39 which

becomes 2205.911 for 8 nodes and further 1623.609 16 nodes

for 32 nodes 867.4721.

Makespan Observation

300

500

700

900

1100

1300

1 47 93 139 185 231 277 323 369 415 461

Generation

M
a

k
e

s
p

a
n

64 Nodes

80 Nodes

128 Nodes

Figure 3. Makespan Observation with varying nodes

Number of Task-500, Population Size-100 Arrival Rate Range

1-100 MIPS, Service Rate 101-200 MIPS, Range of Task Size

2000-5000 MI

The observations drawn from the above graphs are as follows:

1. By 300 generations solution converges.

2. From figure 3, it is observed that makespan decreases with

increment of the number of distributed nodes i.e. in the

case of for 500 tasks the makespan with 64 nodes is

801.2102 which becomes 601.2674 for 80 nodes and

further 421.0609 128 nodes.

Application

Monolithic

 Kernel

Application

Monolithic

 Kernel

--

Application

 Monolithic

 Kernel

Network Interconnect

12

International Journal of Artificial Intelligence and Neural Networks – IJAINN
Volume 4 : Issue 4 [ISSN 2250 – 3749]

Publication Date : 27 December, 2014

Makespan Observation

300

500

700

900

1100

1300

1500

1700

1900

2100

1 20 39 58 77 96 115 134 153 172 191

Generation

M
a

k
e

s
p

a
n

4 Nodes

16 Nodes

32 Nodes

Figure 4. Makespan Observation with varying nodes

No of Task-200, Population Size-100 Arrival Rate Range 1-
100 MIPS, Service Rate 101-200 MIPS, Range of Task Size
2000-5000 MI.

The observations drawn from the above graphs are as follows:

1. By 150 generations solution converges.

2. From Fig. 4, it is observed that makespan decreases with

increment of the number of distributed nodes i.e. in the

case of for 200 tasks the makespan with 4 nodes is 1936.83

which becomes 608.506 for 16 nodes and further 373.709

32 nodes.

VII. Conclusion and Future Scope
As discussed above, there is a variety of problems for which

exact algorithm doesn‟t exists. Evolutionary techniques

provide much efficient solutions for such problems. It is the

point of research that for what type of problem which

evolutionary technique may be applied and how efficiently it

is possible to map the parameters of the various applications to

that of the different heuristic methods. In recent, GA, PSO,

etc. have been applied on such problems. Sometimes, two or

more methods are mixed together making a hybrid algorithm

to explore good results for specific type of problem [10, 16].In

future it is our plan to propose QGA to solve channel

allocation problem.

References

[1] S. Prakash and D.P. Vidyarthi, “Observations on Effect of IPC in GA

Based Scheduling on Computational Grid”, International Journal of Grid
and High Performance Computing, 4(1): 67-80(2012)

[2] Y. Mingscheng, “Quantum computation, quantum theory and AI”,
Artificial Intelligence 174, 162-176 (2010).

[3] K.L.Grover,”A fast quantum mechanical algorithm for database search,”
in Proc. 28th ACM Symp. Theory Comput., Philadelphia, 212-221
(1996).

[4] W.P.Shor,”Algorithms for Quantum Computation:Discrete logarthims
and factoring,” in Proc. 35th Symp. Found. Comput. Sci., Los Alamitos,
CA 20-22 (1994)

[5] K.Han, J.Kim, “Genetic quantum algorithms and its applications to
combinatorial optimization problem,” In Proc. of 2000 Congr. on Evol.
Comput., USA 1354-1360 (2000).

[6] K.Han, J.Kim,”quantum inspired evolutionary algorithm for a class of
combinatorial optimization,” Computer Journal of IEEE Trans. on Evol.
Comput., 6(6), 55-59 (2000).

[7] K.Han, J. Kim, “ A quantum inspired evolutionary algorithm with a new
termination criterion, he gate and two phase scheme,” IEEE Trans.
Evol. Comput. 6(6) 580-593 (2002).

[8] D.E. Goldbeg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Pearson, (2005).

[9] T.Mitchell, Machine-Learning. Mcgraw-Hill Series in Computer
Science, (1997).

[10] N.Zhao, Z.Wu,Y.Zhao,T.Quan,”Ant colony optimization algorithms
with mutation mechanism and its applications,” Expert System with
Applications, 37 4805-4810 (2010).

[11] T.Hogg, D.Portnov,”Quantum optimization” Inform.Sci. 128(3-4), 81-97
(2000).

[12] S. Prakash and D.P. Vidyarthi “A Novel Scheduling Model for
Computational Grid using Quantum Genetic Algorithm”, Journal of
Supercomputing Springer, 65 (2), 2013, pp.742-770.

[13] Q.Niu, F.Zhou,T. Zhou,”Quantum genetic algorithm for hybrid flow
shop scheduling problem to minimize total completion time,” LNCS
6329 Part(II,) 21-29 (2010).

[14] J.Gu, X.Gu, M.Gu,”A novel parallel quantum genetic algorithm for
stochastic job shop scheduling,” J. Math. Anal. Appl. 355, 63-81 (2009).

[15] J.Xiao, Y.Yan, J. Zhang, Y.Tang,“A quantum inspired genetic
algorithm for k- mean clustering,” Expert Systems with Applications 37
(7) , 4966–4973 ,(2010)

[16] G.Huang, A.Lim,” A hybrid genetic algorithm for the three index
assignment problem,” Europian Journal of Operational Research, 172(1),
249-257 (2006).

[17] S. Prakash and D.P. Vidyarthi, “Maximizing availability for task
scheduling in computational grid using GA”, Concurrency Comput.
Pract. Ex. 2014.DOI:10.1002./cpe.3216

[18] S. Prakash and D.P. Vidyarthi, “A model for load balancing in
computational grid”, In Proc. High Performance Computing (HiPC11)
Bangalore, 2011; 1-5.

[19] A .S. Tanenbaum, Modern Operating Systems, Second Edition PHI
2004.

[20] P.K. Sinha, Distributed Operating Systems Concepts and Design ,PHI
2005.

[21] S. Prakash and D.P. Vidyarthi, “Load Balancing in Computational Grid
Using Genetic Algorithm”, International Journal of Advances in
Computing, Scientific and Academic Publishing, 1 (1), 2011, pp. 8-17.

[22] D.P.Vidyarthi, B.K. Sarker, A.K. Tripathi, and L.T. Yang, Scheduling
in distributed computing systems: Analysis, design, and models, New
York, Springer(2009).

