

170

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

Android Native Mobile Application Functional Test

Automation
Calabash-Android Automated Testing Technology

[Loke Mun Sei & Fairuz Mariman]

Abstract—Mobile application has become very popular and

widely used. Hence, the need and importance of mobile

application testing has significantly increased before the mobile

application gets to go to market on time and within budget. This

paper discusses on the challenges faced in testing a native mobile

application, and how Calabash-Android automated testing

technology is used to help in automating Android mobile

application testing. The sample illustrated in this paper is

running on a mobile device emulator.

Keywords—test automation, mobile application testing,

Calabash, Android, native application, emulator

I. Introduction
In 2013, there were over 1,790,000 mobile applications

available in apps stores and the number of downloads reached
102 billion with total revenue of $26 billion [1] [2]. The
mobile landscape is rapidly evolving, demanding mobile apps
developers to deliver intuitive, reliable, and robust apps in a
shorter time-to-market cycle and within budget while not
compromising on the product’s quality. The product has to be
rigorously tested to ensure it is working in terms of its
functionality and usability.

A good test strategy outlines the test approach to verify the
product’s functional and non-functional features. A
comprehensive mobile application testing strategy should
include a mixture of test devices (multiple versions of
operating systems), types of network environment (Wi-Fi or
cellular network), and the types of testing involved
(Functional, Usability, Performance or Security). However, it
is inevitable that test engineers will face challenges in mobile
application testing. As a result, new trends in software testing
have emerged for example “crowdsourcing”, “test in the
cloud” and “mobile application test automation” to overcome
the challenges faced by test engineers in testing mobile
applications.

Loke Mun Sei

Product Quality & Reliability Engineering, MIMOS Berhad

Malaysia

Fairuz Mariman

Product Quality & Reliability Engineering, MIMOS Berhad

Malaysia

II. The Challenges
The following are the analysis of the challenges faced in

the test phase of a native mobile application:

A. Device Diversity
The biggest challenge when it comes to mobile application

testing is the device variation. Mobile devices may vary from
operating system version, manufacturer, screen resolution,
memory, hardware, etc. Hence, it is costly and not feasible to
test the mobile application on each and every of the real
mobile devices available in the market. One common way to
overcome this issue of testing on numerous physical devices is
to use simulators or emulators. Emulators are easier to manage
and cost-effective compared to the real devices.

B. Operating Personnel Human Error
The functional test of mobile applications often involves

manual tasks. The test engineer creates test cases and executes
the test cases manually, step by step and indicates whether a
particular step was accomplished successfully or whether it
failed. It is very much depends on the individual’s domain
knowledge and testing skill. One test engineer may approach
and perform a test differently than another, thus, operating
personnel human error can occur easily if it all done manually.

C. Test Cycle Time
During the functional test phase of a native mobile

application, there might be several test iterations involved.

Test engineers execute the test cases and report the test result.

If the test result is failed, developers will fix the reported issue

and test engineers will then retest and verify the same test

cases. It is time consuming if the same test cases were to be

manually executed in each and every of the test iterations and

also during the regression test phase.
Since the allocated time for testing is limited and the

mobile application needs to be published to the market within
budget and time, it is usually impossible for test engineers to
retest all of the existing test cases. The usual workaround
would be to prioritize and to select and test a small subset of
the existing test cases based on the timeline available. As a
result, the test coverage would be reduced and the risk of
defects escaping during the test phase could be alarming and
very high.

171

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

III. The Solution
A test automation tool with the objective to address the

challenges mentioned earlier while maintaining the quality of
the native mobile application is needed. Hence, we use an
automated testing technology, Calabash-Android to automate
our mobile application test cases. The automated test cases can
then be used as regression test to determine the new patch or
version released does not affect or break the existing mobile
application functions.

Calabash is an automated testing framework based on
Cucumber, supporting both Android and iOS native
applications. Cucumber is a tool that executes plain-text
functional descriptions as automated tests. The text is written
in a business-readable domain-specific language and serves as
documentation, automated tests and development-aid that are
all rolled into one format [3].

Figure 1. Calabash Framework [4]

With comparison to the test automation tool for web
application, Calabash could be compared to Selenium
WebDriver. However, interacting with a web application from
a laptop or desktop computer (using keyboard or mouse click)
is different from interacting with a native application using a
touch screen. Calabash provides APIs that are specialized to
native applications running on touch screen devices.

Calabash consists of two libraries: Calabash-Android and
Calabash-iOS. Calabash-Android is the automation and testing
library for Android, and similarly Calabash-iOS is for iOS (we
will cover and focus on Calabash-Android library in this
paper).

Calabash-Android is the underlying low-level library that
empowers the Cucumber tool to run automated functional tests
on Android phones and tablets as well as on simulators. This
low-level library enables Quality Assurance (QA), business
staff and developers to work at a high level by writing tests in
a natural language using the terms and concepts of their
business domain [5].

