

66

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

Quantum-Inspired Evolutionary Algorithm to Solve

Graph Coloring Problem
Pronaya Prosun Das, Mozammel H. A. Khan

Abstract—Graph Coloring Problem (GCP) bears an

enormous significance to the researchers in the field of soft

computing. In this paper, we demonstrate a Quantum-Inspired

Evolutionary Algorithm (QEA) to solve GCP. We use two

dimensional arrays of Q-bits called Q-bit individual to produce

binary individual. Q-gate operation is applied as a variation

operator on Q-bit individuals. In traditional evolutionary

algorithm (EA) for GCP, k-coloring approach is used and the EA

is run several times for decreasing value of k until lowest possible

k is reached. In our QEA, we start with the number of colors

equal to the theoretical upper bound of the chromatic number,

which is maximum out-degree + 1, and during evolution some

colors are made unused to reduce the number of color in each

generation. As a result, solution is found in a single run. We test

36 datasets from DIMACS benchmark and compare the result

with several recent works. For five datasets, our algorithm

obtains better solution than other.

Keywords—quantum-inspired evolutionary algorithm (QEA),

graph coloring problem (GCP), combinatorial optimization, Q-

bit representation, Q-gate.

I. Introduction
Graph coloring problem (GCP) is a well-known NP-hard

problem [1]. GCP assigns different colors to the adjacent
vertices of a graph using minimum number of colors. The
GCP is illustrated with a simple graph in Fig. 1, where
minimum number of colors needed to color eleven vertices is
three. In Fig. 1, the vertex number is shown within the circle
and the color number is shown outside the circle. The notable
application of GCP are seen in pattern recognition [2], map
coloring [3], radio frequency assignment [4], Bandwidth
allocation [5], and timetable scheduling [6] etc.

Fig.1: Example of graph coloring.

Assume, graph G = (V, E) is to be colored with m number
of colors. The upper bound of the number m is d+1, where d
is the maximum out degree of the graph.

Pronaya Prosun Das, Mozammel H A Khan

East West University
Bangladesh.

Our objective is to color all the vertices initially with m = d+1
and then reducing m dynamically so that minimum chromatic
number, denoted by x(G), is found, that is m = x(G) is
reached. In this paper, we propose a Quantum-inspired
Evolutionary Algorithm (QEA) [7], which is the combination
of concept of quantum computing [8] and evolutionary
algorithm. It uses population of Q-bit individuals and Q-gate
as a main variation operator.

II. Prior Work
One of the most recent works on GCP is Memetic

Algorithm (MA) [11] that used binary encoded chromosome.
Population is updated mainly using classical crossover
operator. Offsprings are corrected if needed. Then a
deterministic improvement technique is applied on the
corrected offsprings to improve the solution quality. Another
work on GCP [12] combines wisdom of artificial crowds
approach with the genetic algorithm (GA). In this approach,
multiple parent selection and multiple mutations based on the
closeness of the solution to the global optima are used. The
algorithm is run several times for several decreasing values of
k and the minimum possible k value is taken as the minimum
chromatic number. A guided genetic algorithm for GCP called
MSPGCA is reported in [13], where the authors fine-tuned the
initial chromosomes using a simple genetic algorithm and then
the deterministic MSPGCA algorithm is run to dynamically
reduce the chromatic number. In paper [14], the authors have
proposed a hybrid algorithm to solve GCP. GA has a highly
degenerate objective function. In order to compensate for this
degeneracy, bitstream neuron (Boltzmann Machine) was
applied to the solution obtained from GA. A hybrid immune
algorithm is also applied on GCP [15]. All the above
mentioned approaches used integer encoding for the
chromosomes except the paper [11].

III. Methodology
Representation of the Graph is discussed first and then the

proposed QEA for GCP is discussed.