In Android, Calabash follows the same Client-Server
model, but instead of the server portion running inside the
mobile application, it actually runs as a separate application,
which has permission to instrument the mobile application.

Figure 2. Calabash in Android [4]

A. Mobile Application Functional Test
Automation Example
This section will discuss on the steps by steps walkthrough

on how the mobile application functional test is being
automated. For example, we use the sample mobile application
“apiDemos.apk” [6] and we want to automate the following
test scenario:

 Launch “API Demos” application

Figure 3. API Demos Application

 Press on “App” button

Figure 4. App Button

172

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

 Wait for “Activity” button to appear and take a
screen capture of the screen.

Figure 5. Activity Button

In order to automate the test scenario and test steps
mentioned earlier, first, we need to create a Cucumber

skeleton in the current folder using command “calabash-

android gen”. The directory structure of the Cucumber
skeleton created is as shown in Figure 6.

Figure 6. Cucumber Skeleton Directory Structure

To start creating the automation script, edit the feature file

“my_first.feature” content to fit to the mobile
application test scenarios.

Calabash-Android has some predefined steps that can be
called in a feature file by passing valid argument. In this case,
we do not need to define these steps in the steps definition
Ruby file. Figure 7 below is the sample feature file,

“my_first.feature” to automate the test scenario and
test steps mentioned earlier.

Figure 7. Sample Automation Script

In this example, the predefined step “take picture” is

being called. The “take picture” keyword is one of the
predefined steps available in the steps definition file,

“screenshot_steps.rb”, i.e.

Figure 8. Predefined Steps Definition File – “screenshot_steps.rb”

B. Mobile Application Functional Test
Automation Result
Before the test automation script can be executed, a key

store file needs to be created and then be used to resign the
mobile application file. In this example, we will test the
mobile application using android emulator. Hence, we start the
android emulator before the automation test execution.
Emulator allows us to switch device types and load a new
profile, each time we select a device type. This gives us a
preview of the real device where the mobile application would
be downloaded.

After making sure the device is online, test automation

script can then be executed with the command “calabash-
android run <apk_file>.apk

ADB_DEVICE_ARG=<device_name>”. The automation
script will be executed with test case status, i.e. green colour
indicates the test is “Pass”, and red colour indicates the test is
“Fail”, e.g. refer to Figure 9 for the test automation result. At
the last step of the automation script execution, a screenshot

will be taken and saved as “screenshot_0.png” in the
system. The screenshot output will have the same capture as in
Figure 5 mentioned earlier.

Figure 9. Execute Test Automation Script and Result

Table I shows the estimated test execution time comparison
for both manual and automated testing based on the sample
test steps mentioned above. It has reduced approximately half

173

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

of the test execution time by automating these simple test
steps.

TABLE I. TEST EXECUTION TIME COMPARISON

Test Step
Time Spent (second)

Manual Automated

Copy apk file and install in
mobile device/emulator

60

60

Launch “API Demos”

application
1

Press on “App” button 1

Wait for “Activity” button to

appear and take a screen capture
of the screen (save the screen

capture file)

60

Total 122 60

IV. Conclusion and Future Work
From the study and research conducted, it clearly shows

that this Calabash-Android automated testing technology has a
great impact on the native mobile application functional
testing as it reduces the test cycle time, reduces the cost of
testing in real mobile devices and indirectly minimize human
error with automated test steps.

For future work, we plan to create and add more
commonly used test steps in the predefined steps definition
file so that it can be shared across different mobile application
projects. We also plan to extend the test automation to support
iOS mobile testing by using the Calabash-iOS library.

References
[1] Gartner Says Mobile App Stores Will See Annual Downloads Reach 102

Billion in 2013, http://www.gartner.com/newsroom/id/2592315

[2] Gartner: 102B App Store Downloads Globally In 2013, $26B In Sales,
17% From In-App Purchases, http://techcrunch.com/2013/09/19/gartner-
102b-app-store-downloads-globally-in-2013-26b-in-sales-17-from-in-
app-purchases/

[3] Cucumber - Making Behaviour Driven Development (BDD) fun,
http://cukes.info/

[4] Introduction to Calabash,
http://developer.xamarin.com/guides/testcloud/calabash/intro_to_calabas
h/

[5] Calabash: Functional Testing for Mobile Apps,
http://blog.lesspainful.com/2012/03/07/Calabash/

[6] Sample mobile application file “apiDemos.apk” download, http://apk-
recovery.googlecode.com/files/apiDemos.apk

About Author (s):

Loke Mun Sei

Senior Engineer for Product Quality &

Reliability Engineering (PQRE)

department, MIMOS Berhad. Focus

mainly on test automation for both

functional and security testing.

Fairuz Mariman

Lead for Functional Test Team of the

Product Quality & Reliability Engineering

(PQRE) department, MIMOS Berhad.

Focus mainly on managing the team and

to support the team with test automation

idea.