A. Representation
A Q-bit is defined as the smallest unit of information [8] in

QEA, which is defined with a pair of numbers (α, β),

where | | | | . | | and | | gives the probability
that the Q-bit will be found in the “0” state and the “1” state,
respectively. For GCP, we use two-dimensional array of Q-
bits as a Q-bit individual, where each row corresponds to a
color and each column corresponds to a vertex. Later binary
individuals are produced from Q-bit individuals. If the jth
vertex be colored using the ith color, then the (i, j)th element
of the array is 1 and the other elements are 0s. Thus, in a valid
chromosome, every column must have a single 1 and a row

67

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

will have one or more than one 1s placed on non-adjacent
vertices columns. The encoding scheme is illustrated in Fig. 2.
A row may also have all 0s, in which case the color is not used
in the solution. If a column has all 0s (the vertex is not
colored) or more than one 1s (more than one color is assigned
to that vertex), then the encoding is invalid. On the other hand,
if a row has 1s in adjacent vertices columns (same color is
assigned to adjacent vertices), then the encoding is invalid.
These situations may arise during creation of the binary
individual from Q-bit individual. When a binary individual
becomes invalid, then it is corrected using repair procedure.
Thus the number of rows having at least one 1 is the number
of used colors and is used as the fitness function in our QEA.

 1 2 3 4 5 6 7 8 9 10 11

1 0 1 0 0 1 0 1 0 0 1 0

2 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 0 0 0 0 0 1 0 1

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 1 0 1 0 1 0 0 0

Fig. 2: Proposed binary individual for GCP of the graph of
Fig. 1.

B. Proposed QEA to solve GCP
We present the detailed algorithm of QEA for the Graph

Coloring. The Graph Coloring problem is considered to
demonstrate the applicability of QEA to the combinatorial
optimization problem.

Procedure QEA for the GCP

01: begin

02: t 0

03: initialize Q(t)

04: make P(t) by observing the states of Q(t)

05: repair P(t)

06: evaluate P(t)

07: store the best solutions among P(t) into B(t)

08: while (t < MAX GEN) do

09: begin

10: t t + 1

11: make P(t) by observing the states of Q(t - 1)

12: repair P(t)

13: evaluate P(t)

14: update Q(t)

15: store the best solutions among B(t - 1) and P(t) into B(t).

16: store the best solution b among B(t).

17: if (migration-period)

18: then migrate b or
 to B(t) globally or locally,

respectively

19: end
20: end

Here, length of row and column of Q-bit individual is m
and v respectively for GCP. m is the number of colors and
start with the value equal to „maximum out degree+1‟and v is
the number of vertices. QEA maintains a population of Q-bit

individuals, () *

 + at generation t, where

k is the size of population, and
 is a Q-bit individual.

[

|

|

|

]

Where, is the number of Q-bits in an individual

and . In the step of initialize Q(t), all
 and

 are initialized with √ ⁄ , where, and

 . On line 04 and 11, QEA produce population of

binary individuals, () *

 + from population of

Q-bit individuals, where t = 0, 1, 2, … . For notational
simplicity, x and q are used instead of

 and
 respectively.

The following make procedure is used to obtain the binary
string x.

Procedure make (x)

01: begin

02: i 0

03: j 0

04: while (i < m) do

05: begin

06: i i + 1

07: while (j < v) do

08: begin

09: j j + 1

10: if (random [0, 1) < | |

)

11: then

12: else

13: end

14: end

15: end

Binary individuals are repaired if needed. Two possible
problems may occur – (i) a column may have multiple 1s or
(ii) a column may have all 0s. We also have to ensure that
adjacent vertices have colored with different colors.

 1 2 3 4 5 6 7 8 9 10 11

1 0 1 0 0 0 1 0 0 1 0 1

2 0 0 0 0 0 1 0 1 0 0 0

3 1 0 0 1 0 0 1 0 1 0 1

4 0 0 1 0 0 0 0 0 1 0 0

5 0 0 0 0 0 0 0 1 0 0 1

6 1 0 0 1 0 1 0 0 1 0 0

Fig. 3: Invalid Chromosome.

The chromosome shown in Fig. 3 is invalid and has the
two possible problems. Invalid chromosomes are corrected by
repair procedure. For case (i), only one 1 is kept and for case

68

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

(ii), a 1 is inserted. Both are done at a selected row among
used color cluster which is sorted according to number of uses
so that no conflict is created at that row (breaking tie
randomly). If such a used color row is not available, then a 1 is
inserted at a randomly selected row among unused color
clusters. A possible corrected version of invalid chromosome
of Fig. 3 is shown in Fig. 4.

 1 2 3 4 5 6 7 8 9 10 11

1 0 1 0 0 1 0 1 0 0 1 0

2 0 0 0 0 0 0 0 0 0 0 0

3 1 0 1 0 0 0 0 0 1 0 1

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0 0

6 0 0 0 1 0 1 0 0 0 0 0

Fig. 4: Corrected Chromosome of Fig. 3.

Binary chromosomes are corrected using repair procedure
as follows:

Procedure Repair (x)

01: begin

02: for (all vertex v in random order) do

03: begin

04: iscolored false

05: for (all color i which is assigned to v in a ordering

most to least used) do

06: begin

07: if (iscolored)

08: then remove color i from v

09: else if (v is colorable with i)

10: then iscolored true

11: end

12: end

14: for (all vertex v which is not colored) do

15: begin

16: iscolored false

17: for (all used color i in a ordering most to least used) do

18: begin

19: if (not iscolored and v is colorable with i)

20: then {

21: color the vertex, v with i

22: iscolored true

23: }

24: end

25: if (not iscolored)

26: then color the vertex v with an unused color

27: end
28: end

The update procedure of Q-bits is presented below:

Procedure Update (q)

01: begin

02: i 0

03: j 0

04: while (i < m) do

05: begin

06: i i + 1

07: while (j < v) do

08: begin

09: j j + 1

10: Determine with the lookup table

11: Obtain () from the following:

12: if (q is located in the first/third quadrant)

13: then [

]

 ()

14: else [

]

 ()

15: end

16: end

17:

18: end

Here, gate is used as a Q-gate to update a Q-bit
individual as a variation operator. Q-bit of ith row and jth

column () is updated as follows:

[

]

 ()[

]

Where, () is a simple rotation gate,

 () [
 () ()

 () ()
]

i) if|
 |

 |

 |

[

] [√ √]

ii) if|
 |

 |

 |

 [

] [√ √]

iii) otherwise

[

] [

];

Fig. 5: gate based on rotation gate.

In this QEA for GCP, the angle parameters used for the
rotation gate are shown in Table 1. Let us define an angle

vector , -
 , where can be found

from table 1. We have used, and
0 for the rest. The values from are

recommended for the magnitude of . Otherwise, it may

converse prematurely. The sign of determines the

69

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

direction of convergence. We have chosen . In table

1, () is the fitness, and and are the (i, j)th bits of the

best solution and the binary solution , respectively. In the
QEA for GCP, , , ,
 , , , are used.

Table 1: lookup table of

 () ()

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

In line 18 of Procedure QEA for the GCP, migration is

defined as the process of copying current best solution in

binary population in place of previous solutions. A local

migration is implemented by replacing some of the population

by the best individual, while global migration is implemented

by replacing all the solution by the best individual.

IV. Results
We have implemented our algorithm in C++ programming

language and compiled using 32 bit TDM-GCC compiler,
version 4.8.1. Tests were run on a PC having following
configuration:

CPU: Intel Core i3-2350M 2.30 GHz

Memory: 4 GB DDR3 1333MHz

Operating System: Windows 7 64-bit

Datasets used to test our QEA for GCP are taken from
Center for Discrete Mathematics and Theoretical Computer
Science (DIMACS) benchmarking graph collection [9] and
[10]. Instances ending in .col are in DIMACS standard format.
Instances in .col.b are in compressed format. We have used
datasets ending with .col extension. The top of the dataset
heading resembling “p edge 11 20” means that graph has 11
vertices and 20 edges, where p denotes vertices. After that
number of lines like “e 1 2” represent connection between two
edges. We experiment with 36 datasets from [9] and [10]. The
tested datasets are heterogeneous consisting of big graph like
5-FullIns_4.col having 1085 vertices, highly dense graph like
miles1500.col, highly complex graph like queen10_10.col, and
even simple graphs. Our results are tabulated in Table 2 and
compared with other results. For 29 datasets, we found
expected chromatic number as stated in [9] and [10]. For
dataset queen10_10.col, 1-FullIns_3.col, 1-FullIns_5.col, 2-
FullIns_5.col, 3-FullIns_3.col, 3-FullIns_4.col, 5-
FullIns_4.col, no expected chromatic number is stated there.
We get better result for 2-FullIns_5.col, 5-FullIns_4.col
compared to the result of paper [14]. For queen8_8.col our
result is 9, which is better than the result of papers [13] and
[14]. Our QEA produced more optimal result for

queen8_12.col than result of [13]. For queen10_10.col, we get
chromatic number 12, whereas this number found in paper
[11] and paper [13] are 13 and 14, respectively.

Table 2: Comparison of Obtained Results with Other Works.

Dataset |V| |E| x(G) [12] [13] [14] [11] QEA

myciel4.col 23 71 5 5 - - 5 5

myciel5.col 47 236 6 6 - - 6 6

myciel6.col 95 755 5 - - - 7 5

myciel7.col 191 2360 8 - - - 8 8

games120.col 120 638 9 9 9 9 9 9

huck.col 74 301 11 11 11 11 11 11

jean.col 80 254 10 10 10 10 10 10

david.col 87 406 11 11 11 11 11 11

queen5_5.col 25 160 5 5 5 - 5 5

queen6_6.col 36 290 7 7 8 - 7 7

queen7_7.col 49 476 7 7 7 7 7 7

queen8_8.col 64 728 9 - 11 11 - 9

queen8_12.col 96 1368 12 - 14 - - 12

queen10_10.col 100 2940 ? - 14 - 13 12

anna.col 138 493 11 11 11 11 11 11

homer.col 561 1629 13 13 13 13 13 13

miles250.col 128 387 8 8 - - 8 8

miles500.col 128 1170 20 - - - 20 20

miles750.col 128 4226 31 - - - 31 31

miles1000.col 128 3216 42 42 42 42 42 42

miles1500.col 128 5198 73 - 73 - 73 73

zeroin.i.1.col 211 4100 49 - - - 49 49

zeroin.i.2.col 211 3541 30 - - - - 30

zeroin.i.3.col 206 3540 30 - - - - 30

2-

Insertions_3.col
37 72 4 - - 4 4 4

inithx.i.1.col 864 18707 54 - - - - 54

inithx.i.2.col 645 13979 31 - - - - 31

mulsol.i.1.col 197 3925 49 - 49 - 49 49

fpsol2.i.1.col 496 11654 65 65 - - - 65

mulsol.i.5.col 186 3973 31 - - - - 31

1-FullIns_3.col 30 100 ? - - - - 4

1-FullIns_5.col 282 3247 ? - 6 6 - 6

2-FullIns_5.col 852 12201 ? - - 11 - 7

3-FullIns_3.col 80 346 ? - - - - 6

3-FullIns_4.col 405 3524 ? - 7 7 - 7

5-FullIns_4.col 1085 11395 ? - - 11 - 10

Fig. 6 shows the average fitness (number of used color)
and minimum fitness over successive generation for queen7_7
dataset indicating the dynamicity of our algorithm. In our
experiments, we found that rotation probability of 0.7
performs better for all datasets. The termination condition also
depends on the graph complexity. If both the average fitness
and the best fitness do not change for a specified number of
generations or the optimal known solution is found, then the
algorithm is terminated. The number of generations varies
with the graph complexity. Our algorithm is very fast because
it can work with small population and also it needs less

70

International Journal of Advances in Computer Science & Its Applications – IJCSIA
Volume 4: Issue 4 [ISSN 2250-3765]

Publication Date : 27 December,2014

generation than other evolutionary algorithms to get the
optimal solution. In our experiment, we have used population
size within 5 to 50 for different datasets.

Fig. 6: Average and best (minimum) fitness for queen7_7

dataset.

V. Conclusion and Future Work
In this paper, we proposed a Quantum-inspired

Evolutionary Algorithm (QEA) for graph coloring problem

(GCP). The main variation operator of our QEA is the rotation

gate. The population of the solution is updated using only

rotation gate. We compare best binary individual with all

binary individuals in the population and update the Q-bit

individual. Because of the nature of the encoding, in each

generation, binary individual may become invalid and in that

case binary individuals are corrected to obtain the valid

solution. After certain generations, all or partial population are

replaced with best binary individual to avoid local

optimization. We start with m=d+1 colors, where d is the

maximum out degree of the graph. The number m is the upper

bound of the chromatic number. That means, in a single run,

the QEA dynamically reduces the chromatic number starting

with upper bound to the possible minimum number. Unlike the

previous techniques, our QEA finds the minimum chromatic

number in a single run reducing the total time significantly.

We experiment with 36 datasets from [9] and [10]. For 29

datasets, we found expected chromatic number as stated in [9]

and [10]. For five datasets queen8_8.col, queen8_12.col,

queen10_10.col, 2-FullIns_5.col and 5-FullIns_4.col, our QEA

produce better result than the previous works. So we can say

these are the major achievement of our algorithm over the

previous works. In the future, we will try to improve the

execution time of the algorithm. We also have plans to

compare more results of our proposed approach with the

results produced by other algorithm.

References
[1] M. Kubale, “Graph colorings,” American Mathematical Society, 2004.

[2] [2] C. W. K. Chen and D. Y. Y. Yun, “Unifying graph-matching
problem with a practical solution,” in Proc. International Conf. on
Systems, Signals, Control, Computers, September 1998.

[3] [3] B. H. Gwee, M. H. Lim, and J. S. Ho, “Solving four-colouring map
problem using genetic algorithm,” in Proc. Artificial Neural Networks
and Expert Systems, 1993.

[4] [4] W. K. Hale, “Frequency assignment: theory and applications,” in
Proc. IEEE, 1980, vol. 12, pp. 1497-1514.

[5] A. Gamst, “Some lower bounds for class of frequency assignment
problems,” IEEE Trans. on Vehicular Technology, vol. 35, no. 1, pp. 8-
14, 1986.

[6] N. K. Cauvery, “Timetable scheduling using graph coloring,”
International Journal of P2P Network Trends and Technology, vol. 1,
issue 2, pp. 57-62, 2011.

[7] Kuk-Hyun Han and Jong-Hwan Kim, "Quantum-inspired Evolutionary
Algorithm for a Class of Combinatorial Optimization," IEEE
Transactions on Evolutionary Computation, IEEE Press, Vol. 6, No. 6,
pp. 580-593, December 2002.

[8] T. Hey, “Quantum computing: An introduction,” in Computing &
Control Engineering Journal. Piscataway, NJ: IEEE Press, June 1999,
vol. 10, no. 3, pp. 105–112

[9] M. Trick. (2013, March 1). Graph coloring instances. Michael Trick's
Operations Research Page. [Online]. Available:
http://mat.gsia.cmu.edu/COLOR/instances.html

[10] “DIMACS benchmarks”, [online] Available:
http://www.cs.hbg.psu.edu/benchmarks/graphcoloring.html

[11] Hasin Al Rabat Chowdhury, Tasneem Farhat, and Mozammel H. A.
Khan, "Memetic Algorithm to Solve Graph Coloring Problem,"
International Journal of Computer Theory and Engineering vol. 5, no. 6,
pp. 890-894, 2013.

[12] M. M. Hindi and R. V. Yampolskiy, “Genetic algorithm applied to the
graph coloring problem,” in Proc. 23rd Midwest Artificial Intelligence
and Cognitive Science Conf., April 2012, pp. 61-66.

[13] B. Ray, A. J. Pal, D. Bhattacharyya, and T. Kim, “An efficient GA with
multipoint guided mutation for graph coloring problems,” International
Journal of Signal Processing, Image Processing and Pattern Recognition,
vol. 3, no. 2, pp. 51-58, 2010.

[14] Timir Maitra, Anindya J. Pal, Tai-hoon Kim, Debnath Bhattacharyya:
Hybridization of Genetic Algorithm with Bitstream Neurons for Graph
Coloring, International Journal of U- & E-Service, Science &
Technology . Sep2010, Vol. 3 Issue 3, p37-53. 17p.1 Chart.

[15] V. Cutello, G. Nicosia, and M. Pavone, “A hybrid immune
algorithmwith information gain for the graph coloring problem,” in
Proc.GECCO 2003, pp. 171-182, 2003.

About Author (s):

Pronaya Prosun Das was born in Manikganj,
Bangladesh. He is a final year student of Computer

Science and Engineering at East West University,

Aftabnagar, Dhaka 1212, Bangladesh. His research
interests include Evolutionary Algorithms, Machine

Learning and Image Processing.

Mozammel H A Khan was born in Kushtia,

Bangladesh. He obtained B. Sc. Engg. (EEE), M. Sc.

Engg. (Comp. Engg.), and PhD (Comp. Sc. &Engg.)
degrees from Bangladesh University of Engineering

and Technology (BUET), Dhaka, Bangladesh. He

served as faculty member of EEE Department at
Bangladesh Institute of Technology, Rajshahi,

Bangladesh and Computer Science and Engineering

Department at Khulna University, Khulna,
Bangladesh. Currently, he is a full Professor of

Computer Science and Engineering Department at

East West University, Dhaka, Bangladesh. His
research interest includes broad areas of Logic

Synthesis, Reversible Logic, Multiple-valued Logic,

and Soft Computing. He has published over 85

research papers. He is a Senior Member of IEEE.

